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Abstract. In 1997, Canetti et al. (CRYPTO 1997) put forward the in-
truiging notion of deniable encryption, which (informally) allows a sender
and/or receiver, having already performed some encrypted communica-
tion, to produce ‘fake’ (but legitimate-looking) random coins that open
the ciphertext to another message. Deniability is a powerful notion for
both practice and theory: apart from its inherent utility for resisting
coercion, a deniable scheme is also noncommitting (a useful property
in constructing adaptively secure protocols) and secure under selective-
opening attacks on whichever parties can equivocate. To date, however,
known constructions have achieved only limited forms of deniability, re-
quiring at least one party to withhold its randomness, and in some cases
using an interactive protocol or external parties.

In this work we construct bi-deniable public-key cryptosystems, in which
both the sender and receiver can simultaneously equivocate; we stress
that the schemes are noninteractive and involve no third parties. One of
our systems is based generically on “simulatable encryption” as defined
by Damg̊ard and Nielsen (CRYPTO 2000), while the other is lattice-
based and builds upon the results of Gentry, Peikert and Vaikuntanathan
(STOC 2008) with techniques that may be of independent interest. Both
schemes work in the so-called “multi-distributional” model, in which
the parties run alternative key-generation and encryption algorithms
for equivocable communication, but claim under coercion to have run
the prescribed algorithms. Although multi-distributional deniability has
not attracted much attention, we argue that it is meaningful and useful
because it provides credible coercion resistance in certain settings, and
suffices for all of the related properties mentioned above.
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1 Introduction

Suppose that Eve has two children: Alice, who is away at college, and a young
Bob, who still lives at home. The siblings are planning a surprise party for Eve, so
to keep their plans secret, they communicate using public-key encryption. Eve,
however, has taken note of their encrypted communications and grows suspicious.
Using her inherent parental authority, she demands that Alice and Bob reveal
their secret decryption keys, as well as any of the encryption randomness they
might have retained. Is there any way for Alice and Bob to comply, without
spoiling the surprise? The answer seems to be obviously no: using the secret
keys, Eve can simply decrypt their messages and learn about the party.

However, the above argument misses a subtle point: if Alice and Bob are
able to produce alternative keys and randomness that are consistent with their
ciphertexts so far, then they might be able to fool Eve into thinking that they
are communicating about something else (or at least not alert her to the party).
A scheme that makes this possible is said to be deniable, a notion formally
introduced by Canetti, Dwork, Naor, and Ostrovsky [10].

In practice, deniable encryption has been sought by users whose legitimate
activities may not always be protected from subpoenas or legal coercion, e.g.,
journalists and whistleblowers, or lawyers and activists in repressive regimes. In-
deed, several commercial and open-source storage encryption products claim lim-
ited forms of deniability (see, for example, [1, 2], and further references in [24]),
though without formal definitions or supporting security proofs. More worry-
ingly, these products only allow for denying the existence of messages on a
storage medium, not for equivocating those messages. This is insufficient in a
communications setting, where the mere exchange of messages between parties
indicates that they are communicating in some form.

Deniability is also a compelling property for theoretical reasons: in particu-
lar, deniable encryption schemes are noncommitting (a fundamental concept in
the design of adaptively secure protocols) [11, 16, 14], secure against selective-
opening attacks [19, 7], and imply incoercible multiparty computation [12]. We
point out that deniable encryption is stronger than noncommitting encryption,
because equivocable ciphertexts actually decrypt to the intended messages, and
users of the system (not just a simulator) can themselves produce such cipher-
texts.

Canetti et al. distinguish between two different models of deniability. The first
is full deniability, in which the parties always run the prescribed key-generation
and encryption algorithms, and can equivocate their messages later on if they so
choose. The second model is calledmulti-distributional deniability, in which there
exist alternative “deniable” algorithms whose outputs can be equivocated, so
that it appears as if the prescribed algorithms had been used all along. Whether
these models are useful in various settings has been the subject of some debate
over the years; we discuss these issues in Section 1.2 below. We also discuss some
recent developments and related work in Section 1.3.

Under standard assumptions, Canetti et al. construct a multi-distributional
sender -deniable scheme (i.e., one that remains secure if only the sender is co-



erced), and give a fully sender-deniable scheme where the coercer’s distinguishing
advantage between a ‘real’ and ‘fake’ opening is an inverse polynomial that de-
pends on the public key size. They also construct a receiver-deniable scheme that
requires an additional round of interaction, and a sender- and receiver-deniable
protocol that relies on third parties, at least one of whom must remain uncoerced.
In particular, up to this point there have not been any noninteractive schemes
offering receiver-deniability, nor any schemes (interactive or not) in which all
the parties can be coerced simultaneously, in either of the two models (full or
multi-distributional deniability).

1.1 Our Contributions

Bideniable public-key encryption. Our main results are the first known bide-
niable (that is, simultaneously sender- and receiver-deniable) public-key encryp-
tion schemes, in the multi-distributional model. We stress that the schemes are
noninteractive, require no third parties, and are immediately noncommitting and
secure under selective-opening attacks.

We give two qualitatively different constructions. The first is built generi-
cally, using a combinatorial construction with somewhat large overhead, from
any “simulatable” encryption scheme in the sense of Damg̊ard and Nielsen [16].
This shows (perhaps surprisingly) that simulatability is sufficient not only for
noncommitting encryption, but for a form of deniability as well. The scheme is
presented in Section 4.

Our second scheme is based on worst-case lattice problems via “learning with
errors” [23], and builds upon the trapdoor function and identity-based encryption
techniques of Gentry, Peikert, and Vaikuntanathan [21]. In particular, it exploits
a unique property of the GPV IBE, namely its negligible chance of oblivious
decryption error when the secret key vector and the error vector in the ciphertext
are too highly “aligned.” Our scheme relies on the ability of the receiver to
resample a fresh secret key that is highly correlated with the ciphertext error
term. Proving that this secret key “looks real” relies on a symmetry between
correlated (discrete) Gaussians, which we believe may be of independent interest
and application in lattice cryptography. Interestingly, the deniable scheme is
essentially identical to the GPV cryptosystem, and it appears to be the first
known cryptosystem that “naturally” supports receiver-deniability without any
substantial changes. It is also essentially as efficient for the receiver as the GPV
system, but it is less efficient for the sender because she must encrypt each bit
separately (rather than amortizing). The details of the system are described in
Section 6.

In addition to our public-key schemes, we also define notions of deniability
for the identity-based setting, and show how our techniques immediately adapt
to it as well. As we discuss below, multi-distributional deniability (especially for
the receiver) may be more palatable in this setting because the receiver does not
run a different key-generation algorithm (indeed, there is no such algorithm). We
also remark that to be meaningful, the identity-based setting inherently requires
any solution to be noninteractive.



Plan-ahead bideniability with short keys. A simple information-theoretic
argument reveals that in any noninteractive receiver-deniable encryption scheme,
the secret key must be at least as long as the message: a fixed ciphertext can
only decrypt to N different plaintexts if there are at least N distinct secret keys
for the public key (see also [22] and the recent work [9]). We circumvent this
constraint by designing a scheme offering “plan-ahead” bideniability (a notion
also introduced in [10]) that can encrypt arbitrarily long messages using fixed-
sized keys. In plan-ahead deniability, the sender must choose at encryption time
a bounded number of potential ‘fake’ messages, to which the parties may later
equivocate. This may be seen as the deniable analogue of “somewhat noncom-
mitting encryption,” introduced by Garay, Wichs and Zhou [20]. In many cases,
this model would seem to be sufficient for coercion resistance, since the sender
can just include one “innocuous” message along with the real one.

Our plan-ahead scheme is a hybrid system that reduces the deniable en-
cryption of an arbitrary-length message to that of a short symmetric key. For
example, when combined with the moderately good efficiency of our GPV-style
bideniable scheme, the overall system is potentially usable in practice. (Though
as noted above, our scheme is not able to amortize many bits into one cipher-
text as the GPV scheme does, so our bandwidth requirements are larger.) Due
to space constraints, we defer the details of our plan-ahead scheme to the full
version.

Relations among notions. We clarify and study relations among the vari-
ous types of deniability introduced in [10]. Our main contribution is that any
type of multi-distributional deniability suffices to obtain the corresponding type
of full deniability, with an inverse-polynomial distinguishing advantage related
to the size of the public key. This further reinforces the usefulness of multi-
distributional deniability itself. We also observe that for multi-distributional
schemes, bideniability implies sender-deniability, but perhaps surprisingly, it may
not imply receiver-deniability alone. That is, bideniability relies on the sender
to correctly run the deniable encryption algorithm.

1.2 Discussion

Is (multi-distributional) deniability useful? The ideal deniable encryption scheme
would be noninteractive and fully deniable for both parties. Unfortunately, it
has been recently shown [9] that these properties cannot all be achieved at
once, even for receiver deniability alone (see related work below). So to obtain
a noninteractive scheme we must work in the multi-distributional model.

A common objection to multi-distributional deniability is that, since there
are alternative deniable algorithms (for encryption and key generation) that are
strictly more powerful than the normal ones, why would anyone ever run the
normal algorithms? And given this situation, why would a coercer ever accept a
transcript corresponding to the normal algorithms? Whether this is a significant
problem will depend on the setting in which coercion happens, and what recourse
the coercer has in response to the users’ claims.



For example, if there is a prescribed legal process (such as a subpoena or
search warrant) by which parties are forced to reveal their transcripts, then
multi-distributional deniability may be sufficient to protect the users. Even if
the coercer asks for a transcript corresponding to the deniable algorithms, the
users can simply assert that they did not run those algorithms, and so can-
not produce coins for them. The users’ claims might also gain in credibility via
“safety in numbers,” if a deployed implementation defaults to the normal al-
gorithms — which do make up an operational cryptosystem, after all — or by
formally standardizing on the normal algorithms within an organization. Since
the coercer would only have reason to believe — but not any actual evidence —
that the deniable algorithms were used in a particular instance, imposing a sanc-
tion seems fundamentally unjust, and might even be ruled out by the prescribed
process. If, on the other hand, the coercer is able to punish the users until they
“tell him what he wants to hear,” then multi-distributional deniability might not
be enough to protect the users — but neither might full deniability! After all, in
either model the coercer has no reason to believe what the users have revealed.
Anticipating potential punishment, the users of a multi-distributional scheme
might retain the coins of the deniable algorithms as a “backup plan,” just in
case they might later want to reveal a convincing proof for the true message
(e.g., if the punishment becomes too severe). But even a fully deniable scheme
allows for a similar backup plan and proof of the true message, by using “ver-
ifiably random” coins such as the digits of π or the output of a pseudorandom
generator.

In the identity-based setting, multi-distributional deniability may be useful as
well, especially for the receiver. Here the receiver does not run a key-generation
algorithm at all, but instead gets his secret key from an authority who possesses
a ‘master’ secret key for all users. Our model allows the receiver to ask the au-
thority for a fake (but real-looking) secret key that causes a particular ciphertext
to decrypt to any desired message. This could be useful if the authority is out of
the coercer’s jurisdiction (e.g., if the receiver is travelling in another country),
or if it can argue that exposing its master secret key would harm the privacy of
too many other users.

In summary, the purpose of deniability is not at all to ‘convince’ the coercer
that the surrendered transcripts are real; indeed, it is common knowledge that
they can easily be faked. Instead, the goal is to preempt coercion in the first
place by making it useless, since parties who “stick to their stories” can never be
pinned down to the real message. At the same time, neither form of deniability
seems appropriate if a user might eventually want to convincingly reveal the true
plaintext, e.g., to sell her vote in an election. The main significant difference
we see between the two models relates not to security, but usability: multi-
distributional deniability requires the users to know in advance which messages
they might want to equivocate, whereas full deniability allows the user to decide
afterward.

Why not erase? At first glance, erasures appear to provide a very simple way of
achieving deniability: the parties can just tell the coercer that they deliberately



erased their coins (perhaps according to a published schedule), and therefore
cannot surrender them. For sender deniability, this claim might be credible,
since there is no point in the sender keeping her ephemeral encryption coins.
(And indeed, none of our results preclude using erasures on the sender side.) For
receiver deniability, erasures seem much less credible, since the receiver must
store some form of decryption key in order to decrypt messages, and at some
point in time this key can be subject to coercion. Certain regulatory regimes
(e.g., in the financial sector) might also mandate retention of all data for a
certain time, for potential audit. The existence of deniable encryption means
that such requirements would still not necessarily guarantee compliance with
the intent of the regulations. In any case, we contend that there is a significant
qualitative difference between deniable schemes that use erasures, and those that
do not. In the former, the coerced parties must resort to the claim that they no
longer have the desired evidence, even though they once did. In the latter, the
parties can credibly claim to have provided the coercer with all the evidence
they have ever had, and yet still equivocate.

1.3 Other Related Work

Subsequent to the initial dissemination of this work in 2010, there has been
additional work on deniable encryption that complements our own. Dürmuth and
Freeman [18] announced an interactive, fully sender-deniable encryption protocol
(i.e., one with a single encryption protocol and negligible detection advantage).
However, following its publication Peikert and Waters found a complete break
of this system (and a corresponding flaw in the claimed security proof); see [17]
for details. In particular, the problem of constructing a fully deniable encryption
scheme remains an intriguing open question. Bendlin et al. [9] recently showed
that any noninteractive public-key scheme having key size σ can be fully receiver-
deniable (or bideniable) only with non-negligible Ω(1/σ) detection advantage.
In particular, our use of the multi-distributional model is necessary to achieve a
noninteractive receiver-deniable scheme.

Deniability can be seen as a type of security that holds true even when secret
information is revealed to the adversary. In the case of break-ins, one relevant
notion is “forward security” (see, e.g., [8, 13]), which relies on secure erasures
to update secret state over time. In the case of side-channel or memory attacks,
relevant notions include the “bounded retrieval model” and “leakage-resilient”
cryptography, which limit the amount of secret information the adversary may
learn (see the recent survey [5] and references therein). In contrast, deniability
ensures security in contexts where the adversary obtains the entire, unchanging
secret key and/or encryption randomness, but cannot tell whether those values
came from the actual execution of the system.

2 Preliminaries

We denote the set of all binary strings by {0, 1}∗ and the set of all binary strings
of length i by {0, 1}i. The length of a string s is denoted by |s|. By s1∥s2 we de-



note an encoding of strings s1, s2 from which the two strings are unambiguously
recoverable. (If the lengths of s1, s2 are known, then concatenation suffices.)
For i ∈ N we denote by [i] the set {1, . . . , i}. We use the standard definitions of
negligible functions, and statistical and computational indistinguishability.

We say an algorithm A with input space X has invertible sampling [16] if there
is an efficient inverting algorithm, denoted IA, such that for all x ∈ X the outputs
of the following two experiments are indistinguishable (either computationally,
or statistically):

y ← A(x; r)

Return (x, y, r)

y ← A(x; r)
r′ ← IA(x, y)
Return (x, y, r′)

In other words, given just an input-output pair of A, it is possible to efficiently
generate appropriately distributed randomness that “explains” it. It may also
be the case that IA requires some “trapdoor” information about x in order to
do so. Namely, we say that A has trapdoor invertible sampling if we replace the
second line in the right-hand experiment above with “r′ ← IA(tdx, x, y),” where
tdx is a trapdoor corresponding to x (we think of x and tdx as being sampled
jointly as the setup to both of the above experiments).

A public-key cryptosystem PKC with message spaceM consists of three al-
gorithms: The key generation algorithm Gen(1n; rR) outputs a public key pk,
and the randomness rR is used as the associated secret decryption key. (This
convention is natural in the context of deniability, where we might even con-
sider coercing the receiver to reveal the random coins rR it used to generate
its public key. This is without loss of generality, since the stored “secret key,”
whatever its form, can always be computed from rR.) The encryption algorithm
Enc(pk,m; rS) outputs a ciphertext c. The deterministic decryption algorithm
Dec(pk, rR, c) outputs a message m or ⊥. For correctness, we require the prob-
ability that m′ ̸= m be negligible for all messages m ∈ M, over the experiment
pk ← Gen(1n; rR), c← Enc(pk,m), m′ ← Dec(pk, rR, c). To distinguish between
the above notion and deniable encryption as defined in Section 3, we sometimes
refer to the former as normal encryption.

3 Bideniable Encryption

Here we formally define bideniable encryption and its security properties, along
with some weaker variants. (We use “bideniable” as shorthand for “sender-and-
receiver deniable” in the language of Canetti et al. [10].) Following the definitions,
we discuss further how our notion relates to the variants of deniable encryption
introduced in [10].

As with normal encryption, bideniable encryption allows a sender in pos-
session of the receiver’s public key to communicate a message to the latter,
confidentially. Additionally, if the parties are later coerced to reveal all their se-
cret data — namely, the coins used by the sender to encrypt her message and/or
those used by the receiver to generate her key — bideniable encryption allows



them to do so as if any desired message (possibly chosen as late as at the time
of coercion) had been encrypted.

In a multi-distributional deniable encryption scheme, there are ‘normal’ key
generation, encryption, and decryption algorithms that can be run as usual —
though the resulting communication may not be equivocable later on. In addi-
tion, there are ‘deniable’ key generation and encryption algorithms that can be
used for equivocable communication. Associated with these deniable algorithms
are ‘faking’ algorithms, which can generate secret coins that open a deniably
generated public key and ciphertext to any desired message, as if the normal
algorithms had been used to generate them. Note that the ability to generate
fake random coins for the parties yields the strongest definition, since such coins
can be used to compute whatever locally stored values (e.g., a secret key of some
form) the coercer might expect. We now give a formal definition.

Definition 1 (Deniable encryption). A multi-distributional sender-, receiver-
, or bi-deniable encryption scheme DEN with message space M is made up of
the following algorithms:

– The normal key-generation, encryption, and decryption algorithms Gen,Enc,Dec
are defined as usual for public-key encryption (see Section 2). These algo-
rithms make up the induced normal scheme.

– The deniable key-generation algorithm DenGen(1n) outputs (pk, fk), where
fk is the faking key.3 We also extend Dec to so that it can decrypt using fk
in lieu of the usual receiver randomness rR.

– The deniable encryption algorithm DenEnc has the same interface as the
normal encryption algorithm.

– The sender faking algorithm SendFake(pk, rS ,m
′,m), given a public key pk,

original coins rS and message m′ of DenEnc, and desired message m, outputs
faked random coins r∗S for Enc.

– The receiver faking algorithm RecFake(pk, fk, c,m), given the public and
faking keys pk and fk (respectively), a ciphertext c, and a desired message
m, outputs faked random coins r∗R for Gen.

We require the following properties:

1. Correctness. Any triplet (G,E,Dec), where G ∈ {Gen,DenGen} and E ∈
{Enc,DenEnc}, should form a correct public-key encryption scheme.

2. Multi-distributional deniability. Let m,m′ ∈ M be arbitrary messages, not
necessarily different. The appropriate experiment below, which represents
equivocation (by the appropriate party/parties) of an encrypted m′ as m,
should be computationally indistinguishable from the following ‘honest open-
ing’ experiment: let pk ← Gen(1n; rR), c ← Enc(pk,m; rS), and output pk,
c, and whichever of rR, rS are appropriate to the type of deniability under
consideration.3 Without loss of generality, we could replace fk with the randomness of DenGen, but

since this randomness will never be exposed to the adversary, we elect to define a
distinguished faking key.



Sender-Deniable Receiver-Deniable Bi-Deniable
pk ← Gen(1n; rR)
c← DenEnc(pk,m′; rS)

r∗S ← SendFake(pk, rS ,m
′,m)

Return (pk, c, r∗S)

(pk, fk)← DenGen(1n)
c← Enc(pk,m′; rS)
r∗R ← RecFake(pk, fk, c,m)

Return (pk, c, r∗R)

(pk, fk)← DenGen(1n)
c← DenEnc(pk,m′; rS)
r∗R ← RecFake(pk, fk, c, b)
r∗S ← SendFake(pk, rS ,m

′,m)
Return (pk, c, r∗R, r

∗
S)

Multi-distributional bideniability is a particularly strong theoretical notion.
For example, it immediately implies non-committing encryption as defined in [11]
— but in addition, equivocable ciphertexts actually decrypt to the intended
messages, and can be produced by the regular users of the scheme, not just by a
simulator. Bideniability is also important in practice; in particular, each party’s
security does not depend upon the incoercibility of the other.

Note that we did not explicitly require DEN to satisfy the standard notion
of indistinguishability under chosen-plaintext attack; this is because it is implied
by any of the above notions of deniability.

Proposition 1. Suppose that DEN satisfies any of sender-, receiver-, or bideni-
ability. Then any triplet (G,E,Dec), where G ∈ {Gen,DenGen} and E ∈ {Enc,DenEnc},
is semantically secure.

While our focus is on multi-distributional bideniability, we also briefly exam-
ine interrelations among the other types. We start with a basic question: for a
particular deniable encryption scheme DEN, which notions of deniability imply
which others? (This question is also important in practice, since an encryption
scheme may not always be used in the ways it is intended.) First, we show that
bideniablility implies sender deniability.

Proposition 2. If DEN is bideniable, then DEN is sender-deniable.

Proof. By assumption, we know that the distributions (pk, c, rR, rS) and (pk, c, r∗R, r
∗
S)

are computationally indistinguishable, as produced by the two bideniability ex-
periments. Clearly, the distributions (pk, c, rS) and (pk, c, r∗S) are indistinguish-
able when produced by the same two experiments, where we can now omit the
generation of r∗R in the faking experiment. This modified bideniable faking ex-
periment producing (pk, c, r∗S) differs from the sender-deniable faking experiment
only its use of DenGen instead of Gen. Because neither experiment uses fk, all
we need is for the pks output by DenGen and by Gen to be indistinguishable.
But this follows directly from bideniability, by restricting the outputs of the two
experiments to just pk.

One might also expect bideniability to imply receiver-deniability. Perhaps
surprisingly, at least in the multi-distributional setting this appears not to be
the case! For example, in our abstract scheme from Section 5, the receiver can
equivocate a normal ciphertext in one direction (from 1 to 0), but apparently not
from 0 to 1. In general, the problem is that to allow the receiver to equivocate a
message, DenEnc may need to produce special ciphertexts that Enc would never



(or very rarely) output. In other words, the receiver’s ability to equivocate a
message may depend crucially the sender’s use of DenEnc.

In the reverse direction, it appears that a scheme that is both sender-deniable
and (separately) receiver-deniable still might not be bideniable. Indeed, the fake
randomness produced by SendFake and RecFake (which depend on the ciphertext
c) might be obviously correlated in such a way that exposing both together is
easily detected, whereas exposing only one is safe. Constructing a concrete exam-
ple along these lines to demonstrate a formal separation remains an interesting
problem.

4 Bideniable Encryption from Simulatable Encryption

Here we give a bideniable public-key encryption scheme from any simulatable
one, in the sense of Damg̊ard and Nielsen [16]. In particular, this shows that
simulatable encryption suffices to realize not just a noncommitting encryption
scheme, but also a (multi-distributional) bideniable one.

Simulatable public-key encryption. We recall the notion of a simulatable public-
key encryption scheme from [16]. Intuitively, this is a scheme in which it is
possible to ‘obliviously’ sample a public key without knowing the secret key, and
to ‘obliviously’ sample the encryption of a random message without knowing the
message.

Definition 2 (Simulatable PKE [16]). A simulatable public-key encryption
scheme PKC-SIM with message spaceM is made up of the following algorithms:

– The normal key-generation, encryption, and decryption algorithms Gen,Enc,Dec
are defined as usual for a public-key encryption scheme (see Section 2).

– The oblivious key-generation algorithm OGen(1n; rOGen) outputs a public key
opk, and has invertible sampling via algorithm IOGen.

– The oblivious encryption algorithm OEnc(pk) outputs a ciphertext oc, and
has invertible sampling via algorithm IOEnc.

We require the following properties:

1. Oblivious key generation. The distribution of pk, where pk ← Gen(1n; rR),
should be computationally indistinguishable from opk, where opk ← OGen(1n; rOGen).

2. Oblivious ciphertext generation. The output distributions of the following
two experiments should be computationally indistinguishable:

pk ← Gen(1n; rR)
m←M
c← Enc(pk,m)
Return (pk, rR, c)

pk ← Gen(1n; rR)

oc← OEnc(pk)
Return (pk, rR, oc)

Note that the above conditions are non-trivial in light of the the fact that OGen,OEnc
are required to have invertible sampling. In particular, it follows by Condition 2
(after removing rR from the output distributions) that any simulatable public-key
encryption scheme is semantically secure.



Simulatable encryption can be realized under a variety of standard compu-
tational assumptions such as DDH and RSA [16], as well as worst-case lattice
assumptions [16, 21] (though we later show a more efficient bideniable encryption
scheme based on the latter using an entirely different approach).

4.1 A “Coordinated” Scheme

Overview. To get at the technical core of our construction, we first present a
coordinated scheme in which the faked random coins r∗R for the receiver and r∗S
for the sender are outputs of the same algorithm FakeCoins(pk, fk, rS , b

′, b, c)
(we give the corresponding ciphertext c for convenience); i.e., the sender and
receiver coordinate their faked coins upon being coerced. We later describe how
the coordination can be removed for our specific scheme. Additionally, we present
a scheme that encrypts one-bit messages, but a scheme that encrypts poly(n)-bit
messages then follows generically by parallel repetition with independent keys.

The high-level idea for our scheme draws on and extends that of Choi et
al. [14] (who generalized the approach of Damg̊ard and Nielsen [16]) used to
achieve noncommitting encryption. In our scheme, we run 5n instances of an
underlying simulatable encryption scheme in parallel. In normal (non-deniable)
operation, by using the oblivious key and ciphertext generation algorithms ap-
propriately, the receiver “knows” the secret keys corresponding to a random
size-n subset S ⊂ [5n] of indices and the sender “knows” the plaintexts and as-
sociated encryption randomness corresponding to the ciphertexts for an indepen-
dent random size-n subset R ⊂ [5n]. In particular, S corresponds to encryptions
of the message bit b, and [5n]\S corresponds to oblivious encryptions of random
bits. To decrypt, the receiver decrypts ciphertexts corresponding to R and takes
a majority vote. In deniable operation, the receiver knows all the secret keys
and the sender knows all the plaintexts and associated encryption randomness.
In particular, in addition to choosing a random size-n ‘biasing’ subset Y ⊂ [5n]
corresponding to encryptions of the true message bit b′, the sender also chooses
two random pairwise disjoint size-n subsets S0,S1 ⊂ [5n], also disjoint from
Y, corresponding to encryptions of 0s and 1s respectively; the ciphertexts in
[5n] \Y ∪S0 ∪S1 encrypt random bits. To open a deniably encrypted message b′

as b, the sender chooses S∗ = Sb and the receiver chooses R∗ so that it has an
appropriate random number of elements in common with Sb, and then chooses
the remainder of R∗ as random indices from [5n] \ (S0 ∪ S1 ∪ Y).

The scheme. To formally define our scheme, let PKC-SIM be simulatable public-
key encryption scheme with message space {0, 1}. Below, for a set X we denote by
P(X ) the set of all subsets of X and by Pi(X ) the set of all subsets of X of size i.
Additionally, for nonnegative integers x, y,N ≥M , let PHGD(x;N,M, y) denote
the probability that exactly x values from [M ] are chosen after a total of y values
are drawn uniformly at random from [N ], without replacement. We denote by
HGD(N,M, y) the hypergeometric distribution on [N ] with parameters M,y that
assigns to each x ∈ {0, . . . ,M} the probability PHGD(x;N,M, y). Below we will
use parameters N,M, y polynomial in the security parameter, so we can sample



efficiently from this distribution simply by running the sampling experiment.
Define scheme BI-DEN[PKC-SIM] with message-space {0, 1} as follows:

BI-DEN.Gen(1n):
R ← Pn([5n])
For i = 1 to 5n do:
If i ∈ R then
pki ← Gen(1n; rR,i)
Else pki ← OGen(1n; rR,i)
EndFor
pk ← pk1∥ . . . ∥pk5n
Return pk

BI-DEN.Enc(pk, b):
S ← Pn([5n])
For i = 1 to 5n do:
If i ∈ S then
ci ← Enc(pki, b; rS,i)
Else ci ← OEnc(pki; rS,i)
EndFor
c← c1∥ . . . ∥c5n
Return c

BI-DEN.Dec((R, rR), c):
For all i ∈ R do:
di ← Dec(rR,i, ci)
EndFor
If most di’s are 1 then
Return 1
Else return 0

BI-DEN.DenGen(1n):
R ← Pn([5n])
For i = 1 to 5n do:
pki ← Gen(1n; rR,i)
EndFor
pk ← pk1∥ . . . ∥pk5n
r ← rR,1∥ . . . ∥rR,5n

Return (pk, (R, r))

BI-DEN.DenEnc(pk, b′):
S0 ← Pn([5n])
S1 ← Pn([5n] \ S0)
Y ← Pn([5n] \ (S0 ∪ S1))
For i = 1 to 5n do:
If i ∈ S0 then
ci ← Enc(pki, 0; rS,i)
If i ∈ S1 then
ci ← Enc(pki, 1; rS,i)
If i ∈ Y then
ci ← Enc(pki, b

′; rS,i)
Else ci ← OEnc(pk; rS,i)
EndFor
c← c1∥ . . . ∥c5n
Return c

BI-DEN.FakeCoins
(pk, fk, rS , b

′, b, c):
z ← HGD(5n, n, n)
Z ← Pz(Sb)
Z ′ ← Pn−z([5n]
\(S0 ∪ S1 ∪ Y))

R∗ ← Z ∪Z ′

S∗ ← Sb
For i = 1 to 5n do:
If i ∈ S∗ then r∗S,i ← rS,i
Else r∗S,i ← IOEnc(pki, ci)

If i ∈ R∗ then r∗R,i ← rR,i

Else r∗R,i ← IOGen(pki)

EndFor
r∗S ← r∗S,1∥ . . . ∥r∗S,5n
r∗R ← r∗R,1∥ . . . ∥r∗R,5n

Return (r∗S , r
∗
R)

Removing the coordination. To remove the coordination between the sender and
receiver in the faking algorithm, the idea is for the sender to communicate its
choices of S0,S1,Y to the receiver in-band by using a separate instance of the
simulatable encryption scheme. Details are deferred to the full verison.

4.2 Correctness and Security

Theorem 1. Let PKC-SIM be a simulatable public-key encryption scheme. Then
BI-DEN[PKC-SIM] is correct.

The proof is a simple argument that relies on a Chernoff-like tail inequal-
ity for the hypergeometric distribution, and the Chernoff bound. Due to space
restrictions we leave it to the full version. We now turn to security.



Theorem 2. Let PKC-SIM be a simulatable public-key encryption scheme. Then
BI-DEN[PKC-SIM] satisfies bideniability under chosen-plaintext attacks.

We sketch the proof outline, leaving details to the full version. We consider
three hybrid experiments that transition from an ‘honest’ opening of an ‘honest’
encryption of b to a ‘fake’ opening of a deniably encrypted bit b′ as b. The first two
experiments differ only in how they choose the size-n subsets Y,S0,S1,R ⊂ [5n]
of indices (i.e., the corresponding key pairs and ciphertexts are generated identi-
cally; in fact, S1−b,Y are not used). Namely, the first experiment chooses Sb and
R at random independently and then S1−b and Y at random as pairwise disjoint
and disjoint from Sb ∪ R, while the second chooses Sb and S1−b at random as
pairwise disjoint, then Y at random as disjoint from Sb ∪ S1−b, and finally R
to have an HGD-distributed random number of elements in common with Sb
and the remainder at random disjoint from S0 ∪ S1 ∪ Y. The outputs of these
experiments are identically distributed by a combinatorial argument. Finally,
the third experiment appropriately changes how the key pairs and ciphertexts
corresponding to Y,S0,S1,R are generated. The outputs of the last two experi-
ments are computationally indistinguishable by simulatability of the underlying
encryption scheme.

5 Bideniable Encryption from Bitranslucent Sets

Here we construct a bideniable encryption scheme based on a new primitive we
call a bitranslucent set, which extends the notion of a translucent set from [10].
Whereas translucent sets can be constructed straightforwardly from any trap-
door permutation (and other specific assumptions) [10], bitranslucent sets appear
much more challenging to realize. In Section 6 we give a novel construction based
on lattices.

Bitranslucent sets. Informally, a translucent set is a subset P of a universe U ,
which can be sampled efficiently using only public information, and which is
pseudorandom unless its associated secret key is known (in which case it is
easily distinguishable from uniform over the universe).

Here we strengthen the notion of a translucent set in two ways. The first, main
strengthening essentially preserves the pseudorandomness of P even if the secret
key is revealed. Of course this is impossible as just stated, because the secret key
makes P ‘transparent’ by design. Instead, we introduce an algorithm that, given
a ‘faking’ key for the set system, and some c drawn from the pseudorandom set P ,
is able to resample a new, ‘good-looking’ secret key for which c appears uniformly
random. We stress that such keys are necessarily very rare, because a typical
secret key should correctly recognize P with high probability. Nevertheless, it
can still be the case that for any c ∈ P , there are a few rare keys that misclassify c
(without making it apparent that they are doing so). A bitranslucent set scheme
is able to use the faking key find such keys.

Looking ahead to our bideniable encryption scheme, bitranslucency will allow
a coerced sender and receiver both to plausibly claim that a value c ∈ P is



actually uniform: the sender simply declares that c was chosen uniformly from
U (by claiming c itself as the random coins), and the receiver resamples a secret
key that also makes c appear uniform.

The second strengthening, which yields qualitative improvements in efficiency
and may have independent applications, allows for multiple translucent sets to
share a single, fixed-size faking key. Essentially, this makes the bitranslucent set
‘identity-based’ (although we do not refer to identities explicitly): each translu-
cent set has its own public and secret keys for generating and distinguishing
P - and U -samples, and the master faking key makes it possible to generate a
good-looking secret key that equivocates a given P -sample as a U -sample. In-
terestingly, this implies a bideniable encryption scheme in which the deniable
key generator’s faking key is a fixed size independent of the message length, de-
spite the information-theoretic bound that normal secret keys must exceed the
message length.

Definition 3 (Bitranslucent Set Scheme (BTS)). A bitranslucent set scheme
BTS is made up of the following algorithms:

– The normal setup procedure Setup(1n; rSetup) outputs a public parameter pp.
We require that Setup has invertible sampling via an algorithm ISetup.

– The deniable setup procedure DenSetup(1n) outputs a public parameter pp
and a faking key fk.

– The key generator Gen(pp; rR) outputs a public key pk, whose associated
secret key is the randomness rR (without loss of generality).
We require that Gen has trapdoor invertible sampling via an algorithm IGen
and trapdoor fk, where (pp, fk)← DenSetup(1n).

– The P - and U -samplers SampleP(pp, pk; rS) and SampleU(pp, pk; rS) each
output some c ∈ {0, 1}∗.

– The P -tester TestP(pp, rR, c) either accepts or rejects.
– The sender-coins faker FakeSCoins(pp, pk, rS) outputs some coins r∗S for the

U -sampler.4

– The receiver-coins faker FakeRCoins(pp, fk, pk, c) outputs some coins r∗R for
the key generator.

We require:

1. (Correctness.) The following experiment should accept (respectively, reject)
with overwhelming probability over all its randomness: let pp ← Setup(1n),
pk ← Gen(pp; rR), c← SampleP(pp, pk; rS) (resp., c← SampleU(pp, pk; rS)),
and output TestP(pp, rR, c).
We also require correctness for the faking algorithms: with overwhelming
probability over all the random choices, letting (pp, fk)← DenSetup(1n) and
pk ← Gen(pp; rR), we should have

SampleU(pp, pk;FakeSCoins(pk, rS)) = SampleP(pp, pk; rS)

Gen(pp;FakeRCoins(pp, fk, pk, SampleP(pp, pk; rS))) = pk.

4 In some realizations, including our own, FakeSCoins can directly compute coins r∗S
given just a ciphertext c ← SampleP(pp, pk; rS), not rS (or even pp, pk). We retain
the more relaxed definition above for generality.



2. (Indistinguishable public parameters.) The public parameters pp as pro-
duced by the two setup procedures pp ← Setup(1n; rSetup) and (pp, fk) ←
DenSetup(1n) should be indistinguishable (either statistically or computa-
tionally).

3. (Bideniability.) The following two experiments should be computationally in-
distinguishable:

(pp, fk)← DenSetup(1n)
pk ← Gen(pp; rR)
c← SampleU(pp, pk; rS)

Return (pp, rR, rS)

(pp, fk)← DenSetup(1n)
pk ← Gen(pp; rR)
c← SampleP(pp, pk; rS)
r∗R ← FakeRCoins(pp, fk, c)
r∗S ← FakeSCoins(pk, rS)
Return (pp, r∗R, r

∗
S)

Remark 1. For correctness, it suffices (and is more convenient) to require that
when c← SampleU(pp, pk), TestP(pp, rR, c) just rejects with probability at least
(say) 1/2. The error probability can then be made negligible by parallel repetition
of Gen and SampleU, using the same public parameters pp.

The definition is designed to allow for the use of many public keys pki and
associated secret keys rR,i under the same public parameter pp. This lets the
sender and receiver exchange multiple bits more efficiently, and have shorter
keys/randomness, than if the entire system were parallelized. In addition, in
deniable mode, the receiver can perform all its secret-key operations (for multiple
public keys pki) using just the single faking key fk, without keeping any of the
random strings rR,i that were used to generate the pki, by just resampling rR,i as
needed using IGen(fk, pp, pki). This trivially allows the receiver to decrypt, and
to open P -samples and U -samples ‘honestly’ (without equivocation), in deniable
mode.

Note that in the bideniability property above, both experiments use the de-
niable setup algorithm DenSetup, rather than using the normal setup in the
left-hand experiment. However, the choice of setup in the left experiment is es-
sentially arbitrary, and the definition would be equivalent if we replaced the first
line of the left-hand experiment with a normal setup pp← Setup(1n; rSetup). This
is because the faking key fk is never used, the public parameters are indistin-
guishable, and Setup has invertible sampling. We chose the presentation above
because it yields a more modular proof that one can securely equivocate many
independent public key/ciphertext pairs (pki, ci) under a single public parame-
ter pp: first, the bideniability property allows us to replace each pair of calls to
the faking algorithms, one by one, with their normal counterparts. Then, finally,
the deniable setup can be replaced with a normal setup, as just described.

Construction of deniable encryption. Canetti et al. [10] described a simple encod-
ing trick to construct a multi-distributional sender-deniable encryption scheme
from a translucent set: the normal encryption algorithm encodes a 0 message
as “UU” whereas the deniable encryption algorithm encodes it as “PP ;” both
algorithms encode 1 as “UP .” Thus, the sender can always open a deniably
generated ciphertext as any message bit, by equivocating zero or more P s as Us.



The same encoding lets us construct a multi-distributional bideniable encryp-
tion scheme from a bitranslucent set, since now the sender and receiver are both
able to produce ‘fake’ coins that simultaneously equivocate a P as a U . Using
the security properties of BTS, the proof of the following theorem (which we
given in the full version) is routine.

Theorem 3. Existence of a bitranslucent set scheme implies existence of a bide-
niable encryption scheme, secure under chosen-plaintext attacks.

Canetti et al. [10] also construct a fully sender-deniable scheme from a
translucent set, where the ‘fake’ coins can be distinguished with an inverse-
polynomial probability related to the public key size. We show that for bidenia-
bility an analogous construction from a bitranslucent set also works, but requires
the sender and receiver to ‘coordinate’ their fake coins as described Section 4.
However, this coordination can again be removed using simulatable encryption.
Details are deferred to the full version.

6 Lattice-Based Bitranslucent Set

In this section we give an overview of a bideniable translucent set scheme based
on lattice problems, and the intuition behind its security. Due to the large
amount of background required to formalize the system, space restrictions re-
quire us to defer a complete description and security proof to the full version.

Here we describe the main ideas behind our construction. To start, it will
help to consider a basic mechanism for a (sender-deniable) translucent set. The
public key is the description of a lattice Λ, and the secret key is a short lattice
vector z ∈ Λ. (A lattice is a periodic “grid” of points — formally, a discrete
additive subgroup — in Rm.) A P -sample is a point very close to the dual lattice
Λ∗, while a U -sample is a uniformly random point in a certain large region.
(The dual lattice Λ∗ is the set of points v ∈ span(Λ) for which ⟨z,v⟩ ∈ Z
for every z ∈ Λ.) With knowledge of z, it is possible to distinguish these two
types of points c by computing the inner product ⟨z, c⟩: when c is close to
some v ∈ Λ∗, the inner product ⟨z, c⟩ ≈ ⟨z,v⟩ ∈ Z is close to an integer.
On the other hand, when c is uniform, the inner product is uniformly random
modulo Z. Moreover, distinguishing between P -samples and U -samples (given
only the public information) is essentially the decision-LWE problem, when the
lattice Λ is defined appropriately in relation to the LWE instance. All of this
is so far very similar to the structure of lattice-based encryption going back
to the seminal scheme of Ajtai and Dwork [4], but in that system, the public
key uniquely defines a secret key while the ciphertext does not uniquely define
the encryption randomness. By contrast, here we have essentially described the
‘dual’ cryptosystem of Gentry, Peikert, and Vaikuntanathan [21], where there are
many short vectors in Λ and hence many valid secret keys, and the ciphertext
uniquely specifies the encryption randomness.

To construct a bitranslucent set, we exploit and build upon additional tech-
niques from [21]. The faking key for the scheme is a short basis T of Λ (con-
structed using techniques from [3, 6]). As shown in [21], such a basis acts as



a ‘master trapdoor’ that allows for efficiently sampling secret keys under a
Gaussian-like distribution, and for efficiently extracting the short offset vector
x from a P -sample c = v + x, where v ∈ Λ∗.

Using the above facts, our receiver faking algorithm works as follows: given
the short basis T and a P -sample c = v + x that needs to be ‘faked’ as a U -
sample, the algorithm first extracts x, and then samples a secret key z∗ ∈ Λ
that is highly correlated with x. By this we mean that z∗ comes from a Gaussian
distribution (over Λ) centered at u ·x, for some random and large enough corre-
lation coefficient u ∈ R. Modulo Z, the inner product ⟨z∗, c⟩ ≈ ⟨z∗,x⟩ ≈ u ·∥x∥2,
because z∗ ∈ Λ is short. When u is chosen from a wide enough Gaussian distribu-
tion, this inner product is uniform (modulo Z), hence c “looks like” a U -sample
when tested with the fake secret key z∗. The natural question at this point is,
why should it be secure to release a z∗ that is so correlated with the secret off-
set vector x? That is, why do z∗ and c ‘look like’ an honestly generated secret
key and U -sample, respectively? The first key point is that as Gaussian random
variables, the correlation between x and z∗ is essentially symmetric. That is, we
can consider an alternative experiment in which z∗ is chosen first (according to
the normal key generation algorithm), and then x is chosen from a Gaussian
centered at v · z∗ (for some appropriate random v ∈ R). In both experiments,
the pair (z∗,x) is jointly distributed as a nonspherical Gaussian, with the same
covariance. This allows us to switch from the faking experiment to one in which
the ‘faked’ secret key z∗ is generated normally, followed by c = v + x where
v ∈ Λ∗ and x is centered at v · z∗. The second key point is that when x is corre-
lated with z∗ as described above, it may be written as the sum of two terms: the
component v ·z∗, and an independent (spherical) Gaussian component g. Under
the LWE assumption, we can switch from c = (v+ g) + v · z∗ to c′ = u+ v · z∗,
where u is uniformly random. Of course, the latter quantity c′ is truly uniform
and independent of the (normally generated) secret key z∗. This coincides ex-
actly with the generation and subsequent honest opening of a normal secret key
and U -sample, as desired.

Acknowledgments. We thank Ran Canetti and Cynthia Dwork for suggesting
this research topic, Josh Benaloh and Ari Juels for helpful discussions about
deniability, and the anonymous reviewers for useful comments.

References

[1] The rubberhose encryption system. Internet website; accessed 9 February 2010.
http://iq.org/~proff/marutukku.org/.

[2] Truecrypt: Free open-source on-the-fly encryption. Internet website; accessed 9
Feburary 2010. http://www.truecrypt.org.

[3] Miklós Ajtai. Generating hard instances of the short basis problem. In ICALP,
pages 1–9, 1999.

[4] Miklós Ajtai and Cynthia Dwork. A public-key cryptosystem with worst-
case/average-case equivalence. In STOC, pages 284–293, 1997.



[5] Joel Alwen, Yevgeniy Dodis, and Daniel Wichs. Survey: Leakage resilience and
the bounded retrieval model. In ICITS, 2009.
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