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Abstract. The complexity of the Shortest Vector Problem (SVP) in
lattices is directly related to the security of NTRU and the provable
level of security of many recently proposed lattice-based cryptosystems.
We integrate several recent algorithmic improvements for solving SVP
and take �rst place at dimension 120 in the SVP Challenge Hall of Fame.
Our implementation allows us to �nd a short vector at dimension 114
using 8 NVIDIA video cards in less than two days.
Speci�cally, our improvements to the recent Extreme Pruning in enumer-
ation approach, proposed by Gama et al. in Eurocrypt 2010, include: (1)
a more �exible bounding function in polynomial form; (2) code to take
advantage of Clouds of commodity PCs (via the MapReduce framework);
and (3) the use of NVIDIA's Graphics Processing Units (GPUs). We may
now reasonably estimate the cost of a wide range of SVP instances in
U.S. dollars, as rent paid to cloud-computing service providers, which is
arguably a simpler and more practical measure of complexity.
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1 Introduction

Lattice-based cryptography is a hot topic, with numerous submissions and pub-
lications at prestigious conferences in the last two years. The reasons that it
might have become so popular include:

� lattice-based PKCs, unlike ECC, do not immediately succumb to large quan-
tum computers (i.e., they are �post-quantum�);

� lattice-based PKCs enjoy the (so far) unique property of being protected by
a worst-case hardness assumption (i.e., they are unbreakable if any of a large
class of lattice-based problem at a lower dimension is intractable);

� lattices can be used to create fully homomorphic encryptions.

One of the main problems in lattice-based cryptography is the shortest vector
problem (SVP). As the name implies, it is a search for a non-zero vector with



the smallest Euclidean norm in a lattice. The SVP is NP-hard under randomized
reductions. The approximate shortest vector problem (ASVP) is the search for a
short non-zero vector whose length is at most some given multiple of the mini-
mum. It is easy in some cases, as shown by the LLL algorithm [LLL82]. Although
LLL has polynomial running time, the approximation factor of LLL is expo-
nential in the lattice dimension. The complexity of SVP (and ASVP) has been
studied for decades, but practical implementations that take advantage of special
hardware are not investigated seriously until recently [HSB+10,DS10,DHPS10].

In contrast, enumeration is another way to solve SVP and ASVP, which can
be viewed as a depth-�rst search in a tree structure, going over all vectors in a
speci�ed search region deterministically. Typically, a basis transformation such
as BKZ [SE94] is performed �rst to improve the basis to one likely to yield a
short vector via enumeration.

At Eurocrypt 2010, Gama et al. proposed the Extreme Pruning approach
to solving SVP and ASVP [GNR10] and showed that it is possible to speed up
the enumeration exponentially by randomizing the algorithm. The idea is that,
instead of spending a lot of time searching one tree, one generates many trees
and only spends a small amount of time on each of them by aggressively pruning
the subtrees unlikely to yield short vectors using a bounding function. That is,
one focuses on the parts of the trees that are more �fruitful� in terms of the
likelihood of producing short vectors per unit time spent.

In other words, one should try to maximize the success probability of �nding
a short vector per unit of computing time spent by choosing an appropriate
bounding function in pruning. Therefore, which bounding function works better
depends on the particular implementation.

In this paper, we make a practical contribution on several fronts.

1. We integrate the Extreme Pruning idea of Gama et al. [GNR10] into the
GPU implementation of [HSB+10].

2. We extend the implementation by using multiple GPUs and run it on Ama-
zon's EC2 in order to harness the immense computational power of such
cloud services.

3. We extrapolate our average-case run times to estimate the run time of our
implementation for solving ASVP instances of the SVP Challenge in higher
dimensions.

4. Consequently, we set new records for the SVP challenge in dimensions 114,
116, and 120. The previous record was for dimension 112.

As a result, the average �cost� of solving ASVP (and breaking lattice-based
cryptosystems) with our implementation can henceforth be measured directly in
U.S. dollars, taking Lenstra's dollarday metric [Len05] to a next level1. That is,
the cost will be shown literally as an amount on your invoice, e.g., the e�ort in
our solving a 120-dimensional instance of the SVP Challenge translates to a 2300

1 Before the �nal version went to press, it is brought to our attention that, unbe-
knownst to us, Kleinjung, Lenstra, Page, and Smart had also started to adopt a
similar metric in an ePrint report [KLPS11] dated May 2011.



USD bill from Amazon. Moreover, this new metric is more practical in that the
parallelizability of the algorithm or the parallelization of the implementation is
explicitly taken into account, as opposed to being assumed or unspeci�ed in the
dollarday metric. Needless to say, such a cost should be understood as an upper
bound obtained based on our implementation, which can certainly be improved,
e.g., by using a better bounding function or better programming.

2 Preliminaries

2.1 Lattices, Algorithms, and SVP

Let m,n ∈ Z with n ≤ m, and let bi ∈ Zm for 1 ≤ i ≤ n be a set of linearly
independent vectors. The set of all integer linear combinations of the vectors bi is
called a lattice Λ: Λ = {

∑n
i=1 xibi | xi ∈ Z} . The matrix B ∈ Zm×n consisting

of the column vectors bi is called a basis of Λ, we write Λ = Λ(B). Λ is an
additive group in Zm. If n = m the lattice is called full-dimensional. The basis
of a lattice is not unique. The product of a basis with an unimodular matrix
M (|det(M)| = 1) does not change the lattice. The value λ1(Λ(B)) denotes the
norm of a shortest non-zero vector in the lattice. It is called the �rst minimum.
The determinant of a lattice is the value det(Λ(B)) =

√
det(BtB). If Λ(B) is

full-dimensional, then the lattice determinant is equal to the absolute value of the
determinant of the basis matrix (det(Λ(B)) = |det(B)|). In the remainder of this
paper, we will only be concerned with full-dimensional lattices. The determinant
of a lattice is independent of the basis; if the basis changes, the determinant
remains the same.

The shortest vector problem in lattices is stated as follows. Given a lattice
basis B, output a vector v ∈ Λ(B) \ {0} subject to ‖v‖ = λ1(Λ(B)). The
problem that we address in the remainder of this paper is the following: given a
lattice basis B and a norm bound A, �nd a non-zero vector v ∈ Λ(B) subject
to ‖v‖ ≤ A.

The Gaussian heuristic assumes that the number of lattice points inside a set
S is approximately vol(S)/ det(Λ). Using this heuristic and the volume of a unit
sphere in dimension n, we can compute an approximation of the �rst minimum

of the lattice Λ: FM(Λ) = Γ (n/2+1)1/n√
π

· det(Λ)1/n . Here Γ (x) is the gamma-
function. This estimate is used, among others, to predict the length of shortest
vectors in the SVP challenge [GS10]. In our experiments as well as in the SVP
challenge the heuristic shows to be a good estimate of a shortest vector length
for the lattices used. Throughout the rest of this paper, our goal will always be
to �nd a vector below 1.05 · FM(Λ), the same as in the SVP challenge.

The Gram-Schmidt orthogonalization (GSO) of a matrix B ∈ Zn×n is B∗ =
[b∗1, . . . ,b

∗
n] ∈ Rn×n. It is computed via b∗i = bi −

∑i−1
j=1 µi,jb

∗
j for i = 1, . . . , n,

where µi,j = bTi b
∗
j/
∥∥b∗j∥∥2 for all 1 ≤ j ≤ i ≤ n. We have B = B∗ µT ,

where B∗ is orthogonal and µT is an upper triangular matrix. Note that B∗

is not necessarily a lattice basis. The values µ are called the Gram-Schmidt
coe�cients.



The LLL [LLL82] and the BKZ [SE94] algorithms can be used for pre-
reduction of lattices, before running an SVP algorithm. Pre-reduction speeds
up the enumeration, since the size of the enumeration tree is depending on the
quality of the input basis. BKZ is controlled by a blocksize parameter β, and LLL
is the special case of BKZ with parameter β = 2. Higher blocksize guarantees a
better reduction quality, in the sense that vectors in the basis are shorter and
the angles between basis vectors are closer to orthogonal. The gain in reduction
quality comes at the cost of increasing runtime. The runtime of BKZ increases
exponentially with the blocksize β. In the lattice dimension, the runtime of BKZ
behaves polynomial in practice, whereas no proof of this runtime is known. The
overall runtime of our SVP solver will include the BKZ pre-reduction run times
as well as enumeration run times. It is an important issue to �nd suitable block-
size parameters for pre-reduction.

Algorithms for SVP. There are mainly three di�erent approaches how to
solve the shortest vector problem. First, there are probabilistic sieving algo-
rithms [AKS01,NV08,MV10b]. They output a solution to SVP with high proba-
bility only, but allow for single exponential runtime. The most promising sieving
candidate in practice at this time is the GaussSieve algorithm [MV10b]. Further,
there exists an algorithm based on Voronoi cell computation [MV10a]. This is
the �rst deterministic SVP algorithm running in single exponential time, but
experimental results lack so far. Third, there is the group of enumeration al-
gorithms that perform an exhaustive search over all lattice points in a suitable
search region. Based on the algorithms by Kannan [Kan83] and Fincke/Pohst
[FP83], Schnorr and Euchner presented the ENUM algorithm [SE94]. It was an-
alyzed in more details in [PS08]. The latest improvement called extreme pruning
providing for huge exponential speedups, was shown by Gama, Nguyen, and
Regev [GNR10]. In the remainder of this paper, we will only be concerned with
extreme pruned enumeration, since this variant of enumeration is the strongest
SVP solver at this time.

Ideas for parallel enumeration for shortest vectors were presented in [HSB+10]
for GPUs, in [DS10] for multicore CPUs, and in [DHPS10] for FPGAs. Concern-
ing extreme pruning, there is no parallel version known to us to date, even no
serial implementation is publicly available.

The lattices that we use for our tests throughout this paper are those of the
SVP challenge [GS10]. They follow the ideas of the lattices from [GM03], and are
used for testing SVP and lattice reduction algorithms, e.g., in [GN08,HSB+10].

2.2 Enumeration and Extreme Pruning

Here we will present the basic idea of enumeration for shortest vectors. n de-
notes the dimension of the full-dimensional lattices. To �nd a shortest non-zero
vector of a lattice Λ(B) with B = [b1, . . . ,bn], ENUM takes as input the Gram-
Schmidt coe�cients (µi,j)1≤j≤i≤n, the quadratic norm of the Gram-Schmidt
orthogonalization ‖b∗1‖

2
, . . . , ‖b∗n‖

2 of B, and an initial search bound A.



The search space is the set of all coe�cient vectors u ∈ Zn that satisfy
‖
∑n
t=1 utbt‖ ≤ A. Starting with an LLL-reduced basis, it is common to set A =

‖b∗1‖
2 in the beginning. If the norm of the shortest vector is known beforehand,

it is possible to start with a lower A, which limits the search space and reduces
the runtime of the algorithm. In the equation∥∥∥∥∥

n∑
t=1

utbt

∥∥∥∥∥ = min
x∈Zn

∥∥∥∥∥
n∑
t=1

xtbt

∥∥∥∥∥
we replace all bt by their orthogonalization, i.e., bt = b∗t +

∑t−1
j=1 µt,jb

∗
j and get

∥∥∥∥∥
n∑
t=1

utbt

∥∥∥∥∥
2

=

∥∥∥∥∥∥
n∑
t=1

(
ut(b

∗
t +

t−1∑
j=1

µt,jb
∗
j )
)∥∥∥∥∥∥

2

=

n∑
t=1

(ut +

n∑
i=t+1

µi,tui)
2 ‖b∗t ‖

2
.

For index k, enumeration is supposed to check all coe�cient vectors u with

n∑
t=n+1−k

(ut +

n∑
i=t+1

µi,tui)
2 · ‖b∗t ‖

2
< A , 1 ≤ k ≤ n . (1)

For index t, the summand is independent of values with lower index < t. This
means that changing the coe�cient u for lower indices < t does not a�ect the
upper part of the sum with index ≥ t. Therefore, the indices are arranged in
a tree structure, where the root node contains values for coe�cient un, inter-
mediate nodes contain partly �lled coe�cient vectors (×, ut, . . . , un), and leaf
nodes contain full linear combinations (u1 . . . un). Here the symbol × denotes
that the �rst values of the coe�cient vector are not set. Since the ‖b∗i ‖ are or-
thogonal, the sum can only increase when we step a layer down in the tree, the
sum will never decrease. Therefore, when an inner node of the tree has extended
the search norm A, we can cut o� the whole subtree rooted at this node and
skip enumerating the subtree.

Schnorr and Hörner already presented an idea to prune some of the subtrees
that are unlikely to contain a shorter vector [SH95]. Their pruned enumeration
runs deterministically with a certain probability to miss a shortest vector. The
[SH95] pruning idea was analyzed and improved in [GNR10]2. Instead of using
the same norm bound A on every layer of the enumeration tree (Equation (1)),
Gama et al. introduce a bounding vector (R1, . . . , Rn) ∈ [0, 1]n, with R1 ≤ . . . ≤
Rn. A on the right side of the testing condition (1) is replaced by Rk ·A. It can
be shown that, assuming various heuristics [GNR10], the lattice vectors cut o�
by this approach only contain a shortest vector with low probability.

With this pruning technique, an exponential speedup compared to deter-
ministic enumeration can be gained. In the original paper, various bounding
function vectors were presented in theory. For the experiments, the authors use
a numerically optimized function.

2 The authors of [GNR10] also showed some �aws in the analysis of [SH95].



2.3 Cloud Computing, Amazon EC2, and GPU

Cloud computing is an emerging computing paradigm that allows data centers
to provide large-scale computational and data-processing power to the users on a
�pay-as-you-go� basis. AmazonWeb Services (AWS) is one of the earliest and ma-
jor cloud-computing providers, who provides, as the name suggests, web services
platforms in the cloud. The Elastic Compute Cloud (EC2) provides compute
capacity in the cloud as a foundation for the other products that AWS provides.
With EC2, the users can rent large-scale computational power on demand in
the form of �instances� of virtual machines of various sizes, which is charged on
an hourly basis. The users can also use popular parallel computing paradigms
such as the MapReduce framework [DG04], which is readily available as the
AWS product �Elastic MapReduce.� Furthermore, such a centralized approach
also frees the users from the burden of provisioning, acquiring, deploying, and
maintaining their own physical compute facilities.

Naturally, such a paradigm is economically very attractive for most users,
who only need large-scale compute capacity occasionally. For large-scale compu-
tations, it may be advisable to buy machines instead of renting them because
Amazon presumably expects to make a pro�t on renting out equipment, so our
extrapolation might over-estimate the cost for long-term computations. How-
ever, we believe that these cloud-computing service providers will become more
e�cient in the years to come if cloud computing indeed becomes the main-
stream paradigm of computing. Moreover, trade rumors has it that Amazon's
pro�t margins are around 0% (break-even) as of mid-2011, and nowhere close
to 100%, so we can say con�dently that Amazon rent cannot be more than 2×
what a large-scale user would have spent if he bought and maintained his own
computers and networking. Thus, Amazon prices can still be considered a realis-
tic measure of computing cost and a good yardstick for determining the strength
of cryptographic keys.

In estimating complexity such that of solving (A)SVP or problems of the same
or similar nature, Amazon EC2 can be used to provide a common measure of
cost as a metric in comparing alternative or competing cryptanalysis algorithms
and their implementations. Moreover, when using the Amazon EC2 metric, the
parallelizability of the algorithm or the parallelization of the implementation is
explicitly taken into account, as opposed to being assumed or unspeci�ed. In
addition to its simplicity, we argue that the EC2 metric is more practical than
the dollardays metric of [Len05], and a recent report by Kleinjung, Lenstra,
Page, and Smart [KLPS11] also agrees with us in taking a similar approach and
measure with Amazon's EC2 cloud.

Graphics processing units (GPUs) represent another class of many-core ar-
chitectures that are cost-e�ective for achieving high arithmetic throughput. The
success of GPU has mainly been driven by the economy of scale in the video
game industry. Currently, the most widely used GPU development toolchain is
NVIDIA's CUDA (Compute Uni�ed Device Architecture) [KH10]. At the core of
CUDA are three key abstractions, namely, a hierarchy of thread groups, shared
memories, and barrier synchronization, that are exposed to the programmers as



a set of extensions to the C programming language. At the system level, the
GPU is used as a coprocessor to the host processor for massively data-parallel
computations, each of which is executed by a grid of GPU threads that must
run the same program (the kernel). This is the SPMD (single program, multiple
data) programming model, similar to SIMD but with more �exibility such as
in changing of data size on a per-kernel-launch basis, as well as deviation from
SIMD to MIMD at a performance penalty.

AWS o�ers several di�erent compute instances for their customers to choose
based on their computational needs. The one that interests us the most is the
largest instance called �Cluster Compute Quadruple Extra Large� (cc1.4xlarge)
which is designed for high-performance computing. Each such instance consists
of 23 GB memory provide 33.5 �EC2 Compute Units� where each unit roughly
�provides the equivalent CPU capacity of a 1.0�1.2 GHz 2007 Opteron or 2007
Xeon processor,� according to Amazon.

Starting from late 2009, AWS also adds to its inventory a set of instances
equipped with GPUs, which is called �Cluster GPU Quadruple Extra Large�
(cg1.4xlarge), which is basically a cc1.4xlarge plus two NVIDIA Tesla �Fermi�
M2050 GPUs. As of the time of writing, the prices for renting the above compute
resources are shown in Table 1. The computation time is always rounded up to
the next full hour for pricing purposes.

Table 1. Pricing information from http://aws.amazon.com/ec2/pricing/

Elastic Compute Cloud 1 Year Reserved Pricing Elastic MapReduce
cc1.4xlarge 1.60 USD/hour 4290 USD + 0.56 USD/hour 0.33 USD/hour
cg1.4xlarge 2.10 USD/hour 5630 USD + 0.74 USD/hour 0.42 USD/hour

For computations lasting less than 172 days it is cheaper to use on-demand
pricing. For longer runs, there is an option to �reserve� an instance for 1 year
(or even 3), which means that the user pays an up-front cost (see table above)
to cut the on-demand cost of these instances.

3 Implementation

For each randomized basis, we use LLL-XD followed by BKZ-FP of the NTL
Library [Sho] with δ = 0.99, di�erent blocksizes β, and pruning parameter p =
15. As already mentioned above, the problem we address is �nding a vector below
a search bound 1.05·FM that heuristically guesses the length of a shortest vector
of the input lattice. Adapting our implementations to other goal values is straight
forward. It will only change the success probability and the runtime, therefore,
we have to �x the bound for this work.

3.1 Bounding Function

As mentioned above, selecting a suitable bounding function is an important part
of extreme enumeration. It in�uences the runtime as well as the success proba-
bility of each enumeration tree. The bounding function we use is a polynomial



p(x) of degree eight that aims to �t the best bounding function of [GNR10] in
dimension 110. We use

p(x) =

8∑
i=0

vix
i

where v = (9.1 · 10−4, 4 · 10−2,−4 · 10−3, 2.3 · 10−4,−6.9 · 10−6, 1.21 · 10−7,−1.2 ·
10−9, 6.2 · 10−12,−1.29 · 10−14) to �t the 110-dimensional bounding function.
For dimension n we use p(x · 110/n). Figure 1 shows our polynomial bounding
function p(x), scaled to dimension 90.
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Fig. 1. Polynomial bounding function
p(x), scaled to lattice dimension 90. The
dashed line shows a linear bounding func-
tion.
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Fig. 2. Success probability of Extreme
Enum assuming a success probability
psucc = 10% for one single tree. On av-
erage, we have to start 44 trees to �nish
with success probability > 99%.

Using an MPI-implementation for CPU we gained a success probability of
�nding a vector below 1.05 · FM(Λ) of psucc > 10%. We use 10 lattice bases
in each dimension and run BKZ and enumeration on up to 1000 randomized
instances for each basis. We stop each lattice after 5 hours of computation,
so that the total time is still manageable. In dimensions 96 we increase the
maximum time from 5 to 20 hours. In total, we have up to 1000 trees in each
dimension to compute the success probability of our bounding function. For
a comparable bounding function, the authors of [GNR10] get a much smaller
success probability. This is due to the fact that in our case we expect about 1.05n

many vectors below the larger search bound, whereas the analysis of Gama et al.
assumes that only a single vector exists below their bound.

Figure 9 in Appendix A shows the expectation values of the success of BKZ
and ENUM. More exactly, it shows the expectation value E(X) of P (X ≤ t),
which gives a success probability of p = 1/E(X). For higher dimensions m >
90 the success probability of BKZ tends to zero in every tested case. P (t) =
1 − (1 − psucc)t is the success probability to �nd a shortest vector below 1.05 ·
FM(Λ) when starting t enumeration trees in parallel. Figure 2 shows the success



probability P for psucc = 10%. This implies that on average we have to start 44
trees to �nd a vector below the given bound with probability P (t) > 99% (and
not 1/psucc many trees, as one could imagine).

3.2 Parallelization of Extreme Pruning using GPU and Clouds

Our overall parallelization strategy follows the model shown in Figure 3. For
success, it is su�cient if one randomized instance of ENUM �nishes. The number
of instances we start depends on the success probability of each instance, which
itself is depending on the bounding function used. The high-level algorithm run
by each multicore-Enum or GPU-Enum instance is illustrated in Figure 4.

For the calculation of the cost, it makes no di�erence if we use 8 cores for
a multicore-tree or only one core. In practice, however, we can stop the whole
computation if one of the trees has found a vector below the bound. Therefore,
using multiple cores for enumeration may have some in�uence on the running
time.

Fig. 3. The model of our parallel SVP solver. The basis B is randomized, and each
instance is solved either on CPU or on GPU. In the end, the shortest of all found
vectors is chosen as output. Since we use pruned enumeration, not all instances will
�nd a vector below the given bound.

GPU Implementation. We used the implementation of [HSB+10] and in-
cluded pruning according to [GNR10]. The GPU enumeration uses enumera-
tion on top of the tree, which is performed on CPU, to collect a huge num-
ber of starting points, as shown in Figure 4. These starting points are vectors
(×, . . . ,×, xn−α+1, . . . , xn), where only the last α coe�cients are set. A starting
point can be seen as the root of a subtree in the enumeration tree. All starting
points are copied to the GPU and enumerated in parallel. Due to load balancing
reasons, this approach is done iteratively, until no more start points exist on top
of the tree (see [HSB+10] for more details).

Since the code of extreme pruning only changes a few lines compared to
usual enumeration, including pruning to the GPU implementation is straight
forward. The improvement mentioned in [GNR10] concerning storage of inter-
mediate sums was in parts already contained in the [HSB+10] implementation,
so only slight changes were integrated into the GPU ENUM.
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Fig. 4. Illustration of the parallel enumeration process. The top tree xn, xn−1, ..., xα is
enumerated on a single core, and the lower trees xα−1, ..., x2, x1 are explored in parallel
on many mappers.

The GPU implementation allows the usage of di�erent bounding functions,
but for simplicity reasons we stick to the polynomial function speci�ed above.
Our implementation is available online3.

MapReduce Implementation. Our MapReduce implementation is also based
on [HSB+10]. The overall search process is illustrated in Figure 5. Speci�cally, we
divide the search tree to top and lower trees. A top tree, which consists of levels
xn through xα, is enumerated by a single thread in a DFS fashion, outputting all
possible starting points (xα, . . . , xn) to a WorkList. When a mapper receives a
starting point (xα, . . . , xn) from the WorkList, it �rst populates the unspeci�ed
coordinates x1, . . . , xα−1 and obtains the full starting point

(x1 = d−
n∑
k=2

µk,1, xkc, . . . , xα−1 = d−
n∑

k=α

µk,α−1, xkc, xα, ..., xn).

It then starts enumerating the lower tree from level 1 through α− 1.
Because we scan the coe�cients in a zigzag path, the lengths of the starting

points usually show an increasing trend from the �rst to the last starting point.
This can result uneven work distribution among the mappers. Therefore, we
subdivide and randomly shu�e the WorkList so that each mapper gets many
random starting points and hence have roughly equal amount of work among
themselves. The e�ect is evident from the fact that the load-balancing factor,
i.e., average running time divided by that of the slowest mapper, increases from
24% to 90%.

3 http://homes.esat.kuleuven.be/~jhermans/gpuenum/index.html
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Fig. 5. Illustration of our MapReduce implementation of the enumeration algorithm.

4 Experimental Results

In this section, we present the experimental results for our algorithmic improve-
ments and parallel implementations on GPU and with MapReduce.

4.1 GPU Implementation

The GPU enumeration using extreme pruning solved the 114-dimensional SVP-
challenge in about 40 hours using one single workstation with eight NVIDIA
GeForce GTX 480 cards in parallel. Each GTX 480 has one GPU with 480
cores running at 1.4 GHz. The performance decreases from 200 Msteps/s to
≈ 100 Msteps/s using polynomial bounding function compared with an instance
without pruning. With linear pruning, the decrease is less noticeable, but still
apparent. This decrease is caused by the fact that subtrees are much thinner
when pruning the tree. The number of starting points per second increases a
lot, which coincides with the fact that subtrees, even though their dimension is
much bigger now, are processed faster than without pruning.

We use 10 di�erent lattices of the SVP challenge in each dimension 80�104
on the workstation equipped with eight GTX 480 cards to generate the timings
of Figures 6 and 7.

Workload Distribution between BKZ and ENUM. We note that in general, if we
spend more time in BKZ to produce a better basis, we would have a higher prob-
ability of �nding a short vector in the subsequent ENUM phase. A natural ques-
tion is, what is the optimal breakdown of workload between BKZ and ENUM?
We conjecture that the distribution should be roughly equal, as is supported by
empirical evidence that we obtained from our experiments (cf. Figure 8). In our
experiments, BKZ 40 performs the best in 104-dimensional instances, whereas in
Figure 8, it has a ratio that is the closest to 0.5. Similar trends can be observed
for dimensions 86�97, for which the best BKZ block size is 30.

We use the data shown in Figure 8 to assess which of the curves from Figure 7
is the fastest one, and we use the extrapolation of this curve gained from data
in dimension 80�104. This results in the cost function shown in Conjecture 1.
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Conjecture 1 (GPU timing function) Running BKZ and our implementa-
tion of pruned enumeration once on an NVIDIA GTX-480 GPU takes time

timeGPU (n) =


t30(n) = 20.0138n

2−2.2n+93.2 for n ≤ 97

t35(n) = 20.0064n
2−0.92n+38.4 for 98 ≤ n ≤ 104

t45(n) = 20.001n
2+0.034n−2.8 for 105 ≤ n ≤ 111

t55(n) = 20.00059n
2+0.11n−5.8 for 112 ≤ n

sec .

A more theoretic way to extrapolate the runtime would be to compute BKZ
reduced bases, note the slope of the orthogonalized basis vectors, and use the
runtime function of [GNR10] to compute the runtime. This approach ignores
the runtime of BKZ (which is up to 50%) of the total runtime and relies on the
Gaussian heuristic, while we are interested in practical runtime.

From the regression results shown in Figures 6 and 7, we can see that the
run times for BKZ and ENUM are indeed polynomial and super-exponential,
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respectively. However, we notice that a larger BKZ block size does have a positive
e�ect on the per-round running time of subsequent ENUM.

One di�erence is that Amazon uses M2050 GPU, not GTX480 (like in our
experiments). The M2050 has better double precision performance. Since many
operations in enumeration are performed using double precision operations, we
expected a huge speed-up for enumeration. However, tests on M2050 GPUs did
not show large speed-ups. One possible explanation is as follows. On the GPU,
many additional operations have to be performed in integer-precision in order
to split the work and reach a good load balancing. Therefore, double-precision
operations are less than a fourth of the total number of operations, which makes
the speed-ups on M2050 GPUs minor.

4.2 MapReduce Implementation

Our MapReduce implementation is compiled by g++ version 4.4.4 x86_64 with
the options -O9 -ffast-math -funroll-loops -ftree-vectorize. Using the
MapReduce implementation, we are able to solve the 112-dimensional SVP-
challenge in a few days. More exactly, we were using 10 nodes, 84 physical cores
(totaling 140 virtual cores as some of the cores are hyperthreaded), which gives
a total number of 334 GHz.

We note that the bounding function used in this computation is di�erent
from the polynomial bounding function described earlier. We were lucky in that
only after 101 hours, or 1/9 of the estimated time, a shorter vector was found.
We also noticed that the runtime scales linearly with the number of CPU cores
used in total, meaning if we increase the number of CPU cores by a factor of 10,
the runtime will decrease by factor 10.

Overall, from the test data of solving SVPs at dimension 100, 102, and 104
using the same set of seeds, we found that a GTX480 is roughly two to three
times faster than a four-core, 2.4 GHz Intel Core i7 processor for running our SVP
solvers. We conjecture that the running time for our MapReduce implementation
is also similar to that of our GPU implementation, as shown in Conjecture 1.

4.3 Final Pricing

We use Conjecture 1 to derive the �nal cost function for solving SVP challenges
in higher dimensions n ≥ 112. Recall that Amazon instances have to be paid
for complete hours, therefore we round the runtime in hours to the next highest
integer value. Using 44 enumeration trees leads to a success probability of at
least 99%.

Conjecture 2 (Final Pricing) Solving an SVP challenge with our implemen-
tation in dimension n ≥ 112 with a success probability of ≥ 99% on Amazon
EC2 (using on demand pricing) costs

costGPU (n) = dtimeGPU (n)/3600e · 44 · 2.52 USD .



Following Conjecture 2 solving the 120-dimensional instance of the challenge
costs 1, 885 USD, which is a bit less than the amount we paid for practically
solving it (due to conservative reservation of compute resources on EC2). We
actually �red up 50 cg1.4xlarge instances for a total of 946 instance-hours, and
incurred a bill of 2, 300 USD. For instance, solving the 140-dimensional challenge
would cost roughly 72, 405 USD.

5 Concluding Remarks and Further Work

Cryptographic Key Sizes. The ability of solving SVP does not directly a�ect
cryptographic schemes based on lattice problems. The hardness of lattice-based
signature schemes is mostly based on the SIS problem, whereas the hardness of
encryption schemes is mostly based on the LWE problem. Both the SIS and the
LWE problem can be proven to be as hard as the SVP in lattices of a smaller
dimension (so-called worst-case to average-case reduction). That means that a
successful attacker of a cryptographic system is able to solve SVP in all lattices
of a smaller dimension. This implies that our cost estimates for SVP can be used
to assess the hardness of the basic problem of cryptosystems only.

Real attacks on cryptosystems mostly apply approximation algorithms, like
BKZ. Since enumeration can be used as a subroutine there, speeding up enu-
meration also a�ects direct attacks on lattice based cryptosystems.

Further Work. For GPUs the need of �nding new bounding functions seems
apparent. Since trees are very thin when our polynomial bounding is applied
the performance of the GPU decreases. Finding a new bounding function that
allows for the same success probability but guarantees better performance will
show the strength of the GPU even more. Besides that, it is an open problem
which bounding function gives the best performance in practice, be it on CPU
or GPU.
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A Success Probability Using p(x)

We ran experiments using the SVP challenge lattices, in order to assess the
practical success probability (the probability of a single ENUM run to �nd a
short vector) of extreme pruning using the polynomial bounding function p(x).
Using a multicore CPU implementation we started extreme pruning on up to
10, 000 lattices in each dimension (we stopped each experiment after 20 hours
of computation). Figure 9 shows the average success rate of BKZ (with pruning
parameter 15) and ENUM in dimensions 80 to 96 for di�erent BKZ blocksizes.
The values shown are the number of successfully reduced lattices divided by the
number of started lattices in each dimension.

With BKZ blocksize 20, the pre-reduction was not strong enough, so neither
BKZ nor ENUM could �nd a vector below the search bound in dimensions ≥ 96
within 20 hours. In dimension 100, the number of �nished enumeration trees was
already too small to derive a meaningful success rate.

The success rate of BKZ vanishes in higher dimensions. For each BKZ block-
size, the success rate of ENUM stabilizes at a value > 10%. Since the success rate
is higher than this value in almost every case, we assume a value of psucc = 10%
for our polynomial bounding function p(x).
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Fig. 9. Average values of success of the polynomial bounding function. total = number
of samples; BKZ = number of samples solved by BKZ; ENUM = number of samples
solved by pruned enumeration.


