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Abstract. RSA-CRT fault attacks have been an active research area
since their discovery by Boneh, DeMillo and Lipton in 1997. We present
alternative key-recovery attacks on RSA-CRT signatures: instead of tar-
geting one of the sub-exponentiations in RSA-CRT, we inject faults into
the public modulus before CRT interpolation, which makes a number of
countermeasures against Boneh et al.’s attack ineffective.

Our attacks are based on orthogonal lattice techniques and are very ef-
ficient in practice: depending on the fault model, between 5 to 45 faults
suffice to recover the RSA factorization within a few seconds. Our sim-
plest attack requires that the adversary knows the faulty moduli, but
more sophisticated variants work even if the moduli are unknown, un-
der reasonable fault models. All our attacks have been fully validated
experimentally with fault-injection laser techniques.
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1 Introduction

1.1 RSA-CRT Signatures

RSA [23] is the most widely used signature scheme. To sign a message m, the
signer first applies an encoding function µ to m, and then computes the signature
σ = µ(m)d mod N . To verify the signature σ, the receiver checks that σe = µ(m)
mod N. The Chinese Remainder Theorem (CRT) is often used to speed up
signature generation by a factor of about 4. This is done by computing:

σp = µ(m)d mod p−1 mod p and σq = µ(m)d mod q−1 mod q

and deriving σ from (σp, σq) using the CRT.



1.2 Fault Attacks on RSA-CRT Signatures

Back in 1997, Boneh, DeMillo and Lipton [6] showed that RSA-CRT implemen-
tations are vulnerable to fault attacks. Assuming that the attacker can induce
a fault when σq is computed while keeping the computation of σp correct, one
gets:

σp = µ(m)d mod p−1 mod p and σq 6= µ(m)d mod q−1 mod q

hence:
σe = µ(m) mod p and σe 6= µ(m) mod q

which allows the attacker to factor N by computing gcd(σe−µ(m) mod N,N) =
p. This attack applies to any deterministic padding function µ, such as RSA
PKCS#1 v1.5 or Full-Domain Hash [2], or probabilistic signatures where the
randomizer used to generate the signature is sent along with the signature, such
as PFDH [13]. Only probabilistic signature schemes such that the randomness
remains unknown to the attacker may be safe, though some particular cases have
been attacked as well [12].

In 2005, Seifert [24] introduced a new type of RSA fault attacks, by inducing
faults on the RSA public modulus. The initial attack [24] only allowed to bypass
RSA verification, but key-recovery attacks were later discovered by Brier et
al. [8], and improved or extended in [17,5,3,4]. These key-recovery attacks only
apply to RSA without CRT, and they require significantly more faults than
Boneh et al.’s attack, at least on the order of 1000 faulty signatures.

1.3 Our contribution

We present new alternative key-recovery attacks on RSA-CRT signatures: in-
stead of targeting one of the RSA-CRT sub-exponentiations, we inject faults
into the public modulus like in Seifert’s attack. This makes typical countermea-
sures against Boneh et al.’s attack ineffective against the new attacks.

Our attacks are based on the orthogonal lattice techniques introduced by
Nguyen and Stern [19] in 1997. They are very effective in practice: they disclose
the RSA factorization within a few seconds using only between 5 to 45 faulty
signatures. The exact running time and number of faulty signatures depend on
the fault model.

For instance, in our simplest attack, the running time is a fraction of a second
using only 5 faulty signatures, but the attacker is assumed to know the faulted
moduli for the 5 different messages. However, our attack can be extended to the
case where the attacker no longer knows the faulted moduli, using at most 45
faulty signatures, under the following two fault models: either the faulted moduli
only differ from the public modulus on a single byte of unknown position and
unknown value, or the faulted moduli may differ from the public modulus by
many bytes, but the differences are restricted to the least significant bits, up to
half of the modulus size.

All our attacks have been fully validated with physical experiments with laser
shots on a RISC microcontroller.



1.4 Related work

Many countermeasures have been proposed to protect against Boneh et al.’s
attack and its numerous generalizations, but they often focus on the exponenti-
ation process. The previously mentioned fault attacks [8,17,5,3,4] on RSA using
faulty moduli only apply to standard RSA without CRT, and they use non-
lattice techniques. Our attack seems to be the first attack on RSA-CRT with
faulted moduli.

It should be pointed out, however, that a number of protected RSA-CRT
implementations also protect the CRT recombination. This is for example the
case of [1,10,14,7,26,22].

More generally, as we observe in §5, using the technique known as Garner’s
formula for CRT recombination does thwart the attack introduced in this paper.
Since this formula is often used in practice, typical implementations conforming
to RSA standards like PKCS#1 and IEEE P1363 should in principle be immune
to this attack.

1.5 Roadmap

In §2, we describe the basic attack where the faulty moduli are assumed to be
known to the attacker. In §3, we extend the attack to realistic fault models in
which the faulty moduli are no longer known to the attacker. In §4, we describe
physical experiments with laser shots on a RISC microcontroller to validate the
attack. Finally, in §5, we suggest possible countermeasures against this attack.

2 The New Attack

2.1 Overview

Consider again the generation of RSA-CRT signatures. To obtain the signature
σ of a message m padded as µ(m), the signer computes the mod-p and mod-q
parts:

σp = µ(m)d mod p and σq = µ(m)d mod q

and returns the signature:

σ = σp · α+ σq · β mod N (1)

where α, β are the pre-computed Chinese Remainder coefficients α = q·(q−1 mod
p) and β = p · (p−1 mod q).

Assume that an adversary can obtain the correct signature σ, and also a
signature σ′ of the same padded message µ(m) after corrupting the modulus N
before the CRT step (1). In other words, the attacker gets σ as before but also
σ′ defined as:

σ′ = σp · α+ σq · β mod N ′ for some N ′ 6= N



Suppose further, for the moment, that the adversary is able to recover the faulty
modulus N ′: we will see in §3 how this not-so-realistic hypothesis can be lifted
in a more practical setting. Then, by applying the Chinese Remainder Theorem
to σ and σ′, the adversary can compute

v = σp · α+ σq · β mod N ·N ′.

But if we denote the bit length of N by n, then N ·N ′ is a 2n-bit integer, whereas
α, β are of length n and σp, σq of length n/2, so v is really a linear combination
of α and β in Z:

v = σp · α+ σq · β.

That alone does not suffice to factor N , but several such pairs (σ, σ′) provide
multiple linear combinations of the (unknown) integers α, β with relatively small
coefficients. Then lattice reduction techniques allow us to recover the coefficients
σp and σq, and hence obtain the factorization of N by GCDs. The following
sections describe this process in detail.

2.2 Applying Orthogonal Lattice Techniques

We assume that the reader is familiar with cryptanalysis based on lattices
(see [18,21] for more information), particularly the orthogonal lattices intro-
duced by Nguyen and Stern [19]: if L is a lattice in Zn, we let L⊥ be the lattice
formed by all vectors in Zn which are orthogonal to all vectors of L. If an at-
tacker obtains ` pairs (σ, σ′), he can compute as before a vector v = (v1, . . . , v`)
of 3n/2-bit integers satisfying an equation of the form:

v = αx + βy (2)

where x,y are unknown vectors with n/2-bit components and α, β are the (un-
known) CRT coefficients relative to p and q. Lattice reduction can exploit such
a hidden linear relationship as follows.

Using standard techniques [19,20], it is possible to compute a reduced ba-
sis {b1, . . . , b`−1} of the lattice v⊥ ⊂ Z` of vectors orthogonal to v in Z`. In
particular we get:

α〈bj ,x〉+ β〈bj ,y〉 = 0 for j = 1, 2, . . . , `− 1.

Now, observe that the smallest nonzero solution (u, v) ∈ Z2 of the equation
α · u+ β · v = 0 is ±(β,−α)/g, where g = gcd(α, β) is heuristically expected to
be very small, which implies that |u|, |v| ≥ Ω(N) where the Ω() constant is very
small. For each j = 1, 2, . . . , `− 1, there are thus two possibilities:

Case 1: 〈bj ,x〉 = 〈bj ,y〉 = 0, in which case bj belongs to the lattice L =
{x,y}⊥ of vectors in Z` orthogonal to both x and y;

Case 2: 〈bj ,x〉 and 〈bj ,y〉 have absolute value ≥ Ω(N) with a very small Ω()

constant. Since x,y both have norm at most
√
`N , this implies ‖bj‖ ≥

Ω(
√
N/`) by Cauchy-Schwarz.



Since the lattice L = {x,y}⊥ is of rank `−2, Case 1 cannot hold for all `−1
linearly independent vectors bj , so that the longest one b`−1 should be in Case

2, and hence ‖b`−1‖ ≥ Ω(
√
N/`). On the other hand, the other vectors form a

lattice of rank `− 2 and volume:

V = vol(Zb1 ⊕ · · · ⊕ Zb`−2) ≈ vol(v⊥)

‖b`−1‖
=
‖v‖
‖b`−1‖

≤
√
` ·N3/2

Ω(
√
N/`)

= O(`N)

which can heuristically be expected to behave like a random lattice. In particular,
we should have:

‖bj‖ = O(
√
`− 2 ·V 1/(`−2)) = O(`1/2+1/(`−2) ·N1/(`−2)) for j = 1, 2, . . . , `− 2.

This length is much smaller than
√
N/` as soon as ` ≥ 5. Assuming that this is

case, bj should thus be in Case 1 for j = 1, 2, . . . , ` − 2. This means that those
vectors generate a sublattice L′ = Zb1⊕· · ·⊕Zb`−2 of full rank in L = {x,y}⊥.

Taking orthogonal lattices, we get (L′)⊥ ⊃ L⊥ = Zx⊕Zy. Therefore, x and
y belong to the orthogonal lattice (L′)⊥ of L′. Let {x′,y′} be a reduced basis of
that lattice. We can enumerate all the lattice vectors in (L′)⊥ of length at most√
`N as linear combinations of x′ and y′. The Gaussian heuristic suggests that

there should be roughly:

π(
√
`N)2

vol((L′)⊥)
=
π`N

V
= O(1)

such vectors, so this is certainly feasible. For all those vectors z, we can compute
gcd(v − z, N). We will thus quickly find gcd(v − x, N) among them, since x is
a vector of length ≤

√
`N in (L′)⊥. But by definition of v we have:

v = x mod p and v = y mod q

so gcd(v − x, N) = p, which reveals the factorization of N .

2.3 Attack Summary

Assume that, for ` ≥ 5 padded messages µ(mi), we know a correct signature σi
and a signature σ′i computed with a faulty modulus N ′i . Then, we can heuristi-
cally recover the factorization of N as follows.

1. For each i, compute the integer vi = CRTN,N ′i (σi, σ
′
i). They form a vector

v = (v1, . . . , v`) ∈ Z`.
2. Compute an LLL-reduced [15] basis {b1, . . . , b`−1} of the lattice v⊥ ⊂ Z` of

vectors in Z` orthogonal to v. This is done by applying LLL to the lattice
in Z1+` generated by the rows of the following matrix:

κv1 1 0
...

. . .

κv` 0 1





where κ is a suitably large constant, and removing the first component of
each resulting vector [19].

3. The first `− 2 vectors b1, . . . , b`−2 generate a lattice L′ ⊂ Z` of rank `− 2.
Compute an LLL-reduced basis {x′,y′} of the orthogonal lattice (L′)⊥ to
that lattice. Again, this is done by applying LLL to the lattice in Z`+2+`

generated by the rows of
κ′b1,1 · · · κ′b`−2,1 1 0

...
...

. . .

κ′b1,` · · · κ′b`−2,` 0 1


and keeping the last ` components of each resulting vector.

4. Enumerate the vectors z = ax′ + by′ ∈ (L′)⊥ of length at most
√
`N , and

for each such vector z, compute gcd(v − z, N) using all components, and
return any nontrivial factor of N .

2.4 Simulation Results

Since the attack is heuristic, it is important to evaluate its experimental per-
formances. To do so, we have implemented a simulation of the attack in SAGE
[25]: for a given modulus N , we compute the vector v corresponding to a series
of ` signatures on random messages and apply the lattice attack, attempting to
recover a factor of N .

Table 1 shows the measured success probabilities for various values of ` and
modulus sizes. It confirms the heuristic prediction that 5 faulty signatures should
always suffice to factor N . It turns out that even 4 signatures are enough in
almost half the cases.

Experimental running times are given in Table 2. The whole attack takes a
few dozen milliseconds on a standard PC. The number of vectors to test as part
of the final exhaustive search step is about 20 in practice, which is done very
quickly.

Table 1. Attack success probability as a function of the number of faulty signatures
and the size of N . Each parameter set was tested with random faults on 500 random
moduli of the given size.

Number of faulty signatures ` 4 5 6

1024-bit moduli 48% 100% 100%

1536-bit moduli 45% 100% 100%

2048-bit moduli 46% 100% 100%



Table 2. Efficiency of the attack with ` = 5 faulty signatures and various modulus
sizes. Each parameter set was tested with random faults on 500 random moduli of the
given size. Timings for a SAGE implementation, on a single 2.4 GHz Core2 CPU core.

Modulus size 1024 1536 2048

Average search space π`N/V 24 23 24

Average total CPU time 16 ms 26 ms 34 ms

3 Extending the Attack to Unknown Faulty Moduli

As mentioned in §2.1, in its basic form, the attack requires the recovery of the
faulty moduli N ′i in addition to the corresponding faulty signatures σ′i. This is
not a very realistic assumption, since a typical implementation does not output
the public modulus along with each signature.

To work around this limitation, we would like to reconstruct the vector v
of integer values needed to run the attack from signatures alone, without the
knowledge of the faulty moduli—possibly at the cost of requiring a few more
faulty signatures.

This can actually be achieved in various ways depending on the precise form
of the faults inflicted to the modulus. We propose solutions for the following two
realistic fault models:

1. The faulty moduli N ′i differ from N on a single (unknown) byte. This is
known to be possible using power glitches or laser shots.

2. The differences between the faulty moduli N ′i and N are located on the least
significant half: the errors on the least significant bits can be up to half of
the modulus size. It is easy to obtain such faults with a laser or a cold boot
attack.

3.1 Single Byte Faults

In this model, the attacker is able to obtain a certain number `′ ≥ 5 of pairs
(σi, σ

′
i) where σi = αxi+βyi mod N is a valid signature and σ′i = αxi+βyi mod

N ′i is the same signature computed with a faulty modulus. The faulty moduli
N ′i are not known, but they only differ from N on a single byte whose position
and value is unknown.

This type of fault can for example occur when attacking the transfer of the
modulus to memory on a smart card with an 8-bit processor, or when using a
laser attack with a sufficiently focused beam.

For a 1024-bit modulus N , for example, there are 128 × 255 ≈ 215 possible
faulty moduli. It can thus seem like a reasonable approach to try and run the
attack with all possible faults. However, since this should be done with 5 signa-
tures, this results in a search space of size ≈ (215)5 = 275 which is prohibitive.



This kind of exhaustive search can be made practical, though, if we take into
account the fact that the CRT value vi = CRTN,N ′i (σi, σ

′
i) satisfies:

vi = αxi + βyi ≤ N · (p+ q) = N3/2

(√
p

q
+

√
q

p

)
< (2N)3/2

since p/q ∈ (1/2, 2). Now, for a given value of σ′i, there are only very few
possible target moduli N∗i differing from N on a single byte such that v∗i =
CRTN,N∗i (σi, σ

′
i) < (2N)3/2: often only one or two, and almost never more than

20. We only need to run the attack with those target v∗i ’s until we find a factor.
Experimentally, for a 1024-bit modulus, the average base 2 logarithm of the

number of possible v∗i ’s is about 2.5, so if an attacker has 5 pairs (σi, σ
′
i) in this

model, they can expect to try all vectors v in a search space of around 12.5 bits,
i.e. run the attack a few thousand times, for a total running time of under 2
minutes. This is already quite practical.

If more pairs are available, the attacker can keep the 5 pairs for which the
number of possible v∗i ’s is the smallest. This reduces the search space accordingly.
In Table 3, we show how the exhaustive search space size and the expected
running time evolve with the number of signatures in a typical example.

Table 3. Exhaustive search space size for the vector v of CRT values, and expected
attack running time, depending on the number of pairs (σi, σ

′
i) available to the attacker.

Measured for a family of random single byte faults on a 1024-bit modulus. Timings are
given for the SAGE implementation as above.

Number of pairs `′ 5 7 10 15 20 25

Search space size (bits) 11.6 9.8 7.2 6.2 4.2 2.6

Total attack time (seconds) 49 14 2.4 1.2 0.29 0.10

3.2 Faults on Many Least Significant Bits

In this model, the attacker is able to obtain ` = 5 signature families of the form
(σi, σ

′
i,1, . . . , σ

′
i,k), where the σi’s are correct signatures:

σi = αxi + βyi mod N

and the σ′i,j ’s are faulty signatures of the form:

σ′i,j = αxi + βyi mod N ′i,j 1 ≤ i ≤ `, 1 ≤ j ≤ k.

In other words, for each one of the ` different messages, the attacker learns the
reduction of the CRT value vi = αxi + βyi modulo N , as well as modulo k
different unknown faulty moduli N ′i,j . Additionally, it is assumed that all N ′i,j



differ from N only on the least significant bits, but the number of distinct bits
can be as large as half of the modulus size: we assume that|N −N ′i,j | < N δ for
a certain constant δ < 1/2.

This is a reasonable fault model for a laser attack: it suffices to target a laser
beam on the least significant bits of N to produce this type of faults.

To run the attack successfully, the attacker needs to recover the CRT values
vi. This can be done with high probability when the number of available faults
k for a given message is large enough. The simplest approach is based on a GCD
computation.

Indeed, fix an index i ∈ {1, . . . , `}, and write N ′i,j = N + εj , vi = u, σi = u0
and σ′i,j = uj . The attacker knows the uj ’s and wants to recover u.

Now, observe that there are integers tj such that u satisfies u = u0 + t0 ·N
and u = uj + tj · (N + εj). In particular, for j = 1, . . . , k we can write:

(tj − t0) ·N + (uj − u0) + tj · εj = 0. (3)

This implies that uj − u0 ≡ tj · εj (mod N). However, we have tj · εj <
N1/2+δ � N , so that the congruence is really an equality in Z. In view of (3),
this implies that all tj ’s are in fact equal, and hence:

t0 · εj = u0 − uj 1 ≤ j ≤ k.

If the errors εj on the modulus are co-prime, which we expect to happen with
probability ≈ 1/ζ(k), we can then deduce t0 as the GCD of all values u0 − uj ,
and this gives:

u = u0 + t0 ·N = u0 +N · gcd(u0 − u1, . . . , u0 − uk).

As seen in Table 4, the success probability is in practice very close to 1/ζ(k)
regardless of the size of errors.

It is probably possible to further improve the success probability by trying to
remove small factors from the computed GCD g = gcd(u0 − u1, . . . , u0 − uk) to
find t0 when g >

√
N , but we find that the number of required faults is already

reasonable without this computational refinement.
Indeed, recall that ` = 5 CRT values are required to run the attack. If k

faults are obtained for each of the ` messages, the probability that these ` CRT
values can be successfully recovered with this GCD approach is ζ(k)−`. This is
greater than 95% for k = 7, and 99% for k = 9.

We can also mention an alternate, lattice-based approach to recovering the
CRT value u. The relation between the different quantities above can be written
in vector form as:

u01 = u + t0e

where 1 = (1, . . . , 1), u = (u1, . . . , uk) and e = (ε1, . . . , εk).
Then, since u0 ≈ N is much larger than ‖t0e‖ ≈ N1/2+δ, short vectors

orthogonal to u will be orthogonal to both 1 and e. More precisely, we can
heuristically expect that when k is large enough (k & 2/(1− 2δ)), the first k− 2
vectors of a reduced basis of u⊥ will be orthogonal to 1 and e.



Table 4. Success probabilities of the GCD method for CRT value recovery, depending
on the number of available faults on a given message. Tested with random 1024-bit
moduli. In the simulation, errors εj are modeled as uniformly random signed integers
of the given size, and 10,000 of them were generated for each parameter set.

k (faults per message) 3 5 7 9

1/ζ(k) .832 .964 .992 .998

100-bit errors 83.2% 96.8% 99.0% 99.8%

200-bit errors 83.4% 96.2% 99.2% 99.8%

400-bit errors 82.7% 96.6% 99.1% 99.8%

Average CPU time .73 ms .75 ms .79 ms .85 ms

Taking orthogonal lattices again, we can thus obtain a reduced basis {x,y}
of a two-dimensional lattice containing 1 and e (and of course u). Since 1 is
really short, we always find that x = 1 in practice. Then, it happens quite often
that y can be written as λ1 ± e, in which case t0 is readily recovered as the
absolute value of the second coordinate of u in the basis {x,y}.

However, this fails when Z1⊕ Ze is a proper sublattice of Zx⊕ Zy = Zk ∩
(Q1 ⊕ Qe), namely, when there is some integer d > 1 such that all errors εj
are congruent mod d. Thus, we expect the success probability of this alternate
approach to be 1/ζ(k − 1), which is slightly less than with the GCD approach.

4 Practical Experiments

Practical experiments for validating the new attack were done on an 8-bit 0.35µm
RISC microcontroller with no countermeasures. As the microprocessor had no
arithmetic coprocessor the values σp and σq were pre-computed by an external
program upon each fault-injection experience and fed into the attacked device.
The target combined σp and σq using multiplications and additions (using For-
mula 1) as well as the final modular reduction.

The location and spread of the faults were controlled by careful beam-size
and shot-instant tuning. The reader is referred to the full version of this paper [9]
for a description of the physical setting (common to the experiments reported
in [16]).

We conducted several practical experiments corresponding to three different
scenarios, roughly corresponding to the fault models considered in §2.1, §3.1 and
§3.2 respectively. Let us describe these experiments in order.

4.1 First Scenario: Known Modulus

In this case, we considered 5 messages for a random 1024-bit RSA modulus N .
For each message mi, we obtained a correct signature σi, as well as a faulty-
modulus signature σ′i where the faulty modulus N ′i was also read back from the
microcontroller.



Therefore, we were exactly in the setting described in §2.1, and could apply
the algorithm from §2.3 directly: apply the Chinese Remainder Theorem to con-
struct the vector v of CRT values and run the lattice-based attack to recover a
factor of N .

The implementation of the attack used the same SAGE code as the simulation
from §2.4. In our experimental case, the ball of radius

√
N` contained only about

10 vectors of the double orthogonal lattice, and the whole attack revealed a factor
of N in less than 20 milliseconds.

4.2 Second Scenario: Unknown Single Byte Fault

In this case, we tried to replicate a setting similar to the one considered in
§3.1. We considered 20 messages and a random 1024-bit RSA modulus N . For
each message mi, we obtained a correct signature σi, as well as faulty-modulus
signatures σ′i with undisclosed faulty modulus N ′i generated by targeting a single
byte of N with the laser.

We had to eliminate some signatures, however, because in some cases, errors
on the modulus turned out to exceed 8 bits.3 After discarding those, we had 12
pairs (σi, σ

′
i) left to carry out the approach described in §3.1.

The first step in this approach is to find, for each i, all values v∗i of the form
CRTN,N∗i (σi, σ

′
i) (N∗i differing from N only on one byte) that are small enough

to be correct candidate CRT values. Unlike the setting of §3.1, we could not
assume that bit-differences were aligned on byte boundaries: we had to test a
whole 1016× 255 candidate moduli4 N∗i for each i . Therefore, this search step
was a bit costly, taking a total of 11 minutes and 13 seconds. Additionally, due
to the higher number of candidate moduli, the number of candidate CRT values
v∗i was also somewhat larger than in §3.1, namely:

7, 17, 3, 9, 15, 5, 14, 44, 44, 17, 10, 55

for our 12 pairs respectively. Keeping only the 5 indices with the smallest number
of candidates, we obtained 3× 5× 7× 9× 10 = 9450 possible CRT value vectors
v∗.

We then ran the lattice-based attack on each of these vectors in order until
a factor of N was found. The factor was found at iteration number 2120, after
a total computation time of 43 seconds.

3 Note that in a real-world attack, it might not be possible to detect such overly spread
out faults: hence, this particular technique should be used preferably when faults are
known to affect only single bytes (e.g. in a glitch attack), whereas the technique from
the next section is better suited to laser attacks as aperture control is much less of
an issue.

4 There are duplicates among those, corresponding to perturbations of 7 consecutive
bits or less, but we did not attempt to avoid testing them several times, as this
can only improve the search by a small constant factor while introducing significant
complexity in the code.



4.3 Third Scenario: Unknown Least Significant Bytes Faults

In this case, we considered 10 messages for a random 1024-bit N . For each
message mi, we obtained a correct signature σi, as well as 10 faulty-modulus
signature σ′i,j with undisclosed faulty modulus N ′i . The laser beam targeted the
lower order bytes of N but with a large aperture, generating multiple faults
stretching over as much as 448 modulus bits.

In practice, we only used the data (σi, σ
′
i,1, . . . , σ

′
i,10) for the first 5 messages,

discarding the rest. Then, we reconstructed the CRT values vi using the GCD
technique of §3.2:

vi = σi +N · gcd(σi − σ′i,1, . . . , σi − σ′i,10) 1 ≤ i ≤ 5

and applied the lattice-based attack on the resulting vector v. This revealed a
factor of N in 16 milliseconds.

We also tried the same attack using a fewer number of the σ′i,j ’s, and found
that it still worked when taking only 4 of those values in the computation of vi:

vi = σi +N · gcd(σi − σ′i,1, . . . , σi − σ′i,4) 1 ≤ i ≤ 5

but failed if we took 3 instead. Considering that 1/ζ(3)5 ≈ .40 and 1/ζ(4)5 ≈ .67,
this is quite in line with expectations.

5 Countermeasures and Further Research

Probabilistic and stateful signature schemes are usually secure against this at-
tack, since they make it difficult to obtain two signatures on the same padded
message. However, all deterministic schemes are typically vulnerable, including
those in which the attacker doesn’t have full access to the signed message, pro-
vided that the target device can be forced to compute the same signature twice.

A natural countermeasure is to use a CRT interpolation formula that does
not require N , such as Garner’s formula, computed as follows:

t← σp − σq
if t < 0 then t← t+ p

σ ← σq + (t · γ mod p) · q
return(σ)

where we assume that p > q, and γ is the usual CRT coefficient q−1 mod p. Note
that the evaluation of σ does not require a modular reduction because

σ = σq + (t · γ mod p) · q ≤ q − 1 + (p− 1)q < N

Besides the obvious countermeasures consisting in checking signatures before
release, it would be interesting to devise specific countermeasures for protecting
Formula (1) (or Garner’s formula) taking into account the possible corruption
of all data involved.

Finally, in a number of special cases and particular settings (e.g. Appendix A)
other fault attacks on the CRT recombination phase can be devised. A thorough
analysis of such scenarios is also an interesting research direction.
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A Using Dichotomy in the Absence of Padding

Consider again the setting of §2.1, in which an adversary is able to obtain both
a correct signature σ on a message m, and a signature on the same message m
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computed with a faulty modulus, allowing him to deduce the non reduced value
v = σp · α+ σq · β ∈ Z. We can write:

v = (σ mod p) · α+ (σ mod q) · β =

(
σ − p

⌊
σ

p

⌋)
· α+

(
σ − q

⌊
σ

q

⌋)
· β

Moreover, observe that α+β = N+1 (as is easily seen by reducing α+β modulo
p and q). Therefore, we have:

v = σ · (N + 1)− pα
⌊
σ

p

⌋
− qβ

⌊
σ

q

⌋
Hence, if we let ω = (σ · (N + 1)− v)/N , we get:

ω =
σ · (N + 1)− v

N
=
α

q

⌊
σ

p

⌋
+
β

p

⌊
σ

q

⌋
(4)

and this value ω is an integer since v ≡ σ (mod N).
Now assume further that the adversary can ask signatures on messages m

such that σ is small. This is the case, for example, when signatures are com-
puted without padding and the physical device under consideration will answer
arbitrary signature queries: then, the adversary can simply ask signatures on
messages of the form σe for small values σ of his choice.

In such a setting, the adversary can pick a σ close to N1/2, carry out the
fault attack and compute the integer ω. By (4), he gets ω = 0 if σ < min(p, q)
and ω > 0 otherwise. Trying this process again several times, the smallest prime
factor of N can be recovered by dichotomy.
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