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Abstract. A large and growing body of research has sought to secure
cryptographic systems against physical attacks. Motivated by a large
variety of real-world physical attacks on memory, an important line of
work was initiated by Akavia, Goldwasser, and Vaikuntanathan [1] where
security is sought under the assumptions that: (1) all memory is leaky,
and (2) leakage can be an arbitrarily chosen (efficient) function of the
memory.
However, physical attacks on memory are not limited to leakage through
side-channels, but can also include active tampering attacks through a
variety of physical attacks, including heat and EM radiation. Neverthe-
less, protection against the analogous model for tampering – where (1) all
memory is tamperable, and (2) where the tampering can be an arbitrar-
ily chosen (efficient) function applied to the memory – has remained an
elusive target, despite significant effort on tampering-related questions.
In this work, we tackle this question by considering a model where we
assume that both of these pairs of statements are true – that all mem-
ory is both leaky and (arbitrarily) tamperable. Furthermore, we assume
that this leakage and tampering can happen repeatedly and continually
(extending the model of [10, 7] in the context of leakage). We construct
a signature scheme and an encryption scheme that are provably secure
against such attacks, assuming that memory can be updated in a ran-
domized fashion between episodes of tampering and leakage. In both
schemes we rely on the linear assumption over bilinear groups.
We also separately consider a model where only continual and repeated
tampering (but only bounded leakage) is allowed, and we are able to
obtain positive results assuming only that “self-destruct” is possible,
without the need for memory updates.
Our results also improve previous results in the continual leakage regime
without tampering [10, 7]. Whereas previous schemes secure against con-
tinual leakage (of arbitrary bounded functions of the secret key), could
tolerate only 1/2− ε leakage-rate between key updates under the linear
assumption over bilinear groups, our schemes can tolerate 1− ε leakage-
rate between key updates, under the same assumption.
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1 Introduction

A large and growing body of research has sought to secure cryptographic sys-
tems against physical attacks (e.g. [8, 23, 28, 18, 22, 13, 31, 1, 29, 25, 11, 9, 15, 24,
19]). Motivated by a large variety of real-world physical attacks on memory [26,
27, 30, 21, 20], an important line of work was initiated by Akavia, Goldwasser,
and Vaikuntanathan [1] where security is sought under the assumptions that:
(1) all memory is leaky, and (2) leakage can be an arbitrarily chosen (efficient)
function of the memory4.

However, physical attacks on memory are not limited to leakage through
side-channels, but can also include active tampering attacks (see [20] and the
references therein) through a variety of physical attacks, such as exposure to
heat and EM radiation [17, 33, 32]. Nevertheless, protection against the analo-
gous model for tampering – where (1) all memory is tamperable, and (2) where
the tampering can be an arbitrarily chosen (efficient) function applied to the
memory – has remained an elusive target, despite significant effort on tampering-
related questions (e.g. [18, 22, 3, 14, 2])5. In this work, we tackle this question by
considering a model where we assume that both of these pairs of statements are
true – that all memory is both leaky and (arbitrarily) tamperable. Furthermore,
we assume that this leakage and tampering can happen repeatedly and contin-
ually (extending the model of [10, 7] in the context of leakage). We show strong
positive results for cryptographic tasks including signatures and decryption, as-
suming that memory can be updated in a randomized fashion between episodes
of tampering and leakage. We note that we only consider tampering with the
memory and do not consider the question of tampering during the computation
(which might occur, for instance, due to fault attacks [5, 4, 27]).

We also separately consider a model where only continual and repeated tam-
pering (but bounded leakage) is allowed, and we are able to obtain positive re-
sults assuming only that “self-destruct” is possible, without the need for memory
updates.

Background. Before explaining our results in greater detail, let us first recall
the results of [10, 7], which we strengthen. These results construct various cryp-
tographic schemes (such as encryption and signature schemes), that remain se-
cure even if the secret key is being continually leaked. In this continual leakage
model, at each time period the adversary can make a leakage query L, where L
is a poly-size circuit, and get back L(sk). Clearly, in order to get security under
continual leakage, one must bound the leakage function L in some way, since
if, for example, L is the identity function, security is clearly breached. Both
works [10, 7] allow L to be any shrinking leakage function; e.g., any L such that
|L(sk)| ≤ 0.99|sk|. More generally, they allow any leakage function L such that
sk has “enough” min-entropy left conditioned on L(sk). We note that several

4 To prevent trivial attacks, the leakage function should either be significantly shrink-
ing or leave the memory with enough entropy.

5 We elaborate on these related works in Section 1.3.



earlier continual leakage models were considered in the literature, such as the
one due to Micali and Reyzin [28] who consider the “only computation leaks
information” assumption, and the one due to Ishai, Sahai and Wagner [23], who
consider only leakage of individual bits produced during honest computation.
We elaborate on these related works, as well as others, in Section 1.3.

As was argued in [7, 10], since the leakage may be continual, and at any time
period the adversary can learn any bounded poly-size function of the secret key,
the secret-key must be periodically updated, since otherwise it will eventually be
completely leaked. We emphasize that this should be done without modifying
the public key, and these updates should be oblivious to all other users. In
addition, deletions must be allowed, since otherwise the adversary can choose to
(gradually) leak the initial secret-state from which everything can be derived. In
such case, updating the state is useless because the adversary will leak from the
original state and not the updated one.

We note that both these results rely on the linear assumption over bilinear
groups. The work of [7] allow 1/2− ε of the secret key to leak during each time
period, whereas [10] allow only 1/3− ε of the secret key to leak during each time
period.6 We note that in addition to our main results concerning tampering, we
improve the leakage bounds of [10, 7], even if we restrict our attention only to
the regime of continual leakage (as opposed to continual leakage and tampering).

1.1 Our CTL Model

In this work, we extend the continual leakage model of [7, 10], and consider not
only continual leakage attacks, but also continual tampering attacks. Namely,
we consider an adversary, that uses side channel attacks not only to continually
leak information about the secret key, but also to continually tamper with the
secret key. For example, consider an adversary that is given a signature card. The
adversary may use various side channel attacks, such as timing attacks and power
attacks, to continually leak information about the secret key stored in the card,
but may also use various other physical attacks [20] to tamper with this secret
key. For example, the adversary can extract information by causing mutations
in the secret key, and then observing the input/output behavior of the tampered
system (i.e., observing signatures of messages with respect to tampered secret
keys).

More formally, our model generalizes the continual leakage model of [10, 7],
in that we allow the adversary at each time period to make any bounded leakage
query L, as well as any tampering query T . Both types of queries are modeled as
a poly-size circuit. After the adversary makes a tampering query T , the secret key
sk is replaced with T (sk). We call this model the continual tampering and leakage
model, or the CTL model, for short. We note that we only allow tampering with
the secret key and not the actual computation. We say that a scheme is secure
in the CTL model if after continually leaking information about the secret keys,

6 We note that under the less standard SXDH assumption their leakage rate can
increase to 1− ε in [7] and 1/2− ε in [10].



and continually tampering with them, the adversary cannot break security with
respect to the original secret key; i.e., in the case of signature schemes, the
adversary cannot forge signatures with respect to the original verification key;
in the case of encryption schemes, the adversary cannot break semantic security
with respect to the original public key.

At first glance, the reader may wonder whether tampering attacks can be
viewed as leakage attacks, and thus whether the CTL model is at all more
general than the continual leakage model. The answer is that it is indeed more
general, for the following two reasons. First, in leakage attacks there is always
an assumed bound on the leakage size (within each time period, in the case of
continual leakage). On the other hand, in a tampering attack, the adversary can
mutate the key in an arbitrary manner, and receive signatures with this mutated
key. Note that if such signatures reveal the entire mutated secret key (which is
possible since the key is malformed), then this tampering attack is an illegal
leakage attack (since this leakage is not bounded). The other (and perhaps more
profound) reason why the CTL model seems much harder to deal with than the
continual leakage model, is that in the CTL model the update procedure updates
a mutated key, as opposed to an honestly generated key. Thus, we need to argue
that the update procedure is still “effective” even if it is applied to mutated
keys. We note that the schemes of [10, 7] are not secure in the CTL model.

An additional assumption that we make is that we assume that a CRS is
honestly chosen and hard-coded into the cryptographic system, not in memory
but into the logic itself, so that the CRS is not tamperable. We stress that the
CRS is fixed once and for all and does not depend on any secret information
chosen later by the user, which is stored in memory. We note that to some extent,
the hardware manufacturer must always be trusted to implement the correct
algorithms in hardware. (For instance, we must trust that the manufacturer
did not implement an algorithm that leaks secrets through specific subliminal
channels.) Thus we are not asking a significantly higher level of trust from the
user to assume that the manufacturer (or some outside entity with higher trust)
honestly chose a CRS and that the manufacturer correctly hard-coded this CRS
into the logic of the device. We leave the problem of eliminating the CRS, or
exploring ways to reduce the level of trust needed in the manufacturer, as an
important open problem.

1.2 Our Results

In what follows we present informal statements of our results.

Theorem 1. Under the linear assumption in a prime order group G, there exists
a encryption scheme that is semantically secure in the CTL model, tolerating a
leakage of 1− ε in each time period.

Theorem 2. Under the linear assumption in a prime order group G, there ex-
ists a signature scheme that is existentially unforgeable under adaptive chosen
message attacks in the CTL model, tolerating a leakage of 1 − ε in each time
period.



Theorem 3. Given a signature scheme that is existentially unforgeable in the
bounded leakage model, there exists an efficient transformation to covert it into
a signature scheme that is existentially unforgeable in the continual tampering
and bounded leakage model.7

The proofs of these theorems are deferred to the full version.

1.3 Previous Work

Work on tolerating leakage was initiated by Rivest and Boyko [34, 6] in the con-
text of increasing the cost of brute-force attacks on block ciphers and efficiency
issues. Ideas there were applied to the context of leakage by numerous works on
exposure-resilient cryptography [8, 12, 23]. These works consider simple leakage
functions that reveal a subset of the bits of the secret key or the internal mem-
ory of the cryptographic device. This line of research culminated in the work
of Ishai, Sahai and Wagner [23] who show how to “compile” any cryptographic
algorithm into one that tolerates such types of leakage.

In contrast to these works, that consider leakage functions that act locally,
the focus of later works has been on more powerful leakage functions that can
perform some global computation on the secret key. Micali and Reyzin [28] pro-
posed to construct and study formal models that capture general types of leakage.
This study has led to two distinct strands of work, described below.

Bounded Leakage Models. This line of work considers the leakage model that
allows the adversary to obtain the output of applying any efficiently computable
function f , of his choice, to the secret key sk. This is allowed as long as the output
f(sk) “does not reveal the entire secret key”. This latter condition has been
formalized in many different ways, starting with the work of Akavia, Goldwasser
and Vaikuntanathan [1] who restrict the leakage function f to have output length
`(|sk|)� |sk| and subsequently in the works of Naor and Segev [29] and Dodis,
Kalai and Lovett [11]. Constructions of cryptosystems satisfying one or more of
these definitions can be found in various works (for example [1, 29, 11, 25, 9]).

Continual Leakage Models. This line of work considers the case where the leak-
age is continual, i.e., a bounded amount of information about the secret key
is leaked in each time period, but the overall leakage in the entire lifetime of
the secret key is unbounded. It is easy to see that to guarantee any security
in this model the secret key must necessarily be updated between time-periods.
Micali and Reyzin [28] proposed to study security against continual leakage un-
der the assumption that “only computation leaks information”. In other words,
information leakage may occur any time a computation takes place; however,
the assumption is that the parts of memory that are not involved in the com-
putation during a certain time-period, are not subject to leakage during that
time-period. A number of works (for example [13, 31, 16, 24, 19]) design crypto-
graphic schemes that are resilient to leakage under this assumption.

7 For this result we need to assume that the signature card can self-destruct.



Very recently, Dodis, Haralambiev, Lopez-Alt and Wichs [10] and Brakerski,
Kalai, Katz, and Vaikuntanathan [7] constructed cryptographic schemes (such
as signature schemes and encryption schemes) in the continual leakage model
without this assumption that only computation leaks. Our main result builds
upon the result of Brakerski et al.

Tampering models. Several models of security against tampering have been con-
sidered in the past, however all of them differ substantially from ours. The no-
tion of algorithmic tamper-proof security was proposed by Gennaro, Lysyan-
skaya, Malkin, Micali, and Rabin [18] in which devices have both tamper-proof
but fully leakable memory (which can be programmed with key information
uniquely customized to each user), along with tamperable memory – which can
be continually tampered with using arbitrary polynomial-time tampering func-
tions. (In contrast, our model allows all memory to be arbitrarily tampered.)
Security against related-key attacks was formalized by Bellare and Kohno [3] in
the context of block-cipher security, but can be seen as relating to a model where
the key can be tampered with. However, this line of work (see [2] and references
therein) deals with limited kinds of tampering functions, such as functions that
simply XOR the key with a fixed value or affine linear transformations. The
recent work on non-malleable codes [14] also looks as such limited tampering
functions. (In contrast, our model allows arbitrary polynomial-time tampering
functions.) Finally, the work of Ishai, Prabhakaran, Sahai, and Wagner [22] con-
siders still weaker tampering functions, which only allow individual bits to be
toggled or set to a specific value. However, in contrast to our work, Ishai et al.
also allow tampering to affect the computation, and not just the memory, which
is beyond the scope of our work.

2 Overview

Notation. We use the following notational conventions. Bold uppercase denotes
matrices (X ∈ Zn×kp ) and bold lowercase denotes vectors (x ∈ Znp ). All vectors

are column vectors, row vectors are denoted by xT . In what follows, we let G
be a multiplicative group of prime order p, and g be a generator of G. We let
e : G × G → GT be a bilinear map. All our results assume that the linear
assumption holds in G.8 For a matrix X ∈ Zk×n (or a vector, as a special case),
we let gX denote a k × n matrix such that (gX)i,j = g(X)i,j .

Let X be a probability distribution over a domain S, we write x ← X to
indicate that x is sampled from the distribution X. For a set S, we write x← S
to indicate that x is chosen uniformly from S. Two ensembles X = {Xk}k,
Y = {Yk}k are said to be ε = ε(k)-close if the statistical distance between them

is at most ε(k), this is also denoted by X
ε≡ Y .

8 Formally, G = {Gk}k∈N where each group Gk is a group of prime order p, where p
is a k bit prime, and where k is the security parameter.



As was mentioned in the introduction, our work builds on the work of [7],
which (among other things) constructs encryption and signature schemes that
were proven secure against continual leakage. Let us start by recalling some of
the ideas in [7], which are relevant to this work. In both their encryption scheme
and their signature scheme, the public key is of the form ga and the secret key is
of the form gb, where g is a generator of G, and a,b← Z`p such that a · b = 0.9

The secret key is updated by simply multiplying it by a random scalar in the
exponent, i.e., updating it to be gα·b where α ← Zp. Thus, the updated secret
keys are simply random elements in span(b) (in the exponent). To prove security
against continual leakage, they rely on the following lemma, which states that
random subspaces are resilient to continual leakage.

Lemma 1. [7] Let B ← Z`×dp be a random subspace of dimension d where ` ≥
d ≥ 2. Let r ← Zdp and u ← Z`p. Then for any leakage function L : Z`p → W ,
chosen independent of B,

(B, L(B · r))
ε≡ (B, L(u))

as long as |W | ≤ pd−1 · ε2.

Intuitively, the above lemma says that leakage on random points taken from
a random subspace is indistinguishable from leakage on random points taken
from the whole space. In other words, leakage on random points of a subspace
doesn’t reveal any information about the subspace.

This lemma is used as follows: First, use the DDH assumption to claim that
it is computationally hard to distinguish between the case that all the secret keys
are indeed random in span(b) or are random in a random dimension-2 subspace
B ⊆ ker(a).10 Therefore, if there exists an adversary that breaks security, then
this adversary will also succeed in breaking the security if all the secret keys
were random elements in B (in the exponent), as opposed to random elements
in span(b). In this case, one can use Lemma 1 above, to claim that no information
about the subspace B is revealed (information theoretically).

Suppose for the sake of simplicity, that the adversary that breaches security,
actually finds a secret key (rather than merely forging a signature or breaking
semantic security). Then, the fact that the random subspace B is (information
theoretically) hidden, implies that with overwhelming probability the secret key
gb

′
that the adversary outputs is not in B. If indeed gb

′
is a valid secret key,

9 Actually, using such keys, [7] get security under the SXDH assumption. To get
security under the linear assumption, they take the public key to be gA and the
secret key to be gB, where A ← Z2×`

p and B ← Z`×2
p such that A · B = 0. This

results in a slightly more complicated scheme.
10 Note that they rely on the DDH assumption, and in addition, in order to verify or

decrypt they need to assume the existence of a bilinear map. Thus, they need to
rely on the SXDH assumption. However, by taking the public key to be two random
vectors A← Z2×`

p (in the exponent) and the secret key to be two vectors in ker(A)
(in the exponent), they can get security based on the linear assumption over bilinear
groups. For this, they use a more general form of Lemma 1.



i.e., b′ ∈ ker(a), and b′ is not in the subspace B, then one can use this to break
the linear assumption.

This work. In this work, we allow the adversary to both leak and tamper with
the secret key. Namely, the adversary can change the secret key from gb to
T (gb). Note that the above proof idea cannot handle tampering, since the update
procedure updates a (tampered) secret key by raising it to the power of α← Z`p,
i.e., updates T (gb) to T (gb)α. Since the tampering function T is adversarially
chosen, we cannot rely on the DDH assumption anymore, and thus cannot use
Lemma 1. Indeed, we cannot prove that the scheme of [7] is secure against
tampering. Instead, we slightly modify their schemes.

Our schemes. We think of both ga and gb as public parameters (or crs), that
may be shared among all users, and we assume that these parameters cannot be
tampered with. As was mentioned in the introduction, the justification for this
assumption is that these parameters are independent of the secret key, and can
be thought of as generated in the manufacturing level, and hardwired into the
card in a secure way.

Actually, to prove security under the linear assumption (rather than the
SXDH assumption), we set the public parameters to be gA and gB, where A←
Z2×`
p and B← Z`×2p such that A ·B = 0. Then, we let the secret key be gs where

s ← Z`p, and the public key be e(g, g)A·s, where e : G × G → GT is a bilinear

map. The secret key gs is updated by multiplying it by gB·R where R← Z2×2
p .

Note that this does not change the public key since

e(g, g)A·(s+B·R) = e(g, g)A·s.

Now, when the adversary tampers with the secret key, and converts it to T (gs),
this tampered secret key is updated to be T (gs) · gB·R, and we can still use the
linear assumption to claim that this is computationally indistinguishable from
the case that the secret key is updated by adding to it (in the exponent) a
random element from a random (independent) subspace B′ ⊆ ker(A).11

We would like to use Lemma 1 to argue that if indeed all the updates are
done using B′ (which is a random subspace in ker(A)), then this subspace re-
mains (information theoretically) hidden, even given all the leakages. If we could
do so, then we would be in good shape, as before: For the sake of simplicity, sup-
pose that an adversary that breaches security actually outputs a valid secret key
(rather than a merely outputting a valid signature or breaking semantic secu-
rity).12 Then, this adversary outputs some gs

′
such that e(g, g)As′ = e(g, g)As,

and thus s′ − s ∈ ker(A). The fact that B′ is information theoretically hidden
implies that with overwhelming probability s′−s is not in span(B′,B), and thus
can be used to break the linear assumption.

11 We defer the details of the actual encryption scheme and signature scheme to Sec-
tions 5 and 6, respectively, since they are not of relevance to the discussion here.

12 Needless to say, this assumption significantly simplifies matters, and the actual proof
contains several additional technicality that are hidden from this high level overview.



Unfortunately, when trying to use Lemma 1, we face several technical diffi-
culties. The main problem is the following: Note that we need some affine version
of Lemma 1. Indeed, it is quite straightforward to prove that the affine version
Lemma 1 is also true (while using Lemma 1 as a black box), assuming the affine
element is independent of the (hidden) subspace B. Namely, for any s ∈ Z`p

(B, L(s + B · r))
ε≡ (B, L(u))

where B ← Z`×dp , r ← Zdp and u ← Z`p (independent of s). However, in our
case the adversary, who controls the tampering function T , may cause the affine
element T (gs+BR) to depend in some (arbitrary) way on the subspace B. In this
case, we do not know how to prove an affine version of Lemma 1.

Nevertheless, we do succeed in proving an affine variant of Lemma 1 which is
secure against tampering. This lemma (Lemma 2), does make use of Lemma 1
(in a black box manner), but requires overcoming several additional technical
barriers. We present Lemma 2, which we think of as our main technical lemma,
in Section 4, and defer its formal proof to the full version. We note that by
updating the secret key using gB, which is part of the public parameters (rather
than the secret key), doesn’t only allow us to be resilient to tampering, but
also improves the leakage bounds of [7]. Known schemes that were proven secure
against continual leakage under the linear assumption [7, 10], could resist at most
1/2− ε leakage rate between updates, whereas we can tolerate 1− ε leakage rate
between updates.13

Roadmap. We define our CTL model in Section 3, followed by a formal statement
of our main lemma in Section 4. A formal description of our encryption scheme
and our signature scheme can be found in Sections 5 and 6 respectively. Our
construction in the model of continual tampering with bounded leakage can be
found in Section 7.

3 Our CTL Model

Our CTL model generalizes the continual memory leakage model of [7, 10], to
allow the adversary to (continually) tamper with the secret state, as well as
(continually) leak. In what follows we define encryption scheme in the CTL
model.

Encryption schemes in the CTL model. The definition of an encryption scheme
in the CTL model is very similar to the definitions given in [7, 10], except for
the following difference. In our definition, we partition the key generation algo-
rithm into two parts. The first part is the public-parameter generation algorithm,
denoted by ppGen. This algorithm takes as input a security parameter 1k and
produces public parameters pp. These public parameters can be thought of as

13 We note that [7] could tolerate 1 − ε leakage rate under the less standard SXDH
assumption.



part of the verification key, however we choose to differentiate them from the
verification key, since these are independent of the secret key, whereas the ver-
ification key does depend on the secret key. The reason for this distinction is
that in our results, we do not allow tampering with these public parameters.
The justification for this assumption is that these parameters are independent
of the secret key, and can be thought of as generated in the manufacturing level,
and hardwired into the card in a secure way. We note that the same public pa-
rameters can be shared among all users. The second part is the key generation
algorithm, denoted by Gen, which takes as input these public parameters pp and
the security parameter 1k, and generates a pair (sk, pk) of secret and public
keys.

Formally, an encryption scheme in the CTL model consists of five ppt algo-
rithms:

– The public-parameter generation algorithm ppGen takes as input the security
parameter 1k, and outputs public parameters pp. We denote this by pp ←
ppGen(1k).

– The key-generation algorithm Gen takes as input the security parameter 1k

and public parameters pp, and outputs a pair of secret and public keys
(sk, pk). We denote this by (sk, pk)← Gen(1k, pp).

– Encryption. Takes as input the public parameters pp, a public-key pk and a
message m in the message space M, and outputs a ciphertext c. We denote
this by c← Encpp,pk(m).

– Decryption. Takes as input the public parameters pp, a secret-key sk, and a
ciphertext c, and outputs a message m′. We denote this by m′ ← Decpp,sk(c).

– Key-update. Takes as input the public parameters pp and a secret-key sk,
and outputs an “updated” secret-key sk′ such that

∣∣sk′∣∣ = |sk|. We denote
this by sk′ ← Updatepp(sk).

The correctness requirement is that for all m ∈ M and any polynomial t,
setting pp ← ppGen(1k), (sk0, pk) ← Gen(1k, pp) and then computing ski ←
Updatepp(ski−1) for i ∈ [t], we have that for c ← Encpp,pk(m) and m′ ←
Decpp,skt(c), it holds that m = m′ with all but negligible probability (where
the probability is over all the randomness in the experiment).

We next define semantic security in the CTL model. We use the definition
from [7], and augment it by allowing for tampering queries. Formally, the leakage
in this model is associated with three leakage parameters (ρG, ρU , ρM), where ρG

bounds the leakage rate from the key-generation process, ρU bounds the leakage
rate from the update process, and ρM is a “global” (relative) memory leakage
bound that is enforced between key updates. For the sake of simplicity, we define
security for the special case that ρU = 0. This simplifies the definition and allows
for a cleaner exposition. The result of [7], can be used to show that any scheme
that is secure against continual leakage, can tolerate O(log k) leakage from each
update process, and thus our scheme can tolerate such leakage as well.

Definition 1. An encryption scheme E = (ppGen,Gen,Enc,Dec,Update) is se-
mantically secure in the CTL model with leakage rate (ρG, ρU , ρM) = (ρG, 0, ρM),
if any ppt adversary succeeds in the following game with probability 1/2+negl(k).



1. Initialize. The forger specifies a circuit f such that |f(r)| ≤ ρG · |r| for
all r. The challenger chooses “secret randomness” r, generates (sk0, pk) =
Gen(1k, pp; r), where pp are the public parameters generated by ppGen, sends
(pk, f(r)) to the adversary, and sets L := |f(r)|.

2. Tampering, leakage and updates. The adversary makes queries of the follow-
ing type:
– Update queries update. The challenger sets sk ← Updatepp(sk), and sets
L := 0.

– Tampering queries (tamper, T ), where T is a circuit. The challenger sets
sk := T (sk).

– Leakage queries (leak, f), where f is a circuit. If L+ |f(sk)| ≤ ρM · |sk|
then the challenger returns f(sk) to the forger, and sets L := L+|f(sk)|.
Otherwise, the challenger aborts.

3. Challenge. The adversary sends two messages m0,m1 to the challenger. The
challenger flips a coin b ← {0, 1}, computes c ← Encpp,pk(mb), and sends c
to the adversary.

4. Finish. The adversary outputs a “guess” b′ ∈ {0, 1}.

The adversary succeeds if b′ = b.

Signature schemes in the CTL model. The definition of signature scheme in the
CTL model is similar to the definition of encryption scheme in the CTL model,
except for the following two differences. First, a signature scheme in the CTL
model is associated with an additional leakage parameter ρS, which captures
leakage allowed from the signing process itself. Since our results cannot tolerate
leakage from the signing process, throughout this work, we set ρS = 0. The
second difference, which is more subtle, is the following: In the case of signature
schemes we bound the number of tampering queries within each time period
(however, the number of tampering queries overall is unbounded). The reason is
that the adversary has access to a signing oracle, and the signatures themselves
(w.r.t. tampered keys) leak some information about the tampered key. We defer
the formal definition to the full version.

4 Main Lemma

Intuitively, the main lemma considers the setting where a random vector s← Z`p
is chosen, and is being continually updated by adding to it either a random
element from a small subspace, or a random element from a bigger subspace.
In between every two updates the random vector can be tampered with, and
partially leaked, many times, as long as the total amount of leakage is bounded.
The claim is that it is hard to distinguish between the case where the updates
were from a small subspace or from the large subspace, assuming the leakage
functions take as input these vectors “in the exponent”. More specifically, we
consider a random matrix A ← Zc×`p consisting of c rows, for 2 ≤ c < `. The
random vector gs is either updated by adding to it a random element in ker(A)
“in the exponent”, or by adding to it a random element in span(B) “in the



exponent”, where B ∈ Z`×dp is a random d-dimensional subspace of ker(A). The
former is called the ideal game, and the latter is called the real game, and the
claim is that it is computationally hard to distinguish between the two, even
given B.

Lemma 2. For any security parameter k, let G be a group of order p, where
p is a k-bit prime, such that the linear assumption holds in G. Let `, c, d ∈ N
be polynomially bounded parameters such that c ≥ 2, 4 + c ≤ d ≤ ` − c,14 and
let t = poly(k). Then, for any ppt adversary A,

GAreal(p, `, c, d, t)≈GAideal(p, `, c, d, t)

as long as each Li : G` →Wi satisfies |Wi| ≤ pd−c−4, where GAreal(p, `, c, d, t) and
GAideal(p, `, c, d, t) are defined below.

Experiment GAreal(p, `, c, d, t). In GAreal(p, `, c, d, t), a challenger C interacts with
the adversary A as follows:

1. C chooses a random matrix A← Zc×`p and a random vector s← Z`p. It sets
v1 = gs, and gives A, s to A.

2. C chooses a random d dimensional subspace B← Z`×dp such that A ·B = 0
(i.e., each column in B is uniformly distributed in ker(A)). For i = 1 to t,
do:
(a) A specifies a leakage queries Li and a tampering function Ti.
(b) C gives Li(vi) to A. In addition he chooses ri ← Zdp, sets bi = B · ri,

and sets vi+1 = Ti(vi) · gbi .

3. Finally, C gives the adversary A the subspace B, and A outputs either 0
or 1.

Thus, during this experiment A gets

L1(v1), L2(v2), . . . , Lt(vt),

where v1 = gs and vi+1 = Ti(vi) · gbi for 1 ≤ i ≤ t− 1.

Experiment GAideal(p, `, c, d, t). This experiment is exactly the same as GAreal(p, `, c, d, t)
with the exception that bi ← ker(A). For the sake of clarity, we will use the
notation ki to denote updates in the ideal game (as opposed to bi in the real
game). That is, in the ideal game, C sets vi+1 = Ti(vi) · gki in Step 2b above.

Thus, during this experiment A gets

L1(v1), L2(v2), . . . , Lt(vt),

where v1 = gs and vi+1 = Ti(vi) · gki for 1 ≤ i ≤ t− 1.

We defer the proof of Lemma 2 to the full version.

14 Think of c as a small constant (such as c = 2), think of ` as growing polynomially
with the security parameter, and think of d as approaching ` (such as d = ` − c).
Such parameters will optimize our leakage bounds.



5 Encryption Scheme in the CTL Model

In this section, we construct an encryption scheme that is secure in the CTL
model. Our encryption scheme E = (ppGen,Gen,Enc,Dec,Update) is defined in
Figure 1.

Encryption scheme E

Public-parameter generation. The public-parameter generation
algorithm ppGen takes as input the security parameter 1k, and does
as follows:

1. Choose at random A ← Z2×`
p and B ← Z`×2

p such that AB = 0
(i.e., both of the columns of B are randomly chosen in ker(A)).

Output pp = (gA, gB)

Key generation. The key generation algorithm Gen, takes as input
the security parameter 1k and public parameters pp = (gA, gB), and
does as follows:

1. Choose a random a vector gs ← G` (i.e., s← Z`
p).

2. Set sk = gs and pk = e(g, g)A·s.

Output (sk, pk) as the secret and public key pair.

Encrypting. The encryption algorithm Enc, takes as input a message
b ∈ {0, 1}, public parameters pp = (gA, gB), and a public key pk =
e(g, g)A·s, and does as follows:

1. If b = 0, choose a random vector r ← Z2
p, and output (c1, c2) =

(gr
T ·A, e(g, g)r

T ·A·s).
2. If b = 1, choose a random vector r ← Z2

p and a random element

u← Zp, and output (c1, c2) = (gr
T ·A, e(g, g)u).

Decrypting. The decryption algorithm Dec, takes as input a cipher-
text c = (c1, c2), public parameters pp = (gA, gB), and a secret key
sk = gs, and does as follows:

1. If e(c1, g
s) = c2 then output b′ = 0. Otherwise, output b′ = 1.

Updates. The update procedure Update, takes as input public pa-
rameters pp = (gA, gB) and a secret key sk = gs, it chooses u ← Z2

p

and outputs sk = gs+Bu.

Fig. 1: Encryption scheme in the CTL model.

Theorem 4. Let G be a group of prime order p, with a bilinear map e : G×G→
GT and a generator g, and assume that the linear assumption holds in G. Then



the encryption scheme E = (ppGen,Gen,Enc,Dec,Update), described in Fig-
ure 1, is semantically secure in the CTL model, with leakage rate (ρG, ρU , ρM) =
( `−13` , 0, `−13` ).

We defer the proof of this theorem, as well as those of theorems appearing
in the subsequent sections, to the full version.

6 Signature Schemes in the CTL Model

In this section, we show how to convert any encryption scheme that is secure
in the CTL model into a signature scheme that is secure in the CTL model.
Our transformation follows the Katz-Vaikuntanathan paradigm [25] and uses
the follows building blocks:

– An encryption scheme ET L = (ppGenT L,GenT L,EncT L,DecT L,UpdateT L)
that is semantically secure in the CTL model with leakage rate (ρG, ρU , ρM).
We assume the encryption scheme ET L has a deterministic predicate T such
that T (pk, sk) = 1 if and only if sk is a “valid” secret key corresponding to
pk (i.e., if sk correctly decrypts ciphertexts encrypted using pk with over-
whelming probability).

– An adaptive simulation-sound NIZK proof systemΠ = (`, P, V, S = (S1, S2))
(as defined by Sahai [35]) for the following language L:

L =
{

(m, c, pk′, pk) : ∃sk, r s.t. c = Encpk′(sk; r) and T (pk, sk) = 1
}
.

– An (ordinary) semantically secure encryption scheme E = (Gen,Enc,Dec)
(without leakage or tampering).

Our signature scheme S = (ppGen,Gen,Sign,Ver,Update) is defined in Figure 2
and results in the following theorem:

Theorem 5. The signature scheme S = (ppGen,Gen,Sign,Ver,Update) described
in Figure 2 is existentially unforgeable under adaptive chosen message attacks in

the CTL model, with leakage rate (ρG, ρU , ρS, ρM
′), where ρM

′ = ρM − |vk||sk| and
ρS = 0.

In particular, by using the encryption scheme described in Figure 1, we obtain
a signature scheme S = (ppGen,Gen,Sign,Ver,Update) that is existentially un-
forgeable under adaptive chosen message attacks in the CTL model, with leakage
rate (ρG, ρU , ρS, ρM) = ( `−13` , 0, 0, `−15` ).

7 Signature Scheme in the Continual Tampering and
Bounded Leakage Model

In this section we show how to convert a signature scheme S, that is secure in
the bounded leakage model of [1], into a signature scheme that is secure in the



Signature scheme S

Public-parameter generation. The public-parameter generation
algorithm ppGen takes as input a security parameter 1k, and does the
following:

1. Sample pp← ppGenT L(1k).
2. Sample a public key pk′ for the (ordinary) encryption scheme E .
3. sample a random string crs← {0, 1}`(k).

Output (pp, pk′, crs) as the public parameters.

Key generation. The key generation algorithm Gen, takes as input
the security parameter 1k and public parameters (pp, pk′, crs), and
generates (sk, pk)← GenT L(1k, pp). Output sk as the secret key and
pk as the verification key.

Signing. Given a message m, public parameters (pp, pk′, crs), and a
secret key sk, do the following:

1. Choose a random string r and compute c = Encpk′(sk; r).
2. Compute a proof π for the statement (m, c, pk′, pk) ∈ L w.r.t. the

common random string crs, using (sk, r) as the witness, where

L =
{

(m, c, pk′, pk) : ∃sk, r s.t. c = Encpk′(sk; r) and T (pk, sk) = 1
}
.

Namely, compute π ← Pcrs((m, c, pk
′, pk), (sk, r)).

Output σ = (c, π) as a signature for m.

Verifying. To verify a signature σ = (c, π) on a message m with re-
spect to the verification key pk and the public parameters (pp, pk′, crs),
check whether π is a valid proof of the statement (m, c, pk′, pk) ∈ L
with respect to the common random string crs.

Updates. The update procedure Update is identical to that of
UpdateT L. More specifically, it takes as input the public parameters
(pp, pk, crs) and a secret key sk, and updates the secret key by com-
puting UpdateT L(pp, sk).

Fig. 2: Signature scheme in the CTL model.

continual tampering and bounded leakage model15. Our construction uses the
following primitives as building blocks:

– S = (Gen,Sign,Ver), a signature scheme secure in ρ-bounded leakage model,
i.e., S is existentially unforgeable even if the adversary gets leakage L(sk) of

15 To enable tampering in the bonded leakage model (where the secret key is never
updated), we need to require that the circuit has a self-destruct mechanism i.e., it is
possible for the circuit to erase the entire contents of memory. We defer these details
to the full version.



his choice such that | L(sk) |≤ ρ · |sk|. We assume that S has the property
that sk ← {0, 1}g(k) and that there exists a PPT algorithm pkGen such that
vk ← pkGen(sk) (as is satisfied by [25]).

– A pseudo-random generator PRG : {0, 1}k → {0, 1}g(k).
– A single theorem adaptive “short” simulation sound (SS) NIZK POK [35]
Π = (`, P, V, S = (S1, S2), E) for the language L = {ψ : ∃s s.t. ψ =
PRG(s)}, where the length of the proofs are polynomial in the witness length.

We convert S into S ′ = (ppGen′,Gen′,Sign′,Ver′), a signature scheme that is
secure against continual tampering and bounded leakage, as depicted in Figure 3.
This results in the following theorem:

Theorem 6. The signature scheme S ′ = (ppGen′,Gen′,Sign′,Ver′), presented in
Figure 3, is existentially unforgeable in the continual tampering and ρ′-bounded

leakage model, where ρ′ =
(

ρ·g(k)
g(k)+γ(k) −

2k+γ(k)
g(k)+γ(k)

)
.
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