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Abstract. Recently, there have been numerous works about hardware-
assisted cryptographic protocols, either improving previous constructions
in terms of efficiency, or in terms of security. In particular, many sug-
gestions use Canetti’s universal composition (UC) framework to model
hardware tokens and to derive schemes with strong security guarantees
in the UC framework. In this paper, we augment this approach by con-
sidering Physically Uncloneable Functions (PUFs) in the UC framework.
Interestingly, when doing so, one encounters several peculiarities specific
to PUFs, such as the intrinsic non-programmability of such functions. Us-
ing our UC notion of PUFs, we then devise efficient UC-secure protocols
for basic tasks like oblivious transfer, commitments, and key exchange.
It turns out that designing PUF-based protocols is fundamentally dif-
ferent than for other hardware tokens. For one part this is because of
the non-programmability. But also, since the functional behavior is un-
predictable even for the creator of the PUF, this causes an asymmetric
situation in which only the party in possession of the PUF has full access
to the secrets.

1 Introduction

Cryptographic protocols which simultaneously satisfy high efficiency demands as
well as strong security requirements (like composable security), are scarce. One
recent trend in this regard is to use the potential of hardware components like
signature cards [20], one-time programs [14], standard smart cards [19], or even
more complex tokens [21]. Most of these hardware-assisted protocols actually
achieve security in Canetti’s universal composition (UC) framework [4] and thus
provide strong security guarantees.

1.1 Physically Uncloneable Functions

In this paper, we consider another type of hardware component which recently
gained a lot of attention because of the irresistible progress in their realization:
Physically Uncloneable Functions (PUFs) [27,26]. Basically, a PUF is a noisy
device derived through a complex physical manufacturing process such that the
behavior of the PUF is hard to clone. The PUF itself can be evaluated by a
physical stimulus (aka. challenge) on which it provides a noisy response.



Modeling PUFs appropriately is a highly non-trivial task. Most importantly,
there are different types of PUFs with different (physical) properties. Further-
more, there does not seem to be a general agreement upon common security
properties of PUFs, even for a single type (e.g., whether a PUF is one-way or
not, or if the output is pseudorandom). See [29,23] for more information. We
thus consider a very minimalistic model which basically says that only the party
in possession of a PUF can evaluate it by sending some stimulus to the PUF
and observing the output, and where learning outputs for some stimuli does not
facilitate the task of predicting the function’s output for other stimuli.

There have been several approaches to define PUFs cryptographically, see
[27,17,12,2,29,11,30]. However, these definitions usually are either rather infor-
mal, or follow the more stringent game-based approach, but stipulate unclone-
ability and tamper-resistance as an external property “outside of the game”. A
recent exception is the work of Armknecht et al. [1] which provides a game-based
definition for uncloneability on a physical level. In the UC world, such features
are more handy to specify. We hence follow previous approaches for other token-
based protocols to model PUFs formally in the UC framework, exposing several
peculiarities for this kind of hardware.

1.2 PUFs and the UC Framework

The UC Framework. The UC framework supports an easy modeling of tamper-
proof hardware tokens via ideal functionalities. Roughly, the ideal functionality
captures the abstract security properties of the token, and one considers a hybrid
world in which real-world protocols and parties also have access to this ideal
functionality (and thus the token). This is the approach which has been used
extensively in the literature [21,19,24,16,15] and which we also use to model
PUFs in the UC framework, in particular, to model restricted access depending
on possession of the token or uncloneability.

In its original form the hybrid model supports the decomposition of cryp-
tographic tasks into basic building blocks and to conclude security of protocols
which are composed out of such building blocks. Loosely speaking, Canetti’s
composition theorem—or, actually a corollary of a more general statement—
says that, if a protocol πF UC-securely realizes some functionality G in the
hybrid world with efficient functionality F , and some protocol ρ UC-securely
realizes F , then the composed protocol πρ which invokes ρ whenever π would
call F , also UC-securely realizes G.

PUFs in the UC Framework. Our ideal functionality for PUFs only allows the
party in possession to stimulate it in order to retrieve a response, thus ensuring
restricted access. Uncloneability is enforced through unpredictability. Parties can
hand over the PUF to other parties. During transition, we allow the adversary
temporary access before the PUF reaches the recipient. This models the classical
example of PUF-augmented credit cards, sent via postal service, which are read
out before getting delivered. As in other works about hardware based tokens,
we assume some kind of tamper-evidence in the sense that the receiver can later



verify the authenticity and integrity of the PUF. We note that this need not be
ensured by the PUF technology itself. One may also consider reliable delivery (in
which case the adversary may have read-only access during the manufacturing
process).

Our ideal functionality covers different kinds of PUF technologies and com-
prises even PUFs with small input or output size (in which case unpredictability
should be understood relative to the small output size). We note that for design-
ing secure protocols, the intermediate access of the adversary also necessitates
that the challenge space of the PUF is super-polynomial; else the adversary could
clone the PUF easily. This domain requirement may currently not be true for all
kinds of PUF technology; we comment on this in the full version of the paper.

The usage of hardware components in the UC context, especially of PUFs,
causes several unpleasant side effects, though. At foremost, PUFs are not known
to be implementable by probabilistic polynomial-time (PPT) Turing machines;
the manufacturing process seems to be inherently based on physical properties.
Hence, while the claims in the hybrid model are technically sound, any real-
ization in practice through actual PUFs leaves a gap in the security claim of
the composed protocol, as, strictly speaking, the composition theorem only ap-
plies to probabilistic polynomial-time computable functionalities F . Fortunately,
Canetti [4] proves the composition theorem to hold for a broader class of inter-
active Turing machines, and we sketch in the full version of this paper that the
same holds for PUFs.

The uninstantiability of PUFs through efficient algorithms causes another
issue when it comes to complex cryptographic protocols. For any PUF-based
protocol relying on further cryptographic assumptions like the hardness of com-
puting discrete logarithms, the assumption would need to hold relative to the
additional computational power given through PUFs. That is, the underlying
problem must be hard to solve even for attackers with “more than probabilistic
polynomial-time power”. It is therefore advantageous to avoid additional crypto-
graphic assumptions in protocols and provide solutions with statistical security.

Non-Programmability. For PUFs, another aspect is the intrinsic non-programm-
ability of these tokens: Even the manufacturer usually has no control over the
functional behavior of the PUF. Hence, the ability of the ideal-world simulator
to adapt the outcome of a PUF measurement adaptively, as guaranteed when
modeling the PUF through an ideal functionality in the hybrid world, appears
to be exceedingly optimistic. A similar observation has been made by Nielsen
[25] about the (non-)programmability of random oracles in the UC framework.
Roughly, Nielsen takes away the ability of the simulator to program the random
oracle by giving the environment direct access to the random oracle. To support
the argument in favor of non-programmable PUFs we also note that for random
oracles it is straightforward to program consistently given a partial view of the
function for other values, namely, by providing independent random values; for
PUFs this is less clear since one would need to take the (not necessarily efficiently
computable) conditional distribution of the specific PUF type into account.



We adopt Nielsen’s approach and augment the environment’s ability by giv-
ing it also access to the concrete PUF instantiation used in a protocol. Unlike in
the case of the publicly available random oracle, though, the environment can
only access this PUF when it is in possession of the adversary, i.e., we assume
that a PUF, once in possession of the user, can only be accessed by this user.
This corresponds to an honest user who prevents further unauthorized access.
In a stronger version one could also allow further “uncontrolled” interaction
between the environment, i.e., other protocols, and the PUF even when in pos-
session of the honest user. This would somehow correspond to a permanently
shared PUF functionality in the GUC model [5]. However, many advantages of
deploying PUFs for designing efficient protocols would then disappear. With the
restriction on temporary access we can still devise efficient solutions, e.g., cir-
cumventing impossibility results for UC commitment schemes in the plain model
[6] and for GUC commitment schemes in the common reference string model [5].

1.3 PUF-based Protocols in the UC Framework

We finally exemplify the usability of our PUF modeling by presenting PUF-
based protocols for three classical areas: oblivious transfer (OT), commitments,
and key exchange. Our protocols are UC-secure in the hybrid world (where we
grant the environment access to the PUF instantiation as described above), and
typically require only a few operations besides PUF evaluations. In particular, all
protocols require only sending one party a token in the first step. The protocols
do not rely on additional cryptographic assumptions, except for authenticated
channels.

Designing PUF-based protocols is not just a matter of adopting other token-
based solutions. One reason is clearly the non-programmability property which
is usually not stipulated for other tokens (cf. [21,14]). In fact, most protocols
take advantage of the ability to adapt the token’s outputs on the fly. But more
importantly, the main difference between PUFs and other tokens is that PUFs
are by nature even unpredictable for the manufacturer. It follows that only the
party in possession of the PUF has full access to the secrets; other parties may
only draw from a small set of previously sampled values. In comparison, for the
wrapper tokens [21], for example, the creator still knows the program placed
inside the token, and the token holder can fully access this program in a black-
box way. Hence, both parties somehow share a complete view of the secret. For
PUFs the situation is rather “asymmetric”.

Our oblivious transfer protocol bears some similarity to a PUF-based pro-
tocol of Rührmair [28]. His protocol, however, has a high round complexity due
to an interactive hashing step. Still, [28] points out that, using symmetry of
oblivious transfer [32] in the sense that one can change the roles of sender and
receiver, one obtains an oblivious transfer protocol in which the other party
sends the PUF. We confirm that this symmetry also holds in the UC setting.

Designing a UC-secure commitment scheme with the help of our PUFs turns
out to be quite challenging. The non-programmability of our PUFs inhibits
equivocality, a property which allows to adapt committed values appropriately,



and which is usually required for such commitments [6]. We therefore use our
PUF-based oblivious transfer protocol to derive a UC-secure bit commitment
scheme. Interestingly, while the standard construction of commitment schemes
out of OT [9] uses cut-and-choose techniques with a linear number of oblivi-
ous transfers, our transformation does not add any significant overhead. It only
needs a single execution of the OT protocol and one extra message. We were not
able to trace this idea back to any previous work.

A noteworthy aspect is that, while our OT protocol only withstands static
corruptions, our derived commitment scheme is secure in presence of adaptive
corruptions. The reason is that for commitments, in contrast to OT, the receiver
does not obtain any external input; the values used in the OT sub protocol are
chosen internally. This facilitates the simulation of the receiver’s side. Hence, if
we use our transformation we derive an adaptively secure commitment protocol
from a concrete statically secure OT protocol!

Finally, our key exchange protocol follows the folklore approach of using the
PUF to transport the key, only that our protocol is stated and formalized in
the UC framework. That is, the sender samples some challenge/response pairs,
sends the PUF, and later reveals a challenge to the receiver who recovers the
image with the help of the PUF. Both parties use the images as the key, after
applying a fuzzy extractor for error correction and smoothing the output. It is
clear that for a key exchange protocol where only one party sends a PUF, some
additional, one-sided authentication mechanism is required. Else the adversary
with temporary access to the PUF could impersonate the honest sender.

All our protocols allow to re-use the PUF for multiple executions. By the un-
predictable nature of PUFs, however, it is clear that the number of executions
must be fixed in advance and must be known to the parties: The sender, once
having sent the PUF, cannot access the PUF anymore and must thus challenge
the PUF before sufficiently often, unless the PUF is frequently exchanged or fur-
ther PUF tokens are sent. Note that in this case, attacks such as described in [31]
will also be covered by the security proof. An interesting feature of PUFs is that,
unlike other hardware tokens (e.g., [21]), protocols using PUFs are automatically
secure against reset attacks because they implement (noisy) functions.

2 Physically Uncloneable Functions

A Physically Uncloneable Function (PUF) is a source of randomness that is
implemented by a physical system. Roughly speaking, the randomness of PUFs
relies on uncontrollable manufacturing variations during their fabrication. For
PUF evaluation, the physical system is queried with a stimulus, usually called
challenge. The device then produces a physical output, which is usually referred
to as response. A pair of a stimulus and an output is called a challenge/response
pair (CRP). Furthermore, a PUF, being a physical system, might not necessarily
implement a mathematical function, i.e., querying the PUF twice on the same
challenge may yield distinct responses. However, we require such “noise” to be
bounded so that the two responses are closely related in terms of distance.



2.1 Defining PUFs

A PUF-family P consists of two (not necessarily efficient) algorithms Sample and
Eval. The index sampling algorithm Sample which obtains as input the security
parameter and returns as output an index id of the PUF family corresponds
to the PUF fabrication process. The evaluation algorithm Eval takes as input a
challenge c, evaluates the PUF on c, and generates as output the corresponding
response r.

Note that we require the challenge space to be equal to a full set of strings of
a certain length. For some classes of PUFs, this is naturally satisfied, for example
arbiter PUFs and SRAM PUFs For others types this can be achieved through
appropriate encoding, as for angles in optical PUFs.

Definition 1 (Physically Uncloneable Functions). Let rg indicate the di-
mension of the range of the PUF responses of PUF-family, and let dnoise be a
bound on the PUF’s noise. A pair P = (Sample,Eval) is a family of (rg, dnoise)-
PUFs if it satisfies the following properties:

Index Sampling. Let Iλ be an index set. The sampling algorithm Sample out-
puts, on input the security parameter 1λ, an index id ∈ Iλ. We do not
require that the index sampling can be done efficiently. Each index id ∈ Iλ
corresponds to a set Did of distributions. For each challenge c ∈ {0, 1}λ, Did

contains a distribution Did(c) on {0, 1}rg(λ). We do not require that Did has
a short description or an efficient sampling algorithm.

Evaluation. The evaluation algorithm Eval gets as input a tuple (1λ, id, c),
where c ∈ {0, 1}λ. It outputs a response r ∈ {0, 1}rg(λ) according to dis-
tribution Did(c). It is not required that Eval is a PPT algorithm.

Bounded Noise. For all indices id ∈ I, for all challenges c ∈ {0, 1}λ, we have
that when running Eval(1λ, id, c) twice, then the Hamming distance of any
two outputs r1, r2 of the algorithm is smaller than dnoise(λ).

Instead of Did(c), we usually write PUFid(c). Moreover, if misunderstandings are
unlikely to occur, we write D(c) instead of Did(c) and PUF instead of PUFid.
Finally, we usually write rg instead of rg(λ) and I instead of Iλ.

2.2 Security of PUFs

Various security properties of PUFs have been introduced in the literature (see
[1,23,29] for overviews) such as unpredictability, uncloneability, bounded noise,
uncorrelated outputs, one-wayness, and tamper-evidence. We give a detailed
analysis of these properties in the full version of this paper as well as the relation
to our security notions. The main security properties of PUFs are uncloneability
and unpredictability. Unpredictability is covered via an entropy condition on
the PUF distribution. This condition also implies mild forms of uncloneability
as well as uncorrelated outputs. Moreover, one usually requires that tampering
with PUFs can be detected easily, the idea being that a user does not use the
PUF anymore after detecting it has been tampered with. Our UC-functionality



will cover this property implicitly, as we permit the adversary black-box access to
the PUF and the choice of delivering the PUF or not. Tampering with the PUF
is treated as not delivering it. For an explicit treatment of tamper-evidencen.

We will now turn to our main security definition of PUFs, namely the un-
predictability. The behavior of the PUF on input a challenge c should be un-
predictable, i.e., have some significant amount of intrinsic entropy, even if the
PUF has been measured before on several challenge values. Here, (conditional)
min-entropy is the main tool. It indicates the residual min-entropy on a response
value for a challenge c, when one has already measured the PUF on (not neces-
sarily different) challenges c1, ..., c` before. Since the random responses are not
under adversarial control we can look at the residual entropy for the answer to
r by taking the (weighted) average over all possible response values r1, ..., r`.
Demanding that a PUF has a certain average min-entropy [10] is weaker than
asking for all possible responses r1, ..., r`, that the residual entropy remains above
a certain level. This weaker requirement suffices for our purposes. However, as
the challenges c are chosen by the adversary, we ask the average min-entropy to
be high for all challenges and defined by the maximal probability of a possible
response r.

Definition 2 (Average Min-Entropy). The average min-entropy of PUF(c)
conditioned on the measurements of challenges C = (c1, . . . , c`) is defined by

H̃∞(PUF(c)|PUF(C))

:= − log
(
Eri←PUF(ci)

[
max
r

Pr[PUF(c) = r|r1 = PUF(c1), . . . , r` = PUF(c`)]
])

:= − log
(
Eri←PUF(ci)

[
2−H∞(PUF(c)|r1=PUF(c1),...,r`=PUF(c`))

])
,

where the probability is taken over the choice of id from I and the choice of
possible PUF responses on challenge c. The term PUF(C) denotes a sequence
of random variables PUF(c1), ...,PUF(c`) each corresponding to an evaluation of
the PUF on challenge ck.

We occasionally also write H̃∞(PUF(c)|C) as an abbreviation for H̃∞(PUF(c)|
PUF(C)). We now turn to our definition of unpredictability, which is derived from
the notion of unpredictability for random variables.

Definition 3 (Unpredictability). A (rg, dnoise)-PUF family P = (Sample,
Eval) for security parameter 1λ is (dmin(λ),m(λ))-unpredictable if for any c ∈
{0, 1}λ and any challenge list C = (c1, . . . , c`), one has that, if for all 1 ≤ k ≤ `
the Hamming distance satisfies disham(c, ck) ≥ dmin(λ), then the average min-
entropy satisfies H̃∞(PUF(c)|PUF(C)) ≥ m(λ). Such a PUF-family is called a
(rg, dnoise, dmin,m)-PUF family.

Note that one could also define a computational version of unpredictability
via computational min-entropy (aka. HILL entropy, named after [18]) where the
entropy is defined via the entropy of computationally indistinguishable random
variables. All proofs considered in this paper carry through when replacing sta-
tistical by computational min-entropy; we nonetheless use the statistical variant



for sake of simplicity. As explained in the introduction, indistinguishability for
defining computational min-entropy then needs to be considered with respect to
distinguishers that have PUF power (see also full version), and not with respect
to mere PPT algorithms.

Also, one could define unpredictability in terms of a game where an effi-
cient adversary, after seeing some challenge/response pairs, tries to predict the
response for another challenge which is not within close distance to the previ-
ous queries (see full version); the success probability should then be negligible.
Clearly, the PUF would need super-logarithmic min-entropy in the above sense
to make it unpredictable according to this game, but the lower bound on the
entropy would vary with the adversary. We do not take this approach because
the fuzzy extractors, which are necessary to eliminate the noise of a PUF, usu-
ally need a fixed lower bound on the min-entropy in order to be applicable. Also,
while it is easy to incorporate a distributional property as above into the ideal
functionality, using game-based properties to specify abstract and ideal security
requirements appears to be very peculiar.

2.3 PUFs and Fuzzy Extractors

By nature, PUF evaluation is noisy, so that same stimuli results in closely related
but different outputs. We use fuzzy extractors of Dodis et al. [10] to convert noisy,
high-entropy measurements of PUFs into reproducible random values.

An (m, `, t, ε)-fuzzy extractor consists of a pair of algorithms (Gen,Rep). The
generation algorithm Gen takes as input a noisy measurement w and generates
as output an `-bit secret st together with helper data p. The helper data can
be stored publicly, since it does not reveal information about the secret: as long
as the measurement contains m bits of min-entropy the secret has statistical
distance ε to the uniform distribution, even if given p. The helper data is later
used to reproduce the same secret st from related measurements within a certain
distance t according to some metric space.

We now determine parameters to combine a PUF and the fuzzy extractor
in order to achieve almost uniformly random values. Let λ be the security pa-
rameter. We let the parameters of the fuzzy extractor depend on the parameters
of the PUF. Assume that we have a (rg(λ), dnoise(λ), dmin(λ),m(λ))-PUF family
with dmin being in the order of o(λ/ log λ). We now determine the corresponding
parameters for the fuzzy extractor as follows. Let `(λ) := λ be the length param-
eter for value st. Let ε(λ) be a negligible function and let t(λ) = dnoise(λ). For
each λ, let (Gen,Rep) be a (m(λ), `(λ), t(λ), ε(λ))-fuzzy extractor. The metric
space M is {0, 1}rg(λ) with Hamming distance disham.1

1 Note that such fuzzy extractors only exist if rg(λ) and m(λ) are sufficiently large.
In order to achieve this, several PUFs can be combined. When combining two PUFs
of the same family, rg gets doubled and so does m. Thus, if there are PUFs with
m(λ) being non-negligible they can be combined to a useful PUF-family — even
if a PUF-family has less than one bit entropy, it still can be combined to obtain a
good PUF-family with outputs which has high entropy of many bits. Thus, we may
assume that the PUF has corresponding parameters.



Definition 4. If a PUF and a fuzzy extractor (Gen,Rep) satisfy the above re-
quirements, then they are said to have matching parameters.

If a PUF and a fuzzy extractor have matching parameters, then the following
properties of a well-spread domain, extraction independence and response con-
sistency hold. A formal proof is given in the full version of this paper.

Well-Spread Domain For all polynomials p(λ) and all sets of challenges c1, ...,
cp(λ), the probability of a random challenge to be within distance smaller
dmin of any of the ck is negligible.

Extraction Independence For all challenges c1, ..., cp(λ), it holds that the
PUF evaluation on a challenge c with dis(ck, c) > dmin for all 1 ≤ k ≤ p(λ)
and subsequent application of Gen yields an almost uniform value st even
for those who observe p.

Response Consistency The fuzzy extractor maps two evaluations of the same
PUF to the same random string, i.e., if PUF is measured on challenge c twice
and returns r and r′, then for (st, p)← Gen(r), one has st← Rep(r′, p).

3 Universally Composable Security and PUFs

We model PUFs in the universal composition framework introduced by Canetti
in [4]. Note that we use, among other things, well-studied UC basics, such as
authenticated message transmissions.

3.1 Modeling PUFs in UC

In the following we propose an ideal functionality FPUF that will model PUFs.
The functionality is presented in Figure 1 and handles the following operations:
(1) a party Pi is allocated a PUF; (2) Pi can query the PUF; (3) Pi gives the
PUF to another party Pj who can also query the device; (4) an adversary can
query the PUF during transition.

The functionality FPUF maintains a list L of tuples (sid, Pi, id, τ) where sid

is the (public) session identifier and id is the (internal) PUF-identifier, essentially
describing the output distribution. Note that the PUF itself does not use sid.
The element τ ∈ {trans(Pj), notrans} denotes whether the PUF is in transition
to Pj . For trans(Pj), indicating that the PUF is in transition to Pj , the adversary
is able to query the PUF. In turn, if it is set to notrans then only the possessing
party can query the PUF.

The PUF functionality FPUF is indexed by the PUF parameters (rg, dnoise,
dmin,m) and gets the security parameter λ in unary encoding as additional input.
It is required to satisfy the bounded noise property for dnoise(λ) and the unpre-
dictability property for (dmin(λ),m(λ)). This enforces that the outputs obey the
basic entropic requirements of PUFs (analogously to the requirement for the
random oracle functionality to produce random and independent outputs). We
write FPUF and FPUF(rg, dnoise, dmin,m) interchangeably.



FPUF(rg, dnoise, dmin,m) receives as initial input a security parameter 1λ and runs with parties
P1, ..., Pn and adversary S.
• Whenever a party Pi writes (initPUF, sid, Pi) on the input tape of FPUF then FPUF checks
whether L already contains a tuple (sid, ∗, ∗, ∗, ∗):
? If this is the case then turn into the waiting state.

? Else, draw id← Sample(1λ) from the PUF-family. The functionality FPUF puts the follow-
ing tuple in L: (sid, id, Pi, ∗, notrans) and writes (initializedPUF, sid) on the communication
input tape of Pi.
• Whenever a party Pi writes (evalPUF, sid, Pi, c) on FPUF’s input tape then FPUF first checks,
if there exists a tuple (sid, id, Pi, notrans) in L:
? If this is not the case then turn into the waiting state.

? Else, run r ← Eval(1λ, id, c) and write (eval′edPUF, sid, c, r) on Pi’s communication input
tape.
• Whenever a party Pi sends (handoverPUF, sid, Pi, Pj) to FPUF then FPUF first checks, if there
exists a tuple (sid, ∗, Pi, notrans) in L:
? If this is not the case then turn into the waiting state.
? Else, modify the tuple (sid, id, Pi, notrans) to the updated tuple (sid, id,⊥, trans(Pj)).
Write invokePUF(sid, Pi, Pj) on S’s communication input tape to indicate that a handoverPUF
occurs between Pi and Pj .
• Whenever the adversary writes (evalPUF, sid,S, c) on the input tape of FPUF then FPUF first
checks, if L contains a tuple (sid, id,⊥, trans(∗)):
? If this is not the case then turn into the waiting state.

? Else, run r ← Eval(1λ, id, c) and return (eval′edPUF, sid, c, r) to S.
• Whenever the adversary writes (readyPUF, sid,S) on FPUF’s input tape then FPUF searches
for a tuple (sid, id,⊥, trans(Pj)) in L:
? If such a tuple does not exist then turn into the waiting state.
? Else, modify the tuple (sid, id,⊥, trans(Pj)) to the updated tuple (sid, id, Pi, notrans).
Write the message (handoverPUF, sid, Pi) on Pj ’s communication input tape and store the
tuple (receivedPUF, sid, Pi).

• Whenever the adversary sends (receivedPUF, sid, Pi) to FPUF, FPUF checks if a tuple
(receivedPUF, sid, Pi) has been stored. If so, it writes this tuple to the communication input
tape of Pi. Else, FPUF turns into the waiting state.

Fig. 1. The ideal functionality FPUF for PUFs.

Also note that our definition requires that a PUF is somehow certified. That
is, the adversary cannot replace a PUF sent to an honest party by a fake token
including some “software emulation”; the adversary can only measure the PUF
when in transition. The receiver can verify the constitution and authenticity of
the received hardware. Our functionality also implies that the sender knows when
the PUF has been delivered to the receiver. Relaxing this requirement is delicate
as the adversary could then still be in possession of the PUF. Formally, delivery
confirmation can be ensured by having the receiver send an acknowledgment
message (via an authenticated channel).

3.2 Non-Programmability

As explained in the introduction we envision a non-programmable version of
PUFs. The functionality above, if used in the standard way within the hybrid
model, would be programmable, though, because the environment would not
have direct access (even if the PUF is in possession of the adversary). One way



to enforce non-programmability is to switch to the extended UC (EUC) model
[5] where all parties, including the environment, share the above functionality.
The PUF could then also be evaluated by the environment in which case the
simulator is informed about the challenge and response.

To simplify we linger within the basic UC framework and instead allow the
environment to dispatch special PUF queries to the adversary/simulator. This
query needs to be answered faithfully by forwarding it to a genuine PUF instance,
and the response is handed back to the environment. Put differently, we put some
restriction on the how the simulator behaves, formally giving a UC-security proof
which would transfer to the EUC model.

4 Oblivious Transfer with PUFs

In a 1-out-of-2 oblivious transfer (OT) protocol the sender possesses two secrets
s0, s1 and the receiver holds a selection bit b ∈ {0, 1}, thereby choosing one of
the two secrets. A 1-out-of-2 OT-protocol assures that at the end of the protocol
execution, the receiver learns the secret sb, but nothing about s1−b, and the
sender does not learn anything about the selection bit b.

Oblivious Transfer is a widely used cryptographic primitive for many crypto-
graphic applications [22,9,13]. However, in many of those applications a bottle-
neck of OT is the computational requirements since, for instance, several public
key operations are necessary. We here show how to avoid the number of public
key operations by adopting hardware. In the following, we recall the oblivious
transfer ideal functionality and then provide a PUF-based oblivious transfer pro-
tocol. As noted in the introduction, we envision a scenario in which the PUF
is used multiple times. In the plain UC model, however, a fresh PUF would
need be sent for each OT execution. An alternative would be to switch to the
joint-state theorem (JUC) [8] for the UC framework. However, JUC applies a
transformation to the original protocol, and if a single session of a PUF protocol
requires to hand over a PUF once, the JUC transformation would also require
a handover per session. Nothing would be gained. Thus, we define and analyze
multi-session protocols instead of the more common one-session protocols.

4.1 The Oblivious Transfer Ideal Functionality

1-out-of-2 oblivious transfer is an interaction between a sender Pi and a receiver
Pj where the environment Z provides Pi with two inputs s0, s1 and Pj with an
input bit b. As soon as both parties provided their inputs (and the simulator S
allows delivery), the ideal functionality returns the secret sb to the receiver. The
ideal functionality for oblivious transfer FOT is given in Figure 2. We stress that
this functionality only supports static corruption and can be used a bounded
number of times, and only by the parties which have exchanged the PUF. Each
execution will be accompanied by a unique sub session identifier ssid.



FOT is parameterized by an integer N and receives as input a security parameter 1λ, and runs
with parties P1, ..., Pn and adversary S. The functionality initially sets (n, S,R) = (1,⊥,⊥).
In the following, the functionality ignores any input if n > N , or if n > 1 and (S,R) 6= (Pi, Pj)
for the parties’ identities (Pi, Pj) in the input. Else,

• Whenever Pi writes (sendOT, sid, ssid, Pi, Pj , (s0, s1)) with s0, s1 ∈ {0, 1}λ ∪ {⊥} on FOT’s
input tape, FOT stores (sendOT, sid, ssid, Pi, Pj , (s0, s1)) and writes (sendOT, sid, ssid, Pi, Pj)
to the communication input tape of S. The functionality increments n to n + 1 and stores
(S,R) = (Pi, Pj) if n = 2 now.
• Whenever Pj writes (choose-secretOT, sid, ssid, Pi, Pj , b) on the input tape of FOT, the
functionality FOT stores this tuple and writes (choose-secretOT, ssid, sid, Pi, Pj) on the input
tape of S.
• When S writes (deliverOT, sid, ssid, Pi, Pj) on FOT’s input communication tape then
FOT checks if tuples (sendOT, sid, ssid, Pi, Pj , (s0, s1)) and (choose-secretOT, sid, ssid, Pi, Pj , b)
have been stored. If so, write (deliverOT, sid, ssid, Pi, Pj , sb) on the input communication tape
of Pj .

Fig. 2. The ideal functionality for oblivious transfer adapted from [4].

4.2 Oblivious Transfer Scheme

In Figure 3, we provide an oblivious transfer protocol. For simplicity of ex-
position, we use the following notation. For a possibly empty set C we let
dis(c, C) > dmin denote the check that each element ci in C satisfies the bound
dis(c, ci) > dmin. If not, we assume that the corresponding party aborts. Also,
when interacting with the PUF (functionality), we simply write for example
r ← (evalPUF, sid0, Pi, c) to denote the fact that, for a call (evalPUF, sid0, Pi, c)
the functionality has replied with (eval′edPUF, sid0, c, r). Here, sid0 is the ses-
sion identifier for FPUF, as opposed to sid and ssid for the oblivious transfer
protocol.

We note that the protocol does not achieve perfect completeness in the sense
that executions between honest parties may fail. The probability for this is negli-
gible, though. This follows straightforwardly again from the fact that the domain
is well-spread: All (at most polynomial) challenges are independent random val-
ues such that one is within small distance of the others with negligible probability
only. If all challenges are sufficiently far apart, the receiver always obtains the
correct value.

We now sketch the security arguments for the OT-protocol in Figure 3, i.e., at
the end of the OT protocol (1) a malicious sender learns nothing about the bit b
and (2) a malicious receiver learns only the secret sb and remains oblivious about
s1−b. For case (1), the receiver chooses the challenge c at random. Thus, v =
c⊕ xb hides xb information-theoretically and thus also b. We now consider case
(2). For simplicity, assume that b = 0. Then, the sender shall remain oblivious
about any information about s1. If st1 looks uniform to the sender, then s1
is information-theoretically hidden. If the fuzzy extractor and the PUF have
matching parameters (see Definition 4), then with overwhelming probability this
is the case, as — due to the well-spread domain property (see Subsection 2.3) —
the probability that the receiver queried the PUF on values ck with disham(ck, v⊕



Sender Pi session sid Receiver Pj

(initPUF, sid0, Pi, λ)

k = 1, ..., N : ck←{0, 1}λ

rk ← (evalPUF, sid0, Pi, ck)

C := ∅
(handoverPUF, sid0, Pi, Pj)←−−−−−−−−− L := (c1, r1, ..., c`, r`), C := ∅

Repeat at most N times with fresh ssid

Input: s0, s1 ∈ {0, 1}λ, sid Input: b ∈ {0, 1}, sid

x0, x1
$← {0, 1}λ

(sendauth, sid, ssid, Pi, Pj , (x0, x1))
−−−−−−−−−→ Draw (c, r)

$← L
v := c⊕ xb, c′ := c⊕ x0 ⊕ x1

dis(v ⊕ x0, C) > dmin ?
(sendauth, sid, ssid, Pi, Pj , v)

←−−−−−−−−− dis(c, C) > dmin ?

dis(v ⊕ x1, C) > dmin ? dis(c′, C) > dmin ?

Add v ⊕ x0, v ⊕ x1 to C Add c, c′ to C
r′0 ← (evalPUF, sid0, Pi, v ⊕ x0) Delete (c, r) in L
r′1 ← (evalPUF, sid0, Pi, v ⊕ x1)

(st0, p0)← Gen(r′0)

(st1, p0)← Gen(r′1)

S0 := s0 ⊕ st0,
(sendauth, sid, ssid, Pi, Pj , (S0, p0, S1, p1))

−−−−−−−−−→ st′b ← Rep(r, pb)

S1 := s1 ⊕ st1 sb = Sb ⊕ st′b

Fig. 3. Oblivious transfer scheme with PUFs.

x1) < dmin is negligible, and the checks on the sender side about list L provided
that the sender does not reveal PUF responses to critical challenges.

Theorem 1. Assuming that (Gen,Rep) is a (m, `, t, ε)-fuzzy generator and that
PUF = (Sample,Eval) is a PUF-family with matching parameters (see Definition
4), then protocol PUFOT securely realizes the functionality FOT in the FPUF-
hybrid model.

Security holds in a statistical sense, i.e., the environment’s views in the two
worlds are statistically close. This remains true for unbounded algorithms A,S,
and Z, as long as the number of PUF evaluations is polynomially bounded. The
proof is delegated to the full version of the paper.

4.3 Oblivious Transfer with Sender-PUF

Our OT-protocol requires the receiver to send a PUF to the sender. Sometimes
it may be desirable to have the sender prepare the PUF, though. This can be
achieved by switching the roles of the sender and the receiver via the protocol
by Wolf and Wullschleger [32], but at the expense of having to run linear many
OT executions for strings of length λ. This is unavoidable since the receiver in
an OT-protocol just enters a bit such that, when acting as a sender, it can only
transmit a single bit. In this protocol the sender of the outer OT-protocol acts
as a receiver in the inner OT-protocol, thus sending the PUF.

The protocol in [32] requires only a single round of additional communication.
It is UC-secure in the FOT-hybrid world and inherits the security properties



(statistical vs. computational security, and adaptive vs. static corruptions). With
a linear overhead [3] and another extra round of communication one can then
get an OT-protocol for strings, which is also UC-secure in the FOT-hybrid world
for bit-functionality FOT. The final protocol is now a UC-secure OT-protocol
for strings with linear many calls to FOT, a few extra rounds, and inheriting all
security characteristics from FOT.

5 PUF-based Commitment Scheme

A commitment scheme is a two-party protocol between a sender and a receiver
where the sender (also called committer) first sends a disguised version of the
value to the receiver such that, later, only this value can be revealed. More
precisely, a commitment scheme allows the committer to compute to a value
msg a pair (com, decom) such that com reveals nothing about the value msg but
using the pair (com, decom) one can open msg. Moreover it should be infeasible
to find a value decom′ such that (com, decom′) reveals msg′ 6= msg.

5.1 The Commitment Scheme Ideal Functionality

In the UC world, the commitment scheme is realized by the (bounded) func-
tionality Fcom as follows: Fcom receives an input (commit, sid, ssid,msg) from
some committer Pi where msg is the value committed to. After verifying the
validity of the session identifier sid, Fcom records the value msg. Subsequently,
the functionality lets both the receiver Pj and the adversary S know that the
committer has committed to some value by computing a public delayed output
(receipt, sid, ssid) and sending it to Pj (this phase is called the commitment
phase).

To initiate the decommitment phase, the committer Pi sends (open, sid, ssid)
to the functionality Fcom. Thereupon, Fcom checks if there exists a value msg;
if so, the functionality computes a public delayed output (open, sid, ssid,msg)
and sends it to Pj . When the adversary corrupts the committer by sending
(corrupt-committer, sid, ssid) to Fcom, the functionality reveals the recorded
value msg to the adversary S. Furthermore, if the receipt value was not yet
delivered to Pj , then Fcom allows the adversary to modify the committed value.
This is in order to deal with adaptive corruptions. The ideal functionality for
commitment schemes Fcom is given in Figure 4.

5.2 PUF-based Commitment Scheme

We now provide a universal transformation from OT-protocols to bit commit-
ment schemes which—to our knowledge—has not been considered so far. Previ-
ous transformations [22,9] rely on cut-and-choose and require linear many exe-
cutions of the OT-protocol. Our transformation only requires a single additional
message to be sent after executing the OT-protocol. The main idea of the pro-
tocol in Figure 5 is to inverse the roles of the sender and the receiver. The



Fcom is parameterized by an integer N and runs with parties Pi, Pj , and adversary S. It initially
sets (n, S,R) = (1,⊥,⊥).
The functionality ignores any commit-input if n > N , or if n > 1 and (S,R) 6= (Pi, Pj) for the
parties’ identities in the input. Else,
• Upon receiving input (commit, sid, ssid, Pi, Pj ,msg) from party Pi, Fcom proceeds as follows:
? Records msg, generate a public delayed output (receipt, sid, ssid), and send the output
to Pj . Increment n to n+ 1 and store (S,R) = (Pi, Pj) if now n = 2.
• Upon receiving input (open, sid, ssid) from party Pi, Fcom proceeds as follows:
? If a value msg is recorded, generate a public delayed output (open, sid, ssid,msg) and
send it to Pj .
? Otherwise, do nothing.
• Upon receiving the input (corrupt-committer, sid, ssid) from the adversary S, Fcom proceeds
as follows:
? Send the value msg to S.
? If S provides a value msg′ and the receipt output was not yet written on Pj ’s tape, then
S can change the recorded value to msg′.

Fig. 4. The ideal functionality for commitment schemes adapted from [4].

OT-protocol transfers two secrets, and the committer only learns one of them,
namely the one corresponding to its secret bit b. This secret is then used to open
the commitment.

The main idea is to inverse the roles of the sender and the receiver. The
commitment protocol uses the OT-protocol as a building block or, more precisely,
since we work in the UC framework, the corresponding ideal OT-functionality.
Consider a commitment scheme with OT-sender Pi and OT-receiver Pj . Then, Pj
is the committer and has a secret bit b which it submits to the OT-functionality.
The receiver Pi draws two sufficiently long random strings s0 and s1 which it
submits to the OT-functionality. The OT-functionality then provides Pj with the
secret sb. This terminates the commitment phase.

In the opening phase, the committer Pj sends the pair (b, sb). The receiver Pi
then checks whether sb matches the b-th secret. The protocol is binding, as the
OT-functionality does not allow to modify the secret bit b and the secret s1−b
is statistically hidden from Pi. Thus, Pi can determine s1−b only with negligi-
ble probability. The protocol is hiding, as the OT-functionality does not reveal
information about the bit b to Pi.

Sender Pi session sid Receiver Pj

Repeat at most N times with fresh ssid:

Input: b ∈ {0, 1}
(choose-secretOT, b)−−−−−−−−−→

FOT

(sendOT, (s0, s1))
←−−−−−−−−− Draw

s0, s1
$← {0, 1}λ

v := sb
(deliverOT, sb)←−−−−−−−−−

(sendauth, sid, ssid, b, v)
−−−−−−−−−→

v = sb ?

Fig. 5. Commitment scheme with FOT.



Theorem 2. The commitment protocol in Figure 5 securely UC-realizes the
functionality Fcom in the FOT-hybrid model.

If functionality FOT is replaced by some OT-protocol, then the derived commit-
ment protocol basically inherits the characteristics of the OT-protocol. That is,
it is secure against adaptive corruptions if OT is, and it is statistically secure
if OT is. Remarkably, we show in the next section that our PUF-based OT-
protocol, while being only statically secure, makes the commitment scheme even
adaptively secure.

We merely provide a proof sketch for Theorem 2 here. Note that in the
case where both users are honest, only the modeling of the final message needs
to be taken into consideration. The simulator learns the secret bit b from the
commitment functionality Fcom. It then draws a random string v from {0, 1}λ
and sends (sendauth, sid, ssid, b, v). If the receiver is dishonest, then it provides
FOT with two secrets s0, s1. The simulator lets the sender provide a random bit
b′ to the simulated FOT. It receives back the secret sb′ . In the opening phase, S
learns the (real) secret bit b from the commitment functionality and simulates
the final protocol message as (sendauth, sid, ssid, b, sb). If the sender is corrupt
then it provides the simulated FOT with a secret bit b. The simulator creates
two random strings s0, s1 and passes them to the simulated FOT which passes sb
to the receiver. The simulator commits to the sender’s bit b in the ideal world.
If the sender sends a message (sendauth, sid, ssid, b, v) then S checks if sb = v.
If so, it instructs Fcom to open the commitment. All simulations are perfect.

5.3 Adaptively Secure Commitments

Consider the concrete commitment protocol where we plug in our OT-protocol
from the previous section into the abstract scheme above (and work in the FPUF-
hybrid model instead of the FOT-hybrid model then), then we observe the fol-
lowing: In the commitment phase (i.e., the OT-phase), the message sent by the
OT-receiver (the commitment sender) is statistically independent from its secret
input: the OT-receiver merely sends a single uniformly random message.

For the OT-sender, this is not the case: When having access to the PUF, one
can extract both secrets from the mere transcript of the protocol. This enables
the simulator S to derive both secrets from the protocol, as it accesses the
PUF. It can thus provide the simulated committer with open messages for both
bit values. As the remaining part of the committer’s state merely consists in
challenge/response-pairs, the simulator can thus provide genuine internal state.

6 Key Exchange with PUFs

In a key exchange (ke) protocol two parties interact over an insecure network to
establish a common secret key κ. This common secret key can then be used to
build a secure channel or to ensure confidentiality of transmitted data.



6.1 The Key Exchange Ideal Functionality

The main idea of the key exchange ideal functionality Fke is the following: if
both parties are honest, the functionality provides them with a common random
value which is invisible to the adversary. If one of them is corrupted, though, the
adversary determines the session key entirely thus modeling the participation
of a corrupted party. The definition of the key exchange functionality Fke is
depicted in Figure 6, adapted from [7].

Fke is parameterized by an integer N and receives as input a security parameter 1λ, and runs
with parties P1, ..., Pn and adversary S. Fke obtains a list of corrupt parties. It initially sets
(n, S,R) = (1,⊥,⊥).
Ignore any establish-sessionke-input if n > N , or if n > 1 and (S,R) 6= (Pi, Pj) for the parties’
identities in the input. Else,
• When a message (establish-sessionke, sid, ssid, Pi, Pj) is written on Fke’s input tape
by a party Pi. Then Fke stores the tuple (establish-sessionke, sid, ssid, Pi, Pj) (and
refuses if there already is a tuple (establish-sessionke, sid, ssid, Pj , Pi) or a tuple
(establish-sessionke, sid, ssid, Pi, Pj)). Fke outputs (establish-sessionke, sid, ssid, Pi, Pj) to the
adversary S. If both users are honest then draw a random value κ from {0, 1}λ and store the
messages (deliverke, sid, ssid, κ, Pi) and (deliverke, sid, ssid, κ, Pj). Increment n to n+ 1.
• When S writes (choose-valueke, sid, ssid, Pi, Pj , κ) on Fke’s input tape then
check whether there is a message (establish-sessionke, sid, ssid, Pi, Pj) or a message
(establish-sessionke, sid, ssid, Pj , Pi) and whether at least one of the users Pi and Pj is
corrupt. If so, store the messages (deliverke, sid, ssid, κ, Pi) and (deliverke, sid, ssid, κ, Pj).
• S writes (deliverke, sid, ssid, Pi) on Fke’s input communication tape. Check if a tuple
(deliverke, sid, ssid, κ, Pi) is stored. If so, write (deliverke, sid, ssid, κ, Pi) to Pi’s input tape
and delete (deliverke, sid, ssid, κ, Pi). Else, do nothing.

Fig. 6. The key exchange ideal functionality adapted from [7].

6.2 Minimal Requirements

We present a key exchange protocol in Section 6.3 which sends a PUF in a setup
phase. Afterwards, a single message per protocol execution is sent via a unidirec-
tional authenticated channel. As mentioned in the introduction, it is desirable to
circumvent the use of complexity-theoretic assumptions. However, for practical
reasons, PUF transfers should also be minimized. If only a single PUF transfer
occurs, then the assumption of a unidirectional authenticated channel cannot
be dropped: The sender of the PUF measured the PUF several times and sent
it to the receiver. The adversary can query the PUF during its transition. If
the sender does not have any further secret information for authentication, then
the adversary can can carry out the same computations as the sender. Thus,
the protocol cannot be secure against impersonation attacks. In the following,
we use the standard bidirectional Fauth functionality. Deriving corresponding
unidirectional definitions is straightforward.



6.3 PUF-based Key Exchange Scheme

Intuitively, our key exchange protocol proceeds as follows. In an enrollment
phase, a server issues a PUF, measures for a set of randomly chosen challenges
the corresponding responses, and finally ensures a noisy-free PUF measurement
by generating for each response r a fuzzy extractor secret st from a set of ran-
dom secrets as well as a corresponding helper data p. The server then sends the
PUF to the client. Upon finishing the enrollment phase the server broadcasts a
randomly chosen challenge c including its helper data p to the client and sets
κ = st to obtain the protocol key. The client evaluates the PUF on the challenge
c, computes the corresponding fuzzy secret st due to the helper data p, and
obtains the protocol key by setting κ = st. Consequently, both parties use the
fuzzy extractor secret st as their common protocol key κ. We again note that
the sender is informed about the point in time when the receiver is in possession
of the PUF.

Server Pi Client Pj

(initPUF, sid, Pi, λ)

Repeat N times:

r ← (evalPUF, sid, Pi, c)

(st, p)← Gen(r)

add (c, r, st, p) to L
(handoverPUF, sid, Pi, Pj)−−−−−−−−−→
Repeat at most N times

pick (c, r, st, p)←L

remove the entry from L
(sendauth, sid, ssid, Pj , (c, p))−−−−−−−−−→ r′ ← (evalPUF, sid, Pj , c)

κ = st st← Rep(r′, p)

κ = st

Fig. 7. Key exchange scheme with PUFs.

Theorem 3. Protocol PUFKE securely realizes functionality Fke in the FPUF-
hybrid model.

In the following we merely provide a proof sketch for Theorem 3. The idea is
that, for an honest sender, the simulator can easily emulate the setup phase by
simply querying the PUF honestly. The simulator simply reveals these samples
step by step. If the receiver is honest then, due to the well-spread domain, the
adversary will most likely not have queried the PUF about any of the sampled
values during the transition phase, such that all the derived keys are statistically
indistinguishable from random. It follows that the simulation is statistically close
to an actual protocol execution. Finally note that, if one of the parties in the
key exchange protocol is corrupt, then the simulator can easily set the key to
one of the obtained PUF measurements (after running the fuzzy extractor).
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