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Abstract. We prove the equivalence, up to a small polynomial approxi-
mation factor

√
n/ log n, of the lattice problems uSVP (unique Shortest

Vector Problem), BDD (Bounded Distance Decoding) and GapSVP (the
decision version of the Shortest Vector Problem). This resolves a long-
standing open problem about the relationship between uSVP and the
more standard GapSVP, as well the BDD problem commonly used in
coding theory. The main cryptographic application of our work is the
proof that the Ajtai-Dwork ([2]) and the Regev ([33]) cryptosystems,
which were previously only known to be based on the hardness of uSVP,
can be equivalently based on the hardness of worst-case GapSVPO(n2.5)

and GapSVPO(n2), respectively. Also, in the case of uSVP and BDD,
our connection is very tight, establishing the equivalence (within a small
constant approximation factor) between the two most central problems
used in lattice based public key cryptography and coding theory.

1 Introduction

Lattice based cryptography is among the most compelling alternatives to tradi-
tional methods based on number theory. Ajtai’s ground-breaking discovery that
lattice problems exhibit a worst-case to average-case connection [1] immediately
yielded one-way functions and collision resistant hash functions based on the
worst-case hardness of several lattice approximation problems, and prompted
researchers to investigate the construction of more complex cryptographic prim-
itives (most notably public key encryption) based on lattices. The first cryp-
tosystem that was based on the worst-case hardness of lattice problems was
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the Ajtai-Dwork cryptosystem [2]. The security of this system was based on
the worst-case hardness of the approximate “unique” Shortest Vector Problem
uSVPO(n8) (in uSVPγ , we are asked to find the shortest vector in a lattice in
which the shortest vector is guaranteed to be at least γ times smaller than the
next shortest non-parallel lattice vector). This was followed by an improvement
to their cryptosystem [11], and the currently best version of it is based on the
hardness of uSVPO(n2). In a later work, Regev built a different cryptosystem
based on worst-case uSVPO(n1.5) [33]. But while other cryptographic primitives
could be built on the hardness of the more general, and better understood from
a complexity-theoretic point of view, shortest vector problem on general lattices
(in its decision variant, GapSVP), cryptosystems seemed to require the hardness
of the potentially easier uSVP lattices. So it was a major open problem as to
whether lattice-based cryptosystems could be based on the hardness of problems
on general lattices, and GapSVP in particular. What made the problem even
more interesting was that simpler cryptographic primitives from “minicrypt”3

such as one-way functions [1], collision-resistant hash functions [1,10,29] identi-
fication schemes [30,25,18] and signature schemes [26,8] could be based on the
worst-case hardness of GapSVP.

A breakthrough in the design of lattice-based cryptosystems, in the sense of
deviating from uSVP, came when Regev built a cryptosystem which was ac-
tually based on GapSVP (as well as some other standard lattice problems),
but the assumption was that approximating GapSVP was hard even by quan-
tum algorithms [35]. Another breakthrough came just recently, when Peikert
finally constructed a cryptosystem that is based on the hardness of GapSVP
under classical reductions [32]. Of course, a different way of obtaining cryptosys-
tems with security based on GapSVP would be to establish a relation between
GapSVP and uSVP, and this is precisely what we do in this paper.

On the practical front, about at the same time as Ajtai’s discovery [1], two
cryptosystems were proposed (GGH [12] and NTRU [15]), which, while lacking
a security proof from worst-case lattice assumptions, are intuitively very appeal-
ing. These cryptosystems rest on the conjectured average-case hardness of the
bounded distance decoding problem (BDD), which can be considered a special
version of the closest vector problem, very much like uSVP is a special version
of the shortest vector problem. Additionally, Regev’s cryptosystem [35] whose
security is based on the worst-case hardness of quantum GapSVP is equiva-
lently based on an average-case version of classical BDD (used in [35] under
the name “Learning with Errors” problem.) So, the average-case BDD problem
seems quite a natural problem to consider in the setting of lattice based public
key encryption.

Our contribution. In this paper, we prove the equivalence, up to a factor of√
n/ log n, of the GapSVP, BDD, and uSVP problems. In particular, we prove

3 Minicrypt [16] consists of all cryptographic primitives that can be derived from
one-way functions, or more generally, exist relative to a random oracle. Collision
resistant hash functions are not known to be reducible to one-way functions, but
still exist relative to a random oracle, so they can be included in minicrypt.



Cryptosystem GapSVP Approximation Factor Message Expansion

Ajtai-Dwork [2] Õ(n2.5) O(n2)

Regev [33] Õ(n2) O(n)

Peikert [32] Õ(n2) O(log n)

Fig. 1. Cryptosystems based on worst-case GapSVPγ . The results in bold-face
are consequences of the current work.

that for any γ ≥ 1, there is a reduction from BDD1/2γ to uSVPγ , and for
any polynomially-bounded γ, there is a reduction from uSVPγ to BDD1/γ . (We
remark that the BDDα problem is easier for smaller values of the factor α, while
uSVPγ is easier for larger values of γ. For a formal definition of the problems,
see the next section.) So, the problems uSVPγ and BDD1/γ are essentially
equivalent under polynomial time reduction that preserve the approximation
factor up to a small constant γ/γ′ ≤ 2. We also show reductions from uSVPγ to
GapSVPγ , and from GapSVPγ to BDD 1

γ

√
n/ logn

(for any γ > 2
√
n/ log n).

So, in summary, all three problems uSVPγ , BDD1/γ and GapSVPγ are
equivalent up to polynomial approximation factors, and all currently known lat-
tice based public key cryptosystems with classical worst-case security guarantees
[2,33,32] are qualitatively equivalent. In particular, our results imply that the
Ajtai-Dwork [2] and the Regev [33] cryptosystems are based on the hardness
of GapSVPÕ(n2.5) and GapSVPÕ(n2) respectively. And since Peikert’s recent
cryptosystem [32] is also based on the hardness of the GapSVPÕ(n2), the only
major quantitative difference between the three cryptosystems is that Peikert’s
has a smaller message expansion factor (see Figure 1 and also [32] for more
details).

When it comes to the practical GGH [12] and NTRU [15] cryptosystems,
we cannot formally draw any implications from our findings, because ours are
worst-case to worst-case reductions, and the GGH and NTRU cryptosystems
lack security proofs from worst-case problems. Still, our results show that the
(average-case) BDD lattice problems underlying GGH and NTRU, and those
used in more theoretical constructions, have much more in common than previ-
ously thought.

In addition to cryptographic applications, the uSVP problem also found ap-
plicability in areas of learning theory and quantum computation. Klivans and
Sherstov showed that a polynomial-time algorithm PAC-learning the intersec-
tion of nε half-spaces implies a polynomial-time algorithm for solving uSVP
[20]. Regev showed that a solution to the dihedral coset problem would imply
a quantum algorithm for uSVP [34]. Our work implies that the two problems
above are based on the more well-studied GapSVP problem. This seems espe-
cially important for Regev’s result since there was very little prior evidence that
uSVP was hard for quantum computers.



1.1 Previous Work

There has been a lot of work in establishing relationships between various lattice
problems. In fact, while our central cryptographic result (that the Ajtai-Dwork
and the Regev cryptosystems are based on the hardness of GapSVP) is new,
the components that comprise it are very much based on prior work.

Proving the reduction from GapSVP to uSVP can be broken down into two
separate reductions. In section 4, we give a reduction from BDD to uSVP and
in section 7 we give a reduction from GapSVP to BDD. The BDD to uSVP
reduction uses an idea that dates back to at least the classic result of Lagarias
and Olyzsko [22] where random low-density subset sum instances are converted
to lattices with a unique shortest vector. This same idea has subsequently been
used in various guises in reductions [17,6] as well as in heuristic attacks on
cryptographic primitives [31].

The reduction from GapSVP to BDD is already implicit in the recent work
of Peikert [32]. And in fact, almost the same idea was already used in the work
of Goldreich and Goldwasser [9] where it was proved that GapSVP (and other
lattice problems) are in the complexity class coAM. In that work, an all-powerful
prover was able to convince a polynomially-bounded verifier that the length of
the shortest vector of the lattice is large. The GapSVP to BDD reduction is
obtained by realizing that the all-powerful prover in the coAM protocol can
simply be substituted with a BDD oracle.

The other two reductions presented in our work are also related to some
previous works. The reduction from uSVP to BDD in section 5 uses some ideas
from the SVP to CVP reduction of Goldreich, et al. [13]. The reduction from
uSVP to GapSVP is based on Regev’s reduction from the decision to the search
version of uSVP [33], but our proof is somewhat simpler and tighter.

1.2 Discussion and Open Problems

As mentioned earlier, one of the separations between the lattice-based “minicrypt”
primitives and lattice-based public key cryptosystems was that the former could
be based on the hardness of classical GapSVP, whereas the latter could not.
But our work, as well as the recent work of Peikert [32], shows that there are
cryptosystems based on the worst-case hardness of the shortest vector prob-
lem in its decision version. Nevertheless, there still seems to be a difference in
the types of problems that “minicrypt” primitives can be based on and the
hardness assumptions needed for public-key cryptosystems. The aforementioned
“minicrypt” primitives [1,10,29,30,25,18,26,8] can all be based on a standard
lattice search problem SIVP, in addition to GapSVP. We remark that, up to
a polynomial loss in the approximation factor, GapSVP,uSVP and BDD can
be reduced to SIVP.4 Moreover the “quantum step” of [35] gives a quantum

4 This can be done in a variety of ways. For example, one can first reduce GapSVPnγ
to GapSIVPγ using transference theorems, and then use a trivial reduction from
GapSIVPγ to SIVPγ .



reduction from SIVPO(nγ) to BDD1/γ . So, under quantum reductions, all lat-
tice problems uSVP, BDD, GapSVP, SIVP are qualitatively equivalent, up
to polynomial approximation factors. However, there is no known classic poly-
nomial time reduction from SIVP to any of uSVP,BDD,GapSVP (except in
trivial cases). We also remark that the two most famous lattice problems, SVP
and CVP, are equivalent under polynomial time reduction up to polynomial
approximation factors [17], and there is an approximation preserving reduction
from SIVP to CVP [27]. However, there is no known reduction in the opposite
direction, from SVP or CVP to SIVP. So once again, this raises the question
of whether lattice-based public key cryptosystems require qualitatively stronger
assumptions than simpler cryptographic primitives (e.g., quantum hardness of
SIVP, rather than just classic hardness), and whether cryptography in general
can be based on the worst-case hardness of SVP or CVP in their search version.

It is interesting to point out that even though the cryptosystems described in
[2,33,32] are all based on the hardness of GapSVP, the construction of Peikert’s
cryptosystem is quite different from the other two. The Regev and Ajtai-Dwork
cryptosystems were based directly on the uSVP problem, while Peikert’s cryp-
tosystem is actually quite similar to the other Regev cryptosystem [35] whose
hardness is based on BDD. At this point, cryptosystems based on BDD are
more efficient since their message expansion factor is smaller (see Figure 1), but
perhaps the connection between GapSVP,BDD, and uSVP demonstrated in
this work can be somehow exploited in order to combine the two seemingly dis-
tinct techniques for cryptosystem construction and build one that is even more
efficient and still based on the hardness of GapSVP.

Another outstanding question on the complexity of lattice problems is whether
the search and length estimation/decision versions of the shortest vector problem
are computationally equivalent. A search to decision reduction for the approxi-
mate SVP would immediately imply the equivalence (up to polynomial factors)
of all lattice problems uSVP, BDD, GapSVP, SVP, CVP, SIVP considered
in cryptography.

There are also many questions about the relationship between lattice prob-
lems that are raised directly from our work. One such problem is whether the
reductions in sections 5 and 6 can be extended to approximation factors that
are not restricted to being polynomial. Another problem is to figure out whether
the small gap that we have in the connection between BDD and uSVP can be
closed. At this point, we have the reduction uSVPγ ≤ BDD1/γ ≤ uSVPγ/2,
which is loose by a factor of 2. We believe that there are three (mutually exclu-
sive) possibilities for possible improvements of this result. It might be possible
to show that:

1. uSVPγ/2 ≤ BDD1/γ or
2. BDD1/γ ≤ uSVPγ or
3. uSVPγ ≤ BDD√2/γ ≤ uSVPγ

This open problem also has an intriguing connection with the computational
complexity of uSVPγ . Unlike SVPγ , which is known to be NP-hard for any
constant γ, uSVPγ is only NP-hard for γ = 1 + 2−n

c

for some constant c [21].



So proving the NP-hardness of uSVPγ for larger factors is a very interesting
open problem. One possibility for doing so would be to prove item (2) above.
Combining this with the result of [24] that states that BDDγ is NP-hard for
γ > 1/

√
2, we would obtain that uSVPγ is NP-hard for γ =

√
2.

The possibility of somehow using the reduction from GapSVP to uSVP in
order to prove NP-hardness of uSVP is also intriguing. At this point, the reduc-
tion requires the γ in GapSVPγ to be at least

√
n/ log n, and the GapSVPγ

problem is not NP-hard for such parameters unless the polynomial-time hier-
archy collapses. While there seem to be some technical roadblocks for reducing
this requirement, it is not entirely clear that this should not be possible.

1.3 Organization of the Paper

Those readers interested mainly in the reduction from GapSVP to uSVP (which
implies that the security of the Ajtai-Dwork and Regev cryptosystems is based
on worst-case GapSVP) can simply read sections 4 and 7 for the proofs of
BDD ≤ uSVP and GapSVP ≤ BDD respectively. Section 4 uses a result
from section 3 in order to strengthen the reduction a bit, but this can be safely
skipped.

In order to establish the equality of the three problems, we also need to prove
that uSVP ≤ BDD and uSVP ≤ GapSVP. This is done in sections 5 and 6
respectively.

2 Preliminaries

An n-dimensional lattice is a discrete additive subgroup of Rn. A set of linearly
independent vectors that generates a lattice is called a basis, and we will denote
it as an n ×m matrix B whose m columns bi are the generating vectors. The
lattice generated by the basis B will be written as L(B). The span of a basis
B, denoted Span(B), is the collection of all points By where y ∈ Rm. The
fundamental parallelepiped of an n ×m basis B, written as P(B), is defined as
the collection of all points that can be written as By where y ∈ [0, 1)m. Every
point s ∈ Rn has a unique associated point t inside P(B) such that s = t in
the quotient group Span(B)/L(B). This point is denoted t = s mod B and can
be computed from s in polynomial time. For any point t, in Rn and any lattice
L(B), the distance of t to the lattice is written as dist(t,L(B)).

For any point t ∈ Rn and r ∈ R, let B(t, r) denote a ball of radius r centered
at t. The shortest vector of a lattice L(B) is the non-zero vector in L(B) with the
smallest `2 norm. The length of the shortest vector, referred to as the minimum
distance, of L(B) is denoted by λ1(L(B)) (or λ1(B) for short). The notion of
minimum distance can be generalized to define the ith successive minimum λi(B)
as the smallest radius r such that B(0, r) contains i linearly independent lattice
points. The determinant of a lattice L(B) is defined as

√
det(BTB). When B is

a full-rank lattice, the previous definition becomes just |det(B)|. Lattices L(B)
and L(D) are called dual if L(D) = {y : ∀v ∈ L(B), y · v ∈ Z}. If L(B) and



L(D) are duals, then det(L(B)) = det(L(D))−1. Minkowski’s theorem states
that for any n-dimensional lattice L(B), λ1(L(B)) ≤

√
n · det(L(B))1/n. For

additional information about lattices, please refer to [28].

2.1 GapSVP

Possibly the most well-known lattice problem is the Shortest Vector Problem
(SVP). It comes in both decisional and search versions, but in this paper we are
only interested in the decision version. (The decision version of the problem is
sometimes referred to as the Minimum Distance Problem). The approximation
version of decisional SVP can be defined as a “gap” problem GapSVPγ . In the
GapSVPγ problem, we are given a basis B and a real number d, and are required
to return YES if λ1(L(B)) ≤ d, and return NO if λ1(L(B)) > γd. If λ1(L(B))
falls between d and γd, we can return anything. The GapSVPγ problem is NP-
hard for any constant γ [19,14]. The fastest algorithm for solving GapSVPγ for
1 ≤ γ ≤ poly(n) takes time 2O(n) [3]. Using the LLL algorithm [23], it is possible
to find a vector that has length at most 2n/2λ1(B) in polynomial time.

2.2 uSVP and BDD

We now give precise definitions for the other two lattice problems that are central
to this work. We urge the reader to notice that while the minimum distance
problem described in the previous section is a decision problem, the ones in this
section are search problems.

Definition 1 (γ-unique Shortest Vector (uSVPγ)). Given a lattice B such
that λ2(B) > γλ1(B), find a nonzero vector v ∈ L(B) of length λ1(B).

Definition 2 (α-Bounded Distance Decoding (BDDα)). Given a lattice
basis B and a vector t such that dist(t,B) < αλ1(B), find the lattice vector
v ∈ L(B) closest to t.

The uSVPγ problem is known to be NP-hard when γ = 1 + 2−n
c

for some
constant c [21], and it’s an outstanding open problem whether NP-hardness can
be proved for larger γ. There has been some evidence to suggest that uSVP is
easier than the search version of SVP [7], and that approximating the length of
the shortest vector in lattices with a unique shortest vector may be easier than
GapSVP in general lattices [5].

The BDDα problem has been shown to be NP-hard for α > 1/
√

2 [24] and
it is an open problem whether it’s hard for smaller α. We would just like to
draw the reader’s attention to the fact that the BDDα problem becomes harder
as α becomes larger, while the uSVPγ problem becomes easier as γ increases.
Sometimes uSVPγ and BDDα are defined in a more relaxed way, as follows:

Definition 3 (uSVP′γ). Given a lattice B such that λ2(B) > γλ1(B), find a
nonzero vector v ∈ L(B) of length ‖v‖ ≤ γλ1(B).



Definition 4 (BDD′α). Given a lattice basis B and a vector t such that dist(t,B) <
αλ1(B), find a lattice vector v ∈ L(B) such that ‖v − t‖ < αλ1(B).

However, these relaxed variants are not any easier to solve than uSVPγ and
BDDα as defined in this paper.

Lemma 1. For any γ ≥ 1, the problems uSVPγ and uSVP′γ are equivalent
under polynomial time reductions.

Proof. Clearly, uSVP′γ reduces to uSVPγ because any solution to uSVPγ in-
stance B is also a relaxed solution to B as a uSVP′γ instance. In the other
direction, let B be a uSVPγ instance. Using a uSVP′γ oracle we can find a
nonzero lattice vector v ∈ L(B) of length ‖v‖ ≤ γλ1(B). Using the uSVP re-
striction γλ1 < λ2, we get that the shortest nonzero vector in L(B) must be of
the form cv (for c ∈ R), and can be easily found solving a 1-dimensional SVP
instance L(B) ∩ vR. ut

The equivalence between BDDα and BDD′α is a bit trickier.

Lemma 2. For any α ≥ 1, the problems BDDα and BDD′α are equivalent
under polynomial time reductions.

Proof. As in the previous theorem, the reduction from BDD′α to BDDα is trivial.
Reducing BDDα to BDD′α is also trivial when α ≤ 1/2, because there is at most
one lattice point within distance λ1(B)/2 from any target. When α > 1/2 the
reduction is not as trivial because the BDD′α oracle may return one of several
lattice points, at distance from the target ranging from dist(t,L(B)) to αλ1(B).
This technical problem can be easily solved as follows. Let (B, t) be a BDDα

instance, and assume without loss of generality that B and t have integer entries.
Consider the BDD′α instance (B′, t′) where

B′ =
[

B 0
0T d/α

]
t′ =

[
t
0

]
for some d > 0. Notice that we still have dist(t′,L(B′)) = dist(t,L(B)). In fact,
the extra coordinate and basis vector in B′ have the only effect of reducing the
length of the shortest vector in the lattice to λ1(B′) = min(λ1(B), d/α). Let
µ = dist(t,L(B)). Then using lattice reduction algorithms (see Lemma 3) we
can efficiently compute a lattice point v at distance d0 = ‖v−t‖ ∈ [µ, 2nµ] from
t. If d0 = µ, then we have found the closest lattice point. So, assume d0 > µ.
Notice that when d = d0, the instance (B′, t′) satisfies

αλ(B′) = min{d, αλ(B)} > µ.

So, on input (B′, t′), the BDD′α oracle returns a lattice point B′z′ such that
‖B′z′ − t′‖ < αλ(B′) ≤ d. On the other hand, if d = d0/2n, then for any lattice
point B′z′, we have ‖B′z′ − t′‖ ≥ µ ≥ d. Using binary search, we can find a d1

such that the BDD′α oracle returns a lattice vector B′z′ such that ‖B′z′−t′‖ < d



when d = d1

√
1 + 1/d2

0, but not when d = d1. Without loss of generality, we can
assume z′ = [zT , 0] and ‖B′z′ − t′‖ = ‖Bz− t‖.

We claim that d1 ≤ µ, and therefore, since ‖Bz− t‖2 and µ2 are integers,

‖B′z′ − t′‖2 = ‖Bz− t‖ ≤ bd2
1(1 + d−2

0 )c ≤ bµ2 + (µ/d0)2c = µ2.

So, Bz is the lattice vector closest to t.
In order to prove the claim, assume for contradiction that d1 > µ. Then,

when d = d1, αλ(B′) = min(d1, αλ(B)) > µ. So, the BDD′α promise is satisfied,
and on input (B′, t′), the BDD′α oracle returns a lattice point B′z′ such that
‖B′z′ − t′‖ < αλ(B′) ≤ d1. This is a contradiction because we had assumed the
oracle returned a lattice point such that ‖B′z′ − t′‖ ≥ d1. ut

2.3 Useful Lemmas

The first lemma, due to Babai [4], states that for any point in space, we can
approximate the lattice point closest to it within a factor of 2n.

Lemma 3. There exists a polynomial-time algorithm that, given t ∈ Rn and a
lattice L(B), outputs a lattice vector v ∈ L(B) such that ‖v−t‖ ∈ [dist(t,L(B)),≤
2ndist(t,L(B))].

The second lemma, due to Goldreich and Goldwasser [9], states that two
spheres of large radii whose centers are relatively close to each other will have a
relatively large (non-negligible) intersection.

Lemma 4. Let x be a vector in Rn such that ‖x‖ ≤ d. If s is a point chosen
uniformly at random from B(0, d

√
n/ log n), then with probability δ > 1/nc for

some constant c, ‖s− x‖ ≤ d
√
n/ log n.

3 BDD Self-Reduction

In this section, we will show that there is a polynomial-time Cook reduction from
solving BDDα to the slightly easier problem BDDα(1−1/n)c for any constant c.
This reduction will be used to eliminate losses of small factors in our reductions
that involve BDD.

Lemma 5. For any α ≥ 1, there is a polynomial-time Cook reduction from
BDD′α to BDD′

α
√

1−1/2n
.

Proof. Let (B, t) be an instance of BDD′α, and y be a vector in L(B) such that
‖t − y‖ < αλ1(B). We do not know the actual distance D = ‖t − y‖, but we
can guess an approximation d such that

D

2 +
√

2
≤ d ≤ D

2−
√

2
(1)



in polynomially many tries (this follows from Lemma 3 since we can approximate
D to within a factor of 2n). Consider the set

S =
{

t− jd√
n

ui : i ∈ {1, . . . , n}, j ∈ {−1, 1}
}

where ui is a vector with a 1 in the ith position, and 0’s everywhere else. We will
show that this set contains a vector t′ such that ‖t′ − y‖ ≤ ‖t− y‖

√
1− 1/2n,

which would imply that (B, t′) is an instance of BDD′
α
√

1−1/2n
. And therefore

solving polynomially many (we need to find a d in the correct range as well as
try all 2n possibilities in the set S) instances of BDD′

α
√

1−1/2n
would result in

a solution to BDD′α.
Without loss of generality we can assume that y = 0. Then ‖t‖2 =

∑
i t

2
i =

D2, and there must exist an i such that |ti| ≥ D√
n

. Then for a j ∈ {−1, 1} that

has the same sign as ti, the vector t′ = t− jd√
n
ui is in S and

‖t′‖2 = ‖(t1, . . . , ti−1, ti −
jd√
n
, ti+1, . . . , tn)‖2

= D2 − 2|ti|d√
n

+
d2

n
≤ D2 − 2dD

n
+
d2

n
≤ D2

(
1− 1

2n

)
where the last inequality follows from (1). ut

Notice that the above lemma cannot be combined with itself to obtain a
reduction from BDD′α to BDD′β for an arbitrarily small β. This is because if

β = α
(√

1− 1/2n
)c

, we would need to solve poly(n)c instances of BDD′β in

order to solve one instance of BDD′α. This is doable in polynomial time only if
c is a constant, which leads to the following corollary:

Corollary 1. For any α ≥ 1 and any constant c, there is a polynomial-time
Cook reduction from BDD′α to BDD′α(1−1/n)c .

Combining the above corollary with Lemma 2, we obtain:

Corollary 2. For any α ≥ 1 and any constant c, there is a polynomial-time
Cook reduction from BDDα to BDDα(1−1/n)c .

4 Reducing BDD to uSVP

In this section we present the reduction from from the BDD problem to uSVP.
Given an instance (B, t) of BDD, we construct a uSVP instance as in (2), where
µ is the approximate distance from t to L(B) (we do not know this distance, but
can guess a good-enough approximation). The idea is that if (B, t) is an instance
of BDD1/(2γ) for γ ≥ 1, then the lattice L(B′) has a γ-unique shortest vector
and this vector is formed by using the last column of B′ exactly once. Therefore
finding this shortest vector allows us to find the closest vector in L(B) to t.



Theorem 1. For any γ ≥ 1, there is a polynomial time Cook-reduction from
BDD1/(2γ) to uSVPγ .

Proof. Let (B, t) be an instance of BDD1/(2γ) and let µ = dist(t,L(B)) <
λ1(B)/(2γ). Let v be a vector in L(B) such that ‖t − v‖ = µ. The goal of the
reduction is to use a uSVPγ oracle to find v. For simplicity, we will assume that
µ is known (we will explain how to deal with this issue at the end of the proof),
and define the matrix

B′ =
[

B t
0T µ

]
(2)

We will show that the lattice L(B′) contains a γ-unique shortest vector v′ =
[(v − t)T ,−µ]T , and therefore finding such a vector will recover the vector v,
which is the solution to the BDD instance. The length of v′ is

√
µ2 + µ2 =

√
2µ

and so we need to show that all other vectors in L(B′) that are not multiples of
v′ have length at least λ1(B)/

√
2 >
√

2γµ.
Assume for the sake of contradiction that w′ is a vector in L(B′) of length

less than λ1(B)/
√

2 that is not a multiple of v′. We can rewrite the vector
w′ = [(w − βt)T ,−βµ]T where β ≥ 0 and w ∈ L(B), and so

λ1(B)√
2

> ‖w′‖ =
√
‖w − βt‖2 + (βµ)2,

which implies that βµ < λ1(B)/
√

2 and

‖w − βt‖ <
√
λ1(B)2

2
− (βµ)2.

Now consider the vector w − βv ∈ L(B). Since we assumed that w′ was not
a multiple of v′, the vector w − βv is a non-zero lattice vector. To get the
contradiction, we will show that the length of this vector is strictly less than
λ1(B). Using the triangular inequality, we rewrite

‖w−βv‖ = ‖w−βt−β(v−t)‖ ≤ ‖w−βt‖+β‖v−t‖ <
√
λ1(B)2

2
− (βµ)2+βµ.

The last term of the above inequality is maximized when β = λ1(B)/(2µ), and
therefore for all β,

‖w − βv‖ <
√
λ1(B)2

2
− (βµ)2 + βµ ≤ λ1(B),

which gives us the contradiction.
We now discuss the issue of guessing the µ such that µ = dist(t,L(B)).

While we cannot guess such a µ exactly, we can, in polynomial time, guess a
µ such that (1 − 1/n)dist(t,L(B)) ≤ µ ≤ (1 + 1/n)dist(t,L(B)). We can do
this because we can find a d such that dist(t,L(B)) ≤ d ≤ 2ndist(t,L(B))



(Lemma 3), and so trying all the possible values of µ in the polynomial-sized set
{d(1 + 1/n)i : 0 ≤ i ≤ log1+1/n 2n} at least one “good” µ. We can then redo
the above proof by appropriately modifying some terms by factors of 1− 1/n or
1 + 1/n in order to satisfy the inequalities that appear. The end result will be
that we will have a reduction not from BDD1/(2γ), but from the slightly easier
BDD(1−1/n)c/(2γ) problem for some small constant c. But we can then apply
Corollary 2 to obtain the claimed reduction from BDD1/(2γ) to uSVPγ . ut

5 Reducing uSVP to BDD

Theorem 2. For any polynomially bounded γ(n) = nO(1), there is a polynomial
time Cook-reduction from uSVPγ to BDD1/γ .

Proof. Let B be a uSVPγ instance, i.e., an n-dimensional lattice such that
λ2(B) > γλ1(B), and let p be the smallest prime bigger than γ(n). (Since γ(n)
is polynomially bounded, such a prime can be easily found using trial division.)
We want to find the shortest nonzero vector in L(B). We proceed similarly to
the reduction from SVP to CVP of Goldreich, Micciancio, Safra and Seifert.
(The GMSS reduction corresponds to the special case when p = 2.) For any
i = 1, . . . , n, we consider the lattice

B(i) = [b1, . . . ,bi−1, pbi,bi+1, . . . ,bn]

and invoke the BDD oracle on input (B(i), j · bi) for j = 1, . . . , p − 1. Assume
without loss of generality that the oracle always returns a lattice vector. (If
the input instance violates the BDD promise, the oracle may simply return 0.)
Let vi,j ∈ L(B(i)) ⊂ L(B) the lattice vector returned by the oracle on input
(B(i), j · bi), and let

wi,j = vi,j − j · bi.

Notice that all vectors wi,j belong to the lattice L(B) because vi,j ∈ L(B) and
bi ∈ L(B). The reduction outputs the smallest nonzero vector among the wi,j .

In order to prove the reduction correct, we need to show that at least one
of the wi,j has length λ1(B), so that the reduction outputs a shortest nonzero
vector in L(B). Let u = Bx be the shortest nonzero vector in L(B). Clearly,
there must exists an i ∈ {1, . . . , n} such that p does not divide xi, because
otherwise u/p = B(x/p) ∈ L(B) is an even shorter nonzero lattice vector. Fix
this i, and let j = (−xi mod p) ∈ {1, . . . , p− 1}. We claim that (B(i), j · bi) is a
valid BDD1/γ instance and dist(B(i), j ·bi) = λ1(B). It will follow that on input
(B(i), j · bi), the BDD oracle returns the lattice vector vi,j ∈ L(B(i)) closest to
j · bi, and

‖wi,j‖ = ‖vi,j − jbi‖ = dist(B(i), jbi) = λ1(B).

First, notice that jbi is within distance ‖u‖ = λ1(B) from L(B(i)) because

u =
n∑
k=1

bkxk =
∑
k 6=i

bkxk + bi(xi + j)− jbi



and (xi + j) is a multiple of p. Moreover, jbi /∈ L(B(i)) because any vec-
tor in L(B(i)) − jbi uses bi a nonzero (modulo p) number of times. There-
fore, dist(jbi,L(B(i))) = λ1(B). We also need to show that (B(i), jbi) is a
valid BDD1/γ instance, i.e., dist(B(i), jbi) < (1/γ)λ1(B(i)), or, equivalently,
λ1(B(i)) > γλ1(B). To this end, consider any nonzero vector y = B(i)z. If y is
linearly independent from u, then we immediately get ‖y‖ ≥ λ2(B) > γλ1(B).
So, assume y = cu for some c ∈ Z\{0}. Using the definition of B(i) and the equal-
ity B(i)z = cBx, we get pzi = cxi (and zk = cxk for all k 6= i). Since p does not
divide xi (by our choice of i), p must divide c, and ‖y‖ = c‖u‖ ≥ p‖u‖ > γλ1(B).

ut

6 Reducing uSVP to GapSVP

Theorem 3. For any polynomially bounded γ, given an oracle for GapSVPγ ,
we can solve uSVPγ . Moreover, all calls to the GapSVPγ oracle are of the form
(B, d) where λ2(B) > γd.

Proof. Let B = [b1, . . . ,bk] be the basis of a lattice satisfying λ2(B) > γλ1(B),
and let u be the (unique) shortest vector in L(B). Without loss of generality
we assume B is an integer lattice. We show how to use the GapSVPγ oracle
to obtain a lower rank sublattice of L(B′) that still contains the lattice vector
u of length λ = λ1(B). The shortest vector in L(B) can then be found by
iteratively applying this procedure, until the rank of the lattice is reduced to 1,
and B′ = [±u].

In fact it is enough to show how to find any full-rank proper sublattice
L(B′) ⊂ L(B) still containing u. If we repeat this t > n(n + log2 n) times, the
result will be a sublattice S such that det(S) ≥ 2t det(B), because each time
we select a sublattice the value of the determinant at least doubles. The dual D
of this sublattice will have determinant det(D) ≤ 1/(2t det(B)), and using the
LLL algorithm we can find a dual vector v ∈ L(D) of length

‖v‖ ≤ 2n
√
ndet(D)1/n ≤

√
n2n

2t/n det(B)1/n
.

By Minkowski’s bound we have ‖u‖ ≤
√
ndet(B)1/n and therefore by the

Cauchy-Schwarz inequality,

|〈u,v〉| ≤ ‖v‖ · ‖u‖ ≤ n2n−t/n < 1.

But 〈u,v〉 is an integer because u ∈ L(S) and v ∈ L(D) and the lattices L(S)
and L(D) are dual. So, it must be 〈u,v〉 = 0, i.e., u is orthogonal to v. Taking
the sublattice of S orthogonal to v gives a lower rank sublattice L(B′) ⊂ L(B)
still containing u.

So, all we need to do is to show that the GapSVP oracle can be used to
find a proper sublattice L(B′) ⊂ L(B) that still contains u. Let p be a prime
bigger than γ and consider the sublattices B0 = [pb1,b2, . . . ,bk] and Bc =



[b1 + cb2, pb2,b3, . . . ,bk] for c = 1, . . . , p. We claim that there exists a c such
that u ∈ L(Bc). Moreover, for any c, if u /∈ L(Bc), then

λ1(Bc) ≥ min(λ2(B), pλ1(B)) > γλ.

In other words, the instances (Bc, λ), will always fulfill the promise that either
λ1(Bc) ≤ λ or λ1(Bc) > γλ. So, if we could invoke the GapSVPγ oracle on
inputs (Bc, λ) for c = 0, . . . , p, then the oracle would output YES for at least
some c, and for any such c we would have L(Bc) ≤ λ. However, we cannot make
these oracle calls because the value λ is not known, and also because λ might
be an irrational number. Both problems can be easily solved by performing
a binary search as follows. Compute an approximation d to λ using a lattice
approximation algorithm. Say, λ ≤ d < 2nλ. If we invoke the oracle on inputs
(Bc, d), then the oracle will output YES for at least some c ∈ {0, . . . , p}. On
the other hand, if we invoke the oracle in inputs (B, d/2n), then the oracle will
output NO for all c because d/2n < λ ≤ λ1(Bc). Using binary search we can
find a d′ < d′′ in [d/2n, d) such that

– on input (Bc, d
′) the oracle outputs NO for all c,

– on input (Bc, d
′′) the oracle outputs YES for some c,

– d′′ − d′ < 1/(2γ2d).

Notice that the number of iterations performed by the binary search procedure
is at most log2(2nd) + log2(2γ2d) ≤ n + 1 + 2 log2(γd) which is polynomial in
the input size. From the condition d′′ − d′ < 1/(2γ2d), we get that the interval
[(γd′)2, (γd′′)2] contains at most one integer because

(γd′′)2 − (γd′)2 = γ2(d′′ − d′)(d′′ + d′) < 1.

Similarly, (d′′)2 − (d′)2 < 1 and [(d′)2, (d′′)2] also contains at most one integer.
We know that d′ < λ because the oracle outputs NO on all queries (Bc, d

′). Since
B is an integer lattice, λ2 is an integer. If [(d′)2, (d′′)2] contains no integer value,
then it must be λ > d′′, and for all oracle calls (Bc, d

′′) that were answered with
YES, it must be λ1(Bc) ≤ λ. On the other hand, if [(d′)2, (d′′)2] contains an
integer k, it may or may not be the case that λ =

√
k. There are two cases:

– If (γ2k, (γd′′)2] contains no integer, then for every c, either λ1(Bc) ≤ d′′ or
λ1(Bc) > γd′′. So, we can proceed as before, and select any c for which the
oracle output YES on input (Bc, d

′′).
– If there is an integer k′ ∈ (γ2k, (γd′′)2], then we select any value d0 ∈

[
√
k,
√
k′/γ), and call the oracle again on input (Bc, d0). The oracle will

output YES on at least one of these calls, and the corresponding lattice is
guaranteed to satisfy λ1(Bc) ≤ λ.

We will now prove the claim that there exists a c ∈ {0, . . . , p} such that
u ∈ L(Bc). Let u = Bx for some integer vector x = (x1, x2, . . . , xk)T . If p | x1,
then clearly u is a vector in L(B0). If p - x1, then we will show that u ∈ L(Bc)
for c = x2x

−1
1 (mod p). Consider the vector x′ = (x1, (x2 − cx1)/p, x3, . . . , xn).

Notice that Bcx′ = Bx and by our choice of c, x has all integer coordinates
since x2 − cx1 ≡ 0(mod p). Therefore u is also a vector in L(Bc). ut



7 Reducing GapSVP to BDD

In this section we give a reduction from GapSVP to BDD. When combined with
the BDD to uSVP reduction from section 4, we obtain the GapSVP to uSVP
reduction which proves that the Ajtai-Dwork [2] and the Regev [33] cryptosys-
tems are based on the hardness of the approximate minimum distance problem.
As mentioned earlier, the GapSVP to BDD reduction is already implicit in the
recent work of Peikert [32]. We repeat it here for completeness and also because
in Peikert’s work, this reduction is entangled with some extra technicalities that
pertain to his main result.

Theorem 4. For any γ > 2
√
n/ log n there is a polynomial time Cook-reduction

from GapSVPγ to BDD 1
γ

√
n/ logn

.

Proof. Let (B, d) be an instance of GapSVPγ . We need to output YES if
λ1(B) ≤ d and NO if λ1(B) > γd. In all other instances, any answer will suffice.

We repeat the following procedure poly(n) times. Generate a uniformly ran-
dom point s in B(0, d

√
n/ log n), and let t = s mod B. Feed the instance (B, t)

to the BDD 1
γ

√
n/ logn

oracle and receive the answer v. If we ever have the case

that v 6= t − s, we output YES. On the other hand, if all poly(n) calls to the
oracle result in v’s such that v = t− s, we output NO.

We will now prove that the reduction is correct. Suppose that (B, d) is a NO
instance of GapSVPγ . Then

dist(t,L(B)) = dist(s,L(B)) ≤ d
√
n/ log n <

λ1(B)
γ

√
n/ log n,

and so (B, t) is a valid instance of BDD 1
γ

√
n/ logn

. Furthermore, since γ >

2
√
n/ log n, the distance of t from the lattice is less than λ1(B)/2, and so there

is only one possible lattice vector within distance λ1(B)
γ

√
n/ log n of t. And since

the lattice vector v = t− s is at a distance ‖s‖ ≤ d
√
n/ log n < λ1(B)

γ

√
n/ log n

away from t, it must be the vector that the BDD oracle returns. So, the reduction
certainly outputs NO.

Now suppose that that (B, d) is a YES instance of GapSVPγ , which means
that λ1(B) ≤ d. Let x be a lattice point whose length is λ1(B). In order for the
BDD oracle to successfully fool us into replying NO, he needs to output v = t−s
in every round of the protocol. Notice that this is equivalent to the oracle knowing
s. But every time we pick an s and reveal t = s mod B to the oracle, by Lemma
4, there is some 1/poly(n) probability δ that ‖s − x‖ ≤ d

√
n/ log n. And in

this case, given t, the oracle cannot know with probability greater than 1/2
whether we randomly generated s or s−x (since both s mod B and s−x mod B
equal to t). Therefore for a δ fraction of the t’s that we give him, the oracle
cannot guess the exact s with probability greater than 1/2. And so guessing
the s in all poly(n) = n/δ rounds has negligible success probability. Therefore
with probability exponentially close to 1, some v will not equal t − s and our
algorithm will reply YES. ut



8 Reductions for Other `p Norms

Throughout this work, we have only dealt with the `2 norm, and we now briefly
discuss how our reductions translate to arbitrary `p norms. The reduction from
uSVP to BDD and uSVP to GapSVP in sections 5 and 6 don’t rely on any
specific properties of the `2 norm and so the reductions go through for other
norms with only very slight modifications. In the reduction from BDD to uSVP
in section 4, we repeatedly used the definition of the `2 norm, and so the re-
ductions do not go straight through. Nevertheless, a simple modification of the
proof which involves appropriately changing the equalities and inequalities to
correspond with the definitions of the `p norm of interest, results in a reduction
from BDD1/(2γ) to uSVPγ just as for the `2 norm.

The only reduction that becomes weaker for `p norms where p 6= 2 is the
reduction from GapSVP to BDD in section 7. The

√
n/ log n factor loss in

the reduction for the `2 norm is directly tied to the fact that spheres that are
a distance of d apart must have radii of at least d

√
n/ log n in order for their

intersecting volume to be a non-negligible fraction of their total volume (Lemma
4). On the other hand, in `p norms for p 6= 2, the radii of the spheres have to
be larger for their intersection to be non-negligible. It’s not hard to see that for
the `1 and `∞ norms, the radii need to be at least dn/ log n, and it is shown
in [9] that this suffices for all other `p norms as well (although it is not a tight
bound when 1 < p <∞). So essentially using an analogue of Lemma 4 for other
`p norms, we can obtain a reduction from GapSVPγ to BDD 1

γ n/logn
for any

γ > 2n/ log n.
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