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Abstract. We study both distinguishing and key-recovery attacks against
E0, the keystream generator used in Bluetooth by means of correlation.
First, a powerful computation method of correlations is formulated by a
recursive expression, which makes it easier to calculate correlations of the
finite state machine output sequences up to 26 bits for E0 and allows us
to verify the two known correlations to be the largest for the first time.
Second, we apply the concept of convolution to the analysis of the distin-
guisher based on all correlations, and propose an efficient distinguisher due
to the linear dependency of the largest correlations. Last, we propose a novel
maximum likelihood decoding algorithm based on fast Walsh transform to
recover the closest codeword for any linear code of dimension L and length
n. It requires time O(n+L · 2L) and memory min(n, 2L). This can speed up
many attacks such as fast correlation attacks. We apply it to E0, and our
best key-recovery attack works in 239 time given 239 consecutive bits after
O(237) precomputation. This is the best known attack against E0 so far.

1 Background

Correlation properties play an important role in the security of nonlinear LFSR-
based combination generators in stream ciphers. As name implies, the word correla-
tion in stream ciphers is frequently referred to as the intrinsic relation between the
keystream and a subset of the LFSR subsequences. The earliest studies dated back
to [21, 25, 27] in the 80’s and the concept of correlation immunity was proposed as a
security criterion. In the 90’s Meier-Staffelbach [22] analyzed correlation properties
of combiners with one memory bit, followed by Golić [12] focusing on correlation
properties of a general combiner with m-bit memory. Recently, a series of fast cor-
relation attacks sprang up, to name but a few [5–7, 16, 24]. Thereupon we dedicate
this paper to the generalized correlation attacks against E0, a combiner with 4-bit
memory used in the short-range wireless technology Bluetooth. Prior to our work,
existed various attacks [1, 8, 10, 11, 13–15, 17, 26] against E0. The best key-recovery
attacks are algebraic attacks [1, 8], whose basic approach is to use the polynomial
canceling all memory bits and involving only key bits, instead of considering the
multiple polynomial to cancel the key bits in the distinguishing attack; besides,
[9, 13, 14] discussed correlations of E0. In [14], Hermelin-Nyberg for the first time
presented a rough computation method to compute the correlation (called bias for
our purpose), but neither did they formalize the computation systematically, nor
did they attempt to find a larger correlation. In [9, 13], two larger correlations for
a short sequence of up to 6 bits were exposed. However, due to the limit of the
computation method, no one was certain about the existence of a larger correlation
for a longer sequence, which is critical to the security of E0.
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tion and Communication Systems (NCCR-MICS), a center of the Swiss National Science
Foundation under the grant number 5005-67322.



Our first contribution in the paper is that based on Hermelin-Nyberg [14] we
formulate a powerful computation method of correlations by a recursive expression,
which makes it easier to calculate correlations of the Finite State Machine (FSM)
output sequences up to 26 bits for E0 (and allows us to prove the two known
correlations to be the only largest for the first time). Second, we apply the concept
of convolution to the analysis of the distinguisher based on all correlations, which
allows us to build an efficient distinguisher that halves the data complexity of the
basic uni-bias-based distinguisher due to the linear dependency of the two largest
biases. Our best distinguishing attack takes 243 time given 243-bit keystream with
O(245) precomputation1. Finally, by means of Fast Walsh Transform (FWT), we
propose a novel Maximum Likelihood Decoding (MLD) algorithm to recover the
closest codeword for any linear code. Our proposed algorithm can be easily applied
to speed up a class of fast correlation attacks. Furthermore the algorithm is optimal
when the length n of the code and the dimension L satisfy the relation n ≥ 2L,
which is the case when we apply it to recover R1 for E0. Our best key-recovery
attack works in 239 time given 239 consecutive bits after O(237) precomputation.
Compared with the minimum time complexity O(249) in algebraic attacks [1, 8],
this is the best known attack against E0.

This paper is structured as follows: in Section 2, a description of E0 is given. In
Section 3, we analyze the bias inside E0 systematically. Then based on one largest
bias, we build a primary distinguisher for E0 in Section 4; an efficient way is shown
in Section 5 that makes full use of all the largest biases to advance the distinguisher.
In Section 6 we investigate the MLD algorithm for a linear code; the result is then
applied to a key-recovery attack against E0 in Section 7. Finally we conclude in
Section 8.

2 Description of the Bluetooth Keystream Generator E0
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Fig. 1. Outline of E0

1 Throughout this paper, O(·) is used to provide a rough estimate on complexities, eg.
O(245) here means c · 245 operations, where c is a small constant.



As specified in [3], the keystream generator E0 used in Bluetooth belongs to a
combination generator with four memory bits2, denoted by σt = (ct−1, ct) at time
t, where ct = (c1

t , c
0
t ). The whole system (Fig.1) uses four Linear Feedback Shift

Registers (LFSRs) denoted by R1, . . . , R4 with lengths L1 = 25, L2 = 31, L3 = 33,
L4 = 39 and primitive feedback polynomials

p1(x) = x25 + x20 + x12 + x8 + 1,
p2(x) = x31 + x24 + x16 + x12 + 1,
p3(x) = x33 + x28 + x24 + x4 + 1,
p4(x) = x39 + x36 + x28 + x4 + 1,

respectively. At clock cycle t, the four LFSRs’ output bits xi
t, i = 1, . . . , 4, will be

added as integers. The sum yt ∈ {0, . . . , 4} is represented in the binary system. Let
yi

t denote its i-th least significant bit (i = 1, 2, 3). A 16-state machine (the dashed
box in Fig.1) emits one bit c0

t out of its state σt = (ct−1, ct) and takes the input yt

to update σt by σt+1. Finally, the keystream zt is obtained by xoring y1
t with c0

t .
That is,

x1
t ⊕ x2

t ⊕ x3
t ⊕ x4

t ⊕ c0
t = zt. (1)

The detailed mechanism of the FSM is beyond the scope of the paper except the
fact that the embedded delay cell (the box labeled Z−1 in Fig.1) makes c0

t depend
only on the initial state σ0 of the FSM as well as the past vectors yt−1, yt−2, . . . , y0.
For completeness, we briefly outline it: given yt together with the state σt, the FSM
moves into the state σt+1. Table 1 shows the state transition of the FSM, where the
four-bit state is represented in the quaternary system (e.g. the FSM changes from
σt = 13 into σt+1 = 32 by the input yt = 2).

More formally, by introducing two temporary bits st+1 = (s1
t+1, s

0
t+1) each clock,

the following indirect iterative expressions between st+1 and ct+1 suffice to update
ct:

st+1 =

⌊
yt + 2 · c1

t + c0
t

2

⌋

, (2)

c1
t+1 = s1

t+1 ⊕ c1
t ⊕ c0

t−1, (3)

c0
t+1 = s0

t+1 ⊕ c0
t ⊕ c1

t−1 ⊕ c0
t−1. (4)

One can check Table 1 by those equations. We denote λt hereafter the content of
LFSRs at time t. Then the state of E0 at time t is fully represented by the pair
(λt, σt).

Table 1. State transition of σt+1 given yt and σt

σt

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33

0 00 11 23 32 03 12 20 31 01 10 22 33 02 13 21 30
1 00 10 23 31 03 13 20 32 01 11 22 30 02 12 21 33

yt 2 01 10 20 31 02 13 23 32 00 11 21 30 03 12 22 33
3 01 13 20 30 02 10 23 33 00 12 21 31 03 11 22 32
4 02 13 21 30 01 10 22 33 03 12 20 31 00 11 23 32

2 The description of E0 (sometimes called one-level E0) here only involves the keystream
generation after the initialization.



3 Biases Inside E0

Property 1. Assuming yt = 2 holds for t = t0, t0 + 1, . . . , t0 + 3, then

c0
t0
⊕ c0

t0+1 ⊕ c0
t0+2 ⊕ c0

t0+3 ⊕ c0
t0+4 = 1.

Proof. It’s easy to verify that the state transition given yt = 2 (the third bottom
row in Table 1) is indeed a linear transformation over GF (2)4, that actually satisfies
the recurrence relation: σt+1 = A × σt ⊕ 01, where states σt+1 are represented by
column vectors of (c1

t , c
0
t , c

1
t+1, c

0
t+1), and A is the following 4×4 square matrix over

GF (2):

A =







0 0 1 0
0 0 0 1
0 1 0 0
1 1 1 1







.

Note that x4 + x3 + x2 + x + 1 is the minimal polynomial of A, from which we
deduce σt0 ⊕ σt0+1 ⊕ σt0+2 ⊕ σt0+3 ⊕ σt0+4 = 33. �

Remark 2. Since Pr(yt = 2) = 6
16 , this seemingly suggests that

Pr(c0
t ⊕ c0

t+1 ⊕ c0
t+2 ⊕ c0

t+3 ⊕ c0
t+4 = 1) ≈

1

2
+ (

6

16
)
4

=
1

2
+

81

4096
.

As mentioned in [9, 13] (without relating to the above special case), this bit exhibits
a much higher bias as shown later in Corollary 7. We will now introduce essential
material in order to find a systematic algorithm to compute biases.

Proposition 3. If (λ0, σ0) is random and uniformly distributed, then for any t

– (λt, σt) is random and uniformly distributed,
– (ct, ct−1, . . . , ct−24) is independent of yt.

Proof (sketch). The former half of the theorem is justified by the fact that (λt, σt) is
a permutation of (λ0, σ0) for any t. About the latter half of theorem, first, we know
that (λt−24, σt−24) is random and uniformly distributed by previous conclusion.
Thus, yt−24, . . . , yt−1 are i.i.d. random variables all independent of both σt−24 and
yt. By Eq.(2,3,4), we complete the proof. �

Interestingly, we deduce that if (λ0, σ0) is uniformly distributed, then any sequence
of 39-bit consecutive E0 keystream is uniformly distributed; in particular, no better
key-recovery attack against E0 exists other than tradeoffs given a sequence of 39-bit
consecutive keystream.

The following definition is derived from normalized correlation [22, p.71].

Definition 4. The bias of a random Boolean variable X is defined as

∆(X) = Pr(X = 0) − Pr(X = 1) = E[(−1)X ].

The normalized correlation between two random Boolean variables X and Y is
just the bias of X ⊕ Y . Assuming that yt is the sum of four balanced independent
random bits and that ct is uniformly distributed, then we know that ∆(a·st+1⊕w·ct)
is a constant for any a, w ∈ GF (2)2, denoted by Ω(a, w). Table 2 shows Ω(a, w)
computed by Eq.(2), where dashed entries are zeros. The following important lemma
(see Appendix A for proof) inspired by [14], gives an easy way of computing the
bias for iterative structures.



Table 2. Bias of all linear combination of st+1 and ct: Ω(a, w)

Ω(a,w) w
0 1 2 3

0 - - - -
a 1 - - −1/4 -

2 - 1/4 5/8 -
3 −5/8 - - 1/4

Lemma 5. Given f : E ×GF (2)k → GF (2) and g : GF (2)m → GF (2)k, let X and
Y be two independent random variables in E and GF (2)m respectively. Assuming
that g(Y ) is uniformly distributed in GF (2)k, for any v ∈ GF (2)m, we have

∆(f(X, g(Y )) ⊕ v · Y ) =
∑

w∈GF (2)k

∆(f(X, g(Y )) ⊕ w · g(Y )) · ∆(w · g(Y ) ⊕ v · Y ).

Corollary 6. We set h : (x1, x0) 7→ (x0, x1 ⊕ x0) to be a permutation defined over
GF (2)2, and δ(a1, . . . , ad) = ∆(a1 · c1 ⊕ · · · ⊕ ad · cd), where a1, . . . , ad ∈ GF (2)2.
Assuming (λ0, σ0) is uniformly distributed, for any d ≤ 26, we have

δ(a1, . . . , ad) =
∑

w∈GF (2)2

Ω(ad, w) · δ(a1, . . . , ad−3, ad−2 ⊕ h(ad), ad−1 ⊕ ad ⊕ w).

Proof. By Eq.(2,3,4) we have

δ(a1, . . . , ad) = ∆(ad · sd ⊕ a1 · c1 ⊕ · · · ⊕ (ad−2 ⊕ h(ad)) · cd−2 ⊕ (ad−1 ⊕ ad) · cd−1).

Then we apply Lemma 5 with X = yd−1, Y = (c1, . . . , cd−1), g(Y ) = cd−1,
f(X, g(Y )) = ad · sd and v = (a1, . . . , ad−3, ad−2 ⊕ h(ad), ad−1 ⊕ ad), and we obtain

δ(a1, . . . , ad) =
∑

w

Ω(ad, w)δ(a1, . . . , ad−3, ad−2 ⊕ h(ad), ad−1 ⊕ ad ⊕ w).

Note that the assumption of Lemma 5 holds by Proposition 3. �

Now we use Corollary 6 iteratively to deduce some important biases of {c0
t} with

Table 2 and the initial values δ(0, 0) = 1, and δ(a, b) = 0 for (a, b) 6= (0, 0). A full
list of nonzero triplets is given below for illustration:

δ(0, 0, 0) = 1, δ(1, 3, 2) = 1
4 , δ(2, 3, 3) = − 5

8 ,
δ(1, 0, 2) = 5

8 , δ(2, 0, 3) = 1
4 , δ(3, 3, 1) = − 1

4 .

Corollary 7. Assuming (λ0, σ0) is random and uniformly distributed, we have

Pr(c0
t ⊕ c0

t+1 ⊕ c0
t+2 ⊕ c0

t+3 ⊕ c0
t+4 = 1) =

1

2
+

25

512
,

Pr(c0
t = c0

t+5) =
1

2
+

25

512
.

Note that both biases were mentioned in [9, 13] (without formal proof). Now by
Corollary 6, we can easily prove it as shown next.



Proof. We show the equivalent δ(1, 1, 1, 1, 1) = − 25
256 of the first bias as follows:

δ(1, 1, 1, 1, 1) =
∑

w

Ω(1, w) · δ(1, 1, 2, w)

= −
1

4
δ(1, 1, 2, 2)

= −
1

4

∑

w

Ω(2, w) · δ(1, 0, w)

= −
1

4
×

(
1

4
δ(1, 0, 1) +

5

8
δ(1, 0, 2)

)

= −
25

256
.

The second bias is similarly proved from δ(1, 0, 0, 0, 0, 1) = 25
256 . �

Also, we computed all `-tuple biases for ` ≤ 26 and found that δ(1, 1, 1, 1, 1),
δ(1, 0, 0, 0, 0, 1) are the only largest ones. All biases for ` = 6 are listed in Table 14,
Appendix C. Throughout the paper we let

γ = δ(1, 0, 0, 0, 0, 1) = −δ(1, 1, 1, 1, 1) =
25

256
.

4 A Primary Distinguisher for E0

4.1 The Connection Polynomial of the Equivalent Single LFSR

Let θi be the order of the connection polynomial pi(x) of Ri, for i = 1, 2, 3, 4. Since
all pi(x) are primitive polynomials, θi = 2Li − 1; furthermore, by Lemma 6.57 of
[18, p.218], the equivalent LFSR to generate the same sequence of the sum of the

four original LFSRs outputs over GF(2) has the connection polynomial
∏4

i=1 pi(x)
with order θ = lcm(θ1, θ2, θ3, θ4) ≈ 2125 (by Lemma 6.50, [18, p.214]) and degree

L =
∑4

i=1 Li = 128.

4.2 Finding the Multiple Polynomial with Low Weight

Let d0 be the degree of a general polynomial p(x). We use the standard approxima-
tion to estimate the minimal weight wd of multiples of p(x) with degree at most d
by the following constraint: wd is the smallest w such that

1

2d0

×

(
d

w − 1

)

≥ 1. (5)

Listed in Table 3 is the estimated3 wd corresponding to d with p(x) =
∏4

i=1 pi(x)
(d0 = 128) by solving Inequality (5).

To find multiples with low weight, efficient algorithms like [4] exist provided
the degree is low, say, less than 2000, which does not apply to E0. So we can use
the conventional birthday paradox to find Q(x) with the minimal d (i.e. w = wd),

which takes precomputation time PT ≈ O(dd w−1

2
e); or we apply the generalized

birthday problem [29] to find Q(x) of same weight but higher degree with much
less precomputation as tradeoff. Table 4 compares the two algorithms. In Appendix
B, we also provide some non-optimal multiples as examples, including Q4(x) with
w = 4 and d ≈ 265.

3 Two special cases occur for d = d0 and d = θ because we know the exact value of wd.



Table 3. The estimated minimal weight wd of multiples of p1(x)p2(x)p3(x)p4(x) with
degree d by (5)

d 128 247 458 855 1749 2387 218 223 227 233 244 265 θ

wd = 49 ≈ 31 ≈ 24 ≈ 20 ≈ 17 ≈ 16 ≈ 9 ≈ 7 ≈ 6 ≈ 5 ≈ 4 ≈ 3 = 2

Table 4. Complexity of finding multiple of p1(x)p2(x)p3(x)p4(x) with degree d, weight w

birthday problem
with minimal d tradeoff

d 218 223 227 233 244 265 232 243

w 9 7 6 5 4 3 9 5

log2 PT 72 69 68 66 66 65 35 45

4.3 Building a Uni-bias-based Distinguisher for E0

Let Q(x) =
∑w

i=1 xqi be the normalized multiple of
∏4

i=1 pi(x) with degree d and
weight w, where 0 = q1 < q2 < . . . < qw = d. As ⊕w

i=1y
1
t0+qi

= 0 holds for all t0, by
Eq.(1), we deduce

⊕w
i=1(zt0+qi+5 ⊕ zt0+qi

) = ⊕w
i=1(c

0
t0+qi+5 ⊕ c0

t0+qi
). (6)

By the Piling-up Lemma [20] and Corollary 7, we know the right-hand side of Eq.(6)
is equal to zero with probability 1

2 + 1
2 ·γ

w. With standard linear cryptanalysis tech-
niques, we can distinguish the keystream {zt} of E0 from a truly random sequence
with γ−2·w samples, simply by checking the left-hand side of Eq.(6) equals zero
most of the time. Based on Q(x) with d and w, we minimize the data complexity
n by choosing n = γ−2·w + d. Table 5 shows the minimum n = 234 is achieved
with d = 233, w = 5. Table 6 summarizes the best performance of our primary
distinguisher for E0 based on either the use of Q4(x) with weight 4 in Appendix B,
or a search of Q(x).

Table 5. Data complexity of the primary distinguisher for E0

d L 247 458 855 1749 2387 218 223 227 233 244 265 232 243

w 49 31 24 20 17 16 9 7 6 5 4 3 9 5

log2 n 329 209 162 135 115 108 61 47 41 34 44 65 61 43

Table 6. Summary of the best primary distinguisher for E0

Type d w Precomputation Data Time

use Q(x) = Q4(x) 265 4 - 265

find Q(x) minimal d 233 5 266 234

with tradeoff 243 5 245 243

5 The Advanced Multi-bias-based Distinguisher for E0

5.1 Preliminaries

Definition 8. Given f, g : GF (2)` → R, for a ∈ GF (2)`, we define



1. (f ⊗ g)(a) =
∑

b∈GF (2)`

f(b) · g(a ⊕ b); f⊗w(a) = (f ⊗ · · · ⊗ f
︸ ︷︷ ︸

w times

)(a)

2. f̂(a) =
∑

b∈GF (2)`

(−1)a·bf(b)

3. ‖f‖ =

√
∑

a∈GF (2)`

f2(a)

4. ∆(f) = 2
`
2 ‖f − 1

2` · 1‖, where 1 denotes a constant function equal to 1

Note that the first two definitions correspond to convolution and Walsh transform
respectively. We recall these basic facts: for any f, g : GF (2)` → R, we have

– f̂ ⊗ g(a) = f̂(a) · ĝ(a), for a ∈ GF (2)`;

– 2`‖f‖2 = ‖f̂‖2;

– if f is a distribution, i.e.
∑

a f(a) = 1 and f(a) ≥ 0 for all a ∈ GF (2)`, then the
distribution of the XOR of w i.i.d. random vectors with distribution f is f⊗w,
moreover, ∆2(f) =

∑

a6=0
f̂2(a);

– If the random Boolean variable A follows the distribution f , then ∆(f) = ∆(A),
where ∆(A) is defined in Definition 4.

5.2 An Efficient Way to Deploy Multi-Biases in E0 Simultaneously

Given a linear mapping h : GF (2)` → GF (2)r of rank r, we define r-bit vectors
At = h(c0

rt, . . . , c
0
rt+`−1) and Bt = ⊕w

i=1At+qi
. Note that Bt can be derived from the

keystream {zt} directly. Except for accidentally bad choices of h, we make a heuristic
assumption that all At’s are independent. Let D be the probability distribution of
the `-bit vector (c0

rt, . . . , c
0
rt+`−1), and let DA be the probability distribution of the

r-bit vector At. The Walsh transforms of DA and D are linked by

D̂A(b) = D̂
(
ht(b)

)
, for all b ∈ GF (2)r.

Now we discuss how to design h in order to reduce data complexity. From Baignères
[2, Theorem 3, p.10], we know that we can distinguish a distribution f of r-bit
random vectors from a uniform distribution with 1/∆2(f) samples. Here, the dis-
tribution of Bt is f = D⊗w

A . So the modified distinguisher needs data complexity

n =
r

∆2(D⊗w
A )

+ d (bits).

Let k be the number of the largest Walsh coefficients D̂A(b) over all nonzero b with
absolute value4 η. Since ∆2(D⊗w

A ) ≈ kη2w, we obtain

n ≈
r

k
η−2w + d.

In order to lower n, it’s necessary to have r < k. This implies the k largest coefficients
are linearly dependent, which happens to be true in E0: recall that the 6-bit vectors
of the three largest biases satisfy the linear relation,

(1, 1, 1, 1, 1, 0)⊕ (0, 1, 1, 1, 1, 1) = (1, 0, 0, 0, 0, 1).

As a simple solution we may just pick ` = 6, r = 2, α1 = (1, 1, 1, 1, 1, 0) and
α2 = (0, 1, 1, 1, 1, 1) (where αi denotes the i-th row of h), then we obtain k = 3. And

4 Note that from Subsection 4.3 we have η ≤ γ for ` ≤ 26 regardless of r and h.



n is reduced to a factor of 2
3 for negligible d. Indeed, recall that we proved by compu-

tation that the largest Walsh coefficient for ` ≤ 26 are either (0,. . .,0,1,1,1,1,1,0,. . .,0)
or (0,. . .,0,1,0,0,0,0,1,0,. . .,0). Thus k ≤ (` − 4) + (` − 5) = 2` − 9. This leads to a
more general solution, if we pick ` = r + 4, and the i-th row of h as

αi = ( 0, . . . , 0
︸ ︷︷ ︸

i−1 zeros

, 1, 1, 1, 1, 1, 0, . . . , 0
︸ ︷︷ ︸

`−i−4 zeros

) for i = 1, . . . , r,

then we obtain k = 2r − 1. And so the improved factor r
2r−1 of data complexity

tends to 1
2 for negligible d when r goes to infinity; however, because of the underlying

assumption for E0, ` is restricted to no larger than 26, i.e. r ≤ 22. To conclude, we
show that the modified distinguisher (Algorithm 1) needs data complexity

n ≈
r

2r − 1
· γ−2w + d, for 1 ≤ r ≤ 22. (7)

Observe that Section 4 actually deals with the special case of r = 1. Table 7 shows
the best improvement achieved with r = 22. We see that the minimum n drops
from previous 234 to 233.

Algorithm 1 The advanced distinguisher for E0

Parameters:
r ∈ [1, 22], ` = r + 4
h : GF (2)` → GF (2)r

DA: the probability distribution of the r-bit vector At

Q(x) =
Pw

i=1
xqi : the multiple polynomial of p1(x)p2(x)p3(x)p4(x) with degree d

n: the sample size by Eq.(7)
Input:

keystream z0z1 · · · zn−1 of either a truly random source S0 or the output S1 generated
by E0
initialize counters u0, u1, . . . , u2r−1

for t = 0, 1, . . . , bn−d−4

r
c − 1 do

compute b = ⊕w
i=1h(zrt+qi

, · · · , zrt+qi+`−1)
increment ub

end for

if
P

b
ub · log

`

2r · D⊗w
A (b)

´

> 0 then

accept S1 as the source
else

accept S0 as the source
end if

Table 7. Data complexity of the advanced distinguisher for E0

d L 247 458 855 1749 2387 218 223 227 233 244 265 232 243

w 49 31 24 20 17 16 9 7 6 5 4 3 9 5

log2 n 328 208 161 134 114 107 60 46 40 33 44 65 60 43

6 A Maximum Likelihood Decoding Algorithm

We restate the MLD problem for a general linear code (see [19] for details) of length
n and dimension L with generator matrix G (let Gt denote the t-th column vector



of G): find the closest codeword (x1, . . . , xn) to the received vector (s1, . . . , sn),
and decode the message r = (r1, . . . , rL) such that xt = rGt, i.e. find such r that
minimizes N(r) =

∑n
t=1(st ⊕ xt).

6.1 The Time-domain Analysis

Obviously, the trivial approach (yet common in most correlation attacks) to find r is
an exhaustive search in time-domain: for every message r̃, we compute the distance
N(r̃) and keep the smallest. The final record leads to r. The time complexity is
O(n · 2L) with memory n-bits.

6.2 The Frequency-domain Analysis

We introduce an integer-valued function,

W(x) =
∑

1≤t≤n:Gt=x>

(−1)st , (8)

for all x ∈ GF (2)L, where > denotes the matrix transpose. We compute the Walsh
transform Ŵ of W as follows:

Ŵ(r) =
∑

x∈GF (2)L

(−1)r·xW(x) =

n∑

t=1

(−1)st⊕rGt =

n∑

t=1

(−1)st⊕xt = n − 2N(r).

We thereby reach the theorem below.

Theorem 9.

N(r) =
1

2

(

n − Ŵ(r)
)

,

for all r ∈ GF (2)L, where W is defined by Eq.(8).

This generalizes the result [19, p. 414] of a special case when n = 2L and G>
t

corresponds to the binary representation of t. So we just compute the table of W ,
perform FWT [30], and find the maximal Ŵ(r). The time and memory complexities
of FWT are O(L · 2L), O(2L) respectively. Since the precomputation of W takes
time O(n) with memory O(n), we conclude that our improved MLD algorithm runs
in O(n + L · 2L) with memory O(2L) (additionally, using linear transformation
allows to compute FWT over GF (2)k with memory O(2k) where k = dlog2 ne).
Note that when n ≥ 2L, the time complexity corresponds to O(n), which is optimal
in the sense that it stands on the same order of magnitude as the data complexity
does. Table 8 compares the original exhaustive search algorithm with the improved
frequency transformation algorithm. Note that the technique of FWT was used in
another context [7] to speed up other kinds of fast correlation attacks. In the next
section we will see how it helps to speed up the attack [10] by a factor of 224. We
estimate similar correlation attacks like [6] can be speeded up by a factor of 10;
undoubtedly, some other attacks can be significantly improved by our algorithm as
well.

Table 8. Maximum likelihood decoding algorithms

time memory

Exhaustive Search n · 2L n

Frequency Transformation n + L · 2L min(n, 2L)



6.3 A More Generalized MLD Algorithm

We further generalize the preceding problem by finding the L-bit vector r such that
given a sequence of `-bit vectors S1, . . . , Sk and f : GF (2)` → R together with
matrices G1, . . . , Gk of size L by `, the sequence of `-bit vectors X1, . . . , Xk defined
by Xt = rGt minimizes N(r) =

∑k
t=1 f(St ⊕ Xt). Note that previous subsections

are merely a special case of ` = 1, k = n and f(a) = a for a ∈ GF (2).

Define a real function W by:

W(x) =
1

2`

∑

1≤t≤k,a∈GF (2)`:aG>
t =x

(−1)a·St f̂(a),

for all x ∈ GF (2)L. We compute the Walsh transform Ŵ of W as follows:

Ŵ(r) =
∑

x∈GF (2)L

(−1)r·xW(x)

=
1

2`

k∑

t=1

∑

a∈GF (2)`

(−1)a·(rGt⊕St)f̂(a)

=

k∑

t=1

f(rGt ⊕ St)

= N(r).

Algorithm 2 directly follows above computation. The total running time of our
algorithm is O(k`L2` + L2L) with memory O(2L). To speed up the computation
of W , we could precompute the inner products of all pairs of `-bit vectors in time
O(22`) with memory O(22`). Thus, the total running time of the algorithm is O(22`+
kL2` + L2L) with memory O(22` + 2L).

Algorithm 2 The generalized MLD algorithm

Parameter:
f, `

Input:
G = (G1, . . . , Gk) : the generator matrix
vector stream S1, S2, · · · , Sk

Processing:
apply FWT to compute the table of f̂
initialize the table of W to 0
for all `-bit a do

for t = 1, . . . , k do

increment W(aG>
t ) by 1

2` (−1)a·St f̂(a)
end for

end for

apply FWT to find r that achieves the minimal Ŵ(r)
output r

In the special case that is applicable to E0 (as is done in the next section):
Gt+1 = AGt for t = 1, . . . , k, we precompute another table to map any L-bit vector
x to xA>. It takes time 2L with memory 2L. The total time of the algorithm is thus
O

(
22` + (L + k) 2` + L2L

)
, with memory O(22` + 2L).



7 The Key-recovery Attack against E0

We approach similarly as in [10] to transform our distinguisher of Subsection 4.3
into a key-recovery attack. Our main contribution, however, is to decrease the time
complexity by applying the preceding algorithm.

Let Q(x) =
∑w

i=1 xqi be the multiple polynomial of p2(x)p3(x)p4(x) with degree
d and weight w. Using techniques in Subsection 4.2 to find Q(x) with (precompu-
tation) complexity PC, we list the corresponding triplets (w, d, PC) for small w in
Table 9.

Table 9. Complexity of finding multiple of p2(x)p3(x)p4(x) with degree d, weight w

birthday problem
with min. d tradeoff

weight w 5 4 3 2 5

degree d 227 236 252 2100 234.3

Precomputation PC 254 254 252 - 236.3

Let x̃1 be a guess for x1, the initial state of R1 which generates the keystream
{zt} together with the other three fixed LFSRs. Denote x̃1

t the output bit of R1

with the initial state x̃1 at time t. We define

bt(x̃
1) = ⊕w

i=1(zt+qi
⊕ zt+qi+5) ⊕⊕w

i=1(x̃
1
t+qi

⊕ x̃1
t+qi+5). (9)

It can be shown that the second addend in Eq.(9) is also an m-sequence generated
by the same LFSR. For brevity, we set

rt = ⊕w
i=1(x̃

1
t+qi

⊕ x̃1
t+qi+5),

st = ⊕w
i=1(zt+qi

⊕ zt+qi+5),

for t = 1, . . . , n (it corresponds to the data complexity n + d). We rewrite Eq.(9) as

bt(x̃
1) = st ⊕ rt.

Given n-bit sequence of bt(x̃
1)’s, we count the occurrences5 N(x̃1) of ones, i.e.

N(x̃1) =
∑n−1

t=0 bt(x̃
1). Using the analysis of [28], we estimate N(x1) is the smallest

of all N(x̃1) with

n ≈
4L1 log 2

γ2w
. (10)

Note that this estimated figure is actually comparable to the conventional estima-
tion [6, 16] on critical data complexity n0 in correlation attacks, where

n0 =
L1

1 − h( 1
2 + 1

2γw)
≈

2L1 log 2

γ2w
, (11)

and h is the binary entropy function6. According to [6] simulations showed the
probability of success is close to 1 (resp. 1

2 ) for n = 2n0 (resp. n = n0) which is
consistent with our analysis. Table 10 shows our estimated minimal n for N(x1) to
achieve a top rank corresponding to w. Now define Gt = (a0, . . . , aL1−1)

>, where
a0+a1x+· · ·+aL1−1x

L1−1 = xt mod p1(x). Clearly our current problem to recover

5 w is fixed in the attack, so we omit it in the notation N(x̃1).
6 h(p) = −p log2 p − (1 − p) log2(1 − p) for 0 < p < 1.



R1 right fits into the MLD problem in Subsection 6.2. So we use the preceding
MLD algorithm to recover r first, then apply linear transform to solve x1. Finally
we conduct the same analysis as in Section 5 to decrease data complexity down
to O( r

2r−1 × 4L1 log 2
γ2w ); and we apply the technique introduced in Subsection 6.3 to

obtain the reduced time complexity O(n+θ1 ·2
r +L1 ·2

L1). So, choosing r = 12, we
can halve the time and data complexities. The attack complexities to recover R1 for
E0 are listed in Table 11. Once we recover R1, we target R2 next based on multiple
of p3(x)p4(x). Last, we use the technique of guess and determine in [11] to solve
R3 and R4 with knowledge of the shortest two LFSRs. The detailed complexities
of each step are shown in Table 12. A comparison of our attacks with the similar
attack7 [10] and the best two algebraic attacks [1, 8] is shown in Table 13.

Table 10. The estimated minimal n for N(x1) to top the rank from Eq.(10)

weight w 5 4 3 2 1

n 240 233 227 220 214

Table 11. Summary of primary partial key-recovery attacks against R1 for E0

w d n data precomputation time memory

Attack A 5 234.3 239 239 236.3 239 225

Attack B 4 236 233 236 254 236 225

Table 12. Detailed complexities of our key-recovery attack against E0

w d n data precomputation time memory

R1 5 234.3 239 239 236.3 239 225

R2 3 236 227 236 237 236 227

R3 and R4 - - - 76 - 233 -

total - - - 239 237 239 227

8 Conclusions

This paper formulates a systematic computation method of correlations by a recur-
sive expression, which makes it easier to calculate correlations of the FSM output
sequences up to 26 bits for E0 (and allows us to prove for the first time that the
two known biases are the only largest). Then we successfully apply the concept
of convolution to the analysis of the distinguisher based on all correlations, which
allows us to build an efficient distinguisher that halves the data complexity of the
basic uni-bias-based distinguisher due to the linear dependency of the two largest
biases. Finally, by means of FWT, we propose a novel MLD algorithm to recover the

7 The estimate of data complexity in [10] uses a different heuristic formula than ours.
However we believe that their estimate and ours in Attack B are essentially the same.



Table 13. Complexities comparison of our attacks with the similar attack and algebraic
attacks

Precomputation Time Data Memory

Algebraic [1] - 267.58 223.07 246.14

Attacks [8] 228 249 223.4 237

Attack [10] 254 263 234 234

Our A 237 239 239 227

Attacks B 254 237 236 227

closest codeword for any linear code. Our proposed algorithm can be easily adapted
to speed up a class of fast correlation attacks. Furthermore the algorithm is optimal
when the length n of the code and the dimension L satisfy the relation n ≥ 2L,
which is the case when we apply it to recover R1 for E0. This results in the best
known key-recovery attack against E0. Considering a maximal keystream length
of 2745 bits for practical E0 in Bluetooth, our results still remain the academic
interest. Meanwhile, our attack successfully illustrates the attack methodology of
Baignères et al.8
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Appendix

A. Proof of Lemma 5

Let Z ∈ GF (2)k be a random variable independent of X with uniform distribution.
We have

∑

w

∆(f(X, Z) ⊕ w · Z) · ∆(w · g(Y ) ⊕ v · Y )

=
∑

w

E[(−1)f(X,Z)⊕w·Z ] · E[(−1)w·g(Y )⊕v·Y ]

=
∑

w,x,y,z

Pr(x, z) · Pr(y) · (−1)f(x,z)⊕v·y⊕w·(z⊕g(y))

= 2k ·
∑

x,y

Pr(X = x, Z = g(y)) · Pr(Y = y) · (−1)f(x,g(y))⊕v·y

=
∑

x,y

Pr(x, y) · (−1)f(x,g(y))⊕v·y

= E[(−1)f(X,g(Y ))⊕v·Y ],

which is ∆(f(X, g(Y )) ⊕ v · Y ).

B. Examples of Multiple Polynomials Q(x)

Example of Q(x) with Low Degree. Here is a multiple polynomial of degree
less than 855 with weight 31:

Q1(x) = x668 + x579 + x553 + x313 + x262 + x121 + x117 + x109 + x106 + x101 +
x100 + x97 + x94 + x87 + x82 + x76 + x72 + x71 + x57 + x47 +
x40 + x37 + x34 + x32 + x23 + x21 + x17 + x16 + x3 + x2 + 1.

Observe that Q1(x) is not optimal as w855 = 20 from Table 3.

Examples of Q(x) with Weight Four. Recall that θi = 2Li − 1 is the or-
der of pi(x) for i = 1, 2, 3, 4. By definition, pi(x)|xθi + 1. On the other hand,
pi(x)pj(x)|lcm(xθi + 1, xθj + 1) = xlcm(θi,θj) + 1 for i 6= j, hence we deduce the
following three multiple polynomials of p(x) with weight 4 with ease:

Q2(x) = (xlcm(θ1,θ2) + 1)(xlcm(θ3,θ4) + 1),

Q3(x) = (xlcm(θ1,θ3) + 1)(xlcm(θ2,θ4) + 1),

Q4(x) = (xlcm(θ1,θ4) + 1)(xlcm(θ2,θ3) + 1),

where

lcm(θ1, θ2) = 256 − 231 − 225 + 1, lcm(θ1, θ3) = 258 − 233 − 225 + 1,
lcm(θ1, θ4) = 264 − 239 − 225 + 1, lcm(θ2, θ3) = 264 − 233 − 231 + 1,

lcm(θ2, θ4) = 270 − 239 − 231 + 1, lcm(θ3, θ4) = (239 − 1)
∑10

k=0 23k.

The degrees of Q2(x), Q3(x), Q4(x) are approximately 269, 270, 265 respectively. Note
that we may also expect optimal multiples with degree in the same order of magni-
tude and weight 3.



C. Table of log
2

|D̂(a)| for ` = 6

Table 14. log2 |D̂(c0
t , c

0
t+1, . . . , c

0
t+5)| where dashed entries denote −∞

c0
t+3c

0
t+4c

0
t+5

000 001 010 011 100 101 110 111

000 0 - - - - - - -
001 - - - −4 - - - -
010 - - - - - - −4 -
011 - - - - - −6 - -3.356

c0
t c

0
t+1c

0
t+2 100 - -3.356 - - - - - −8

101 - - - - −4 - - -
110 - −8 - −5.356 - −5.356 - −5.356
111 - - −6 - - - -3.356 -


