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Abstract. In this paper, we present and prove the first closed formula
bounding the degree of regularity of an HFE system over an arbitrary
finite field. Though these bounds are not necessarily optimal, they can
be used to deduce
1. if D, the degree of the corresponding HFE polynomial, and q, the size

of the corresponding finite field, are fixed, inverting HFE system is
polynomial for all fields;

2. if D is of the scale O(nα) where n is the number of variables in
an HFE system, and q is fixed, inverting HFE systems is quasi-
polynomial for all fields.

We generalize and prove rigorously similar results by Granboulan, Joux
and Stern in the case when q = 2 that were communicated at Crypto
2006.

1 Introduction

The security of cryptosystems such as RSA, ECC, and Diffie-Hellman key ex-
change scheme, depends on assumptions about the hardness of certain number
theory problems, such as the Integer Prime Factorization Problem or the Dis-
crete Logarithm Problem. However, in 1994 Peter Shor [19] showed that quantum
computers could break all public key cryptosystems that are based on these hard
number theory problems. People realize that we need to look ahead to a possible
future of quantum computers. In recent years significant effort has been put into
the search for alternative public key cryptosystems, now called post-quantum
cryptosystems, which would remain secure in an era of quantum computers.
Multivariate public key cryptosystems (MPKC) [5] are one of the main families
of cryptosystems that have the potential to resist quantum computer attacks.

An MPKC is a cryptosystem whose public key is given as a set of multivariate
polynomials over a normally small finite field. The security of such systems is
suggested by the fact that solving a system of multivariate polynomial equations
over a finite field is in general NP-complete [11]. A quantum computer has not
yet been shown to be efficient in solving this problem. Furthermore, computa-
tions in a finite field are more efficient than the manipulation of large integers
which is required by the systems based on hard number theory problems. Thus



MPKC’s can be less computationally intense than these systems and therefore
have potential for application in small ubiquitous computing devices with limited
resources.

Research into MPKC’s started in the middle of 1980s in work of Diffie, Fell,
Tsujii, Shamir. However the success of this work was limited and the real break-
through in this direction was the cryptosystem proposed by Matsumoto and Imai
[16]. Their scheme used a simple quadratic function on an extension field whose
field structure was kept hidden. Unfortunately this efficient scheme was proved
to be insecure by Patarin using his linearization equation attack [18]. Hidden
Field Equation (HFE) cryptosystems are a family of cryptosystems proposed by
Patarin based on the same fundamental idea of quadratic functions on extension
fields [18].

Fixing a finite field F of characteristic 2 and cardinality q, Matsumoto and
Imai suggested using a bijective map P defined over K, an extension field of
degree n over F. By identifying K with Fn, one sees that P induces a multivariate
polynomial map P̃ : Fn −→ Fn. One can “hide” this map by composing on the
left by L1 and on the right by L2, where the Li : Fn −→ Fn are invertible affine
maps. This composition gives a map P̄ : Fn −→ Fn defined by

P̄ (x1, . . . , xn) = L1 ◦ P̃ ◦ L2 (x1, . . . , xn) = (y1, . . . , yn) .

For a Hidden Field Equation (HFE) system [18], P is given as a univariate
polynomial in the form:

P (X) =
∑

qi+qj≤D

aijX
qi+qj

+
∑

qi≤D

biX
qi

+ c ,

where the coefficients are randomly chosen. Here the total degree D of P should
not be too large since the decryption process involves solving the system of
single variable polynomial equations given by P (X) = Y ′ for a given Y ′ using
the Berlekamp-Massey algorithm.

Faugère and Joux showed that these systems can be broken rather easily
in the case when q = 2 and D is small [10] using the Gröbner basis algorithm
F4. Furthermore the experimental results suggested that such algorithms will
finish at degree of order logq(D) (by which we mean that the highest degree
polynomials encountered are of degree of order logq(D)) and, therefore, that the
complexity of the algorithm is O(nlogq(D)).

A key concept in the analysis of the complexity of these algorithms is that
of degree of regularity. The degree of regularity of the component functions of
P , p1(x1, . . . , xn), . . . , pn(x1, . . . , xn) is the lowest degree at which non-trivial
polynomial relations between the pi occur (we also talk about this as the degree
of regularity of P or of the associated HFE system). Experimental evidence has
shown that this is the point at which the algorithm will terminate. Here we mean
by “termination at a certain degree”, that the large matrices, whose entries are
coefficients of multivariate polynomials, and on which the algorithm performs
Gaussian eliminations, contain polynomials at most of the designated degree.
The largest size of all such matrices essentially determines the complexity of the



algorithm. Bardet, Faugère and Salvy defined (in a different notation) the de-
gree of regularity of random or generic systems and found an asymptotic formula
for this degree. However since the systems arising from HFE polynomials were
far from generic, the BFS bound does not yield useful information about the
complexity of HFE systems. Granboulan, Joux and Stern [12] outlined a new
way to bound the degree of regularity in the case q = 2. Their approach was
to lift the problem back up to the extension field K, an idea that originated in
the work of Kipnis and Shamir [13] and Faugère and Joux [10]. They sketched
that one can connect the degree of regularity of an HFE system to the degree
of regularity of a lifted system over the big field. Assuming this assertion, the
semi-regularity of a subsystem of the lifted system, and that the degree of regu-
larity of a subsystem is greater than that of the original system, and using some
asymptotic analysis of the degree of regularity of random systems found in [1],
they derived heuristic asymptotic bounds for the case q = 2, which implied that
if D is chosen to be O(nα) for α ≥ 1, then the complexity of Gröbner basis
attacks is quasi-polynomial. While the results derived from this method match
well with experimental results, the asymptotic bound formula has not yet been
proven rigorously. It relies on a formula that holds for a class of overdetermined
generic systems but it is not yet clear how to prove their systems belong to this
class. Therefore to derive any definitive general bounds on the degree of regular-
ity for general q and n, or on the asymptotic behavior of the degree of regularity
remained an open problem.

The security of HFE systems in the case when the characteristic of the field
is odd has been the subject of much less study. The notions of degree of regu-
larity and semi-regularity in [1] can be generalized to the case when q is odd.
However, the asymptotic analysis on which the results of [12] depend has not
yet been generalized to this situation. The work in [8] seemed to suggest that
HFE systems over a field of odd characteristic could resist the attack of Gröbner
basis algorithms even when D is small. When q is large the field equations
Xq

1 −X2, . . . , X
q
n−X1 cannot be used effectively and this limits the efficiency of

the Gröbner basis algorithms. A breakthrough in the case of general q came in
the recent work of Dubois and Gama [9]. They first refined and gave a rigorous
mathematical foundation for the arguments in [12]. They then derived a new
method to compute the degree of regularity over any field similar to that in [1].
This led to an algorithm that can be used to calculate a bound for the degree
of regularity for any choice of q, n and D. However it is not clear how to derive
a closed form for their bound from their algorithm and therefore they were not
able to answer the question of whether the complexity was quasi-polynomial in
this case.

The contributions of this paper.

In this article we answer the above questions by giving a global bound on
the degree of regularity (in the sense of [9]) of an HFE system. We begin with a
similar idea to that used in [12] - roughly that one can bound the degree of reg-
ularity of a system by finding a bound for certain simpler subsystems. However
we obtain our bound using a very different approach. Previously all estimates on



the degree of regularity were based on a dimension counting argument. At some
point the assumption that there are no trivial relations would imply that the
space of linear combinations of the functions p1, . . . , pn by polynomials of degree
k would be greater than the dimension of the space of all polynomials of degree
k + 2. Dubois and Gama were able to improve on earlier bounds by observing
that the subspace of linear combinations has to lie in a special subspace of the
space of all polynomials of a fixed degree. Unfortunately the dimension of this
space is given by a recursive formula which does not have a known closed form.
In contrast our approach is to find explicit non-trivial relations. Surprisingly,
it is enough to do this for the case of a single polynomial. Moreover, we can
find an explicit formula for the degree in which these non-trivial relations occur.
This gives the degree of regularity as an explicit function of q and D (it does
not depend on n unless the degree D is a function of n). Such explicit formu-
las enable us to draw conclusions about the complexity of inverting the system
using Gröbner basis methods. Our conclusions rely on no heuristic assumptions
beyond the standard assumption that the Gröbner basis algorithms terminate
at or shortly after the degree of regularity.

Specifically, we give a closed formula bound for the degree of regularity of a
multivariate quadratic polynomial of the form

P (X) =
∑

qi+qj≤D

aijX
qi+qj

+
∑

qi≤D

biX
qi

+ c .

This bound depends on the rank of P (in a sense defined below); since the
restriction qi + qj ≤ D implies a strong restriction on the rank of P , we are able
to deduce a sharp bound for the degree of regularity of P over a field of any order
q. When q is odd, these bounds are comparable with those found computationally
by Dubois and Gama when the block size n log2(q) is less than 700. Interestingly
this formula also yields the degree of regularity of the Matsumoto-Imai system
when q = 2 to be 3. This is precisely the statement that Patarin’s linearization
attack works in this case. Thus we believe that the notion of rank is a key new
ingredient in the analysis of multivariate quadratic cryptosystems.

A crucial step in our approach is to look at the single polynomial

P0(X1, ..., Xn) =
∑
i,j

aijXiXj

considered as an element of the graded algebra K[X1, . . . , Xn]/(Xq
i ). Using meth-

ods from [9], the degree of regularity of the whole system is bounded by the
degree of regularity of this single polynomial. This problem was studied in detail
by the authors and their collaborators in [6, 7] in the cases q = 2 and 3. Drawing
on the ideas from this work we are able to find explicit relations which give us
bounds on the degree of regularity of P0 for any q (which we believe are sharp
when q is odd). Specifically we show that the degree of regularity of the system
defined by P is bounded by

Rank(P0)(q − 1)
2

+ 2 ≤
(q − 1)(blogq(D − 1)c+ 1)

2
+ 2



if Rank(P0) > 1. Here Rank(P0) is the rank of the quadratic form associated to
P0. by It is important to note that these are universal bounds that require no
assumption that the polynomials are of “generic type”.

There are two very critical points in the formula. First, the degree of regu-
larity depends only on the rank of P0, not the degree of P ; while the rank is
bounded by logq D+ 1, there are many situations (such as the Matsumoto-Imai
operators or sparse HFE polynomials) where the rank is much smaller than can
be predicted by looking at the degree; thus we believe that the rank of a HFE
operator to be a more important invariant than its degree. Second, while we do
not expect our formula to give sharp bounds, it yields similar results to those
obtained in [9] for prime q. It also explains many of the jump discontinuities in
their data, since jumps in the degree of regularity should be expected to occur
when the degree reaches a value which allows the rank of P to increase.

The formulas above enable us to draw the following conclusions about the
complexity of inverting an HFE polynomial using a Gröbner basis algorithm.

1. If D, the degree of the corresponding HFE polynomial, and q, the size of the
corresponding finite field, are fixed, then the degree of regularity is bounded
by a fixed integer (q − 1)(blogq(D − 1)c+ 1)/2 + 2 or q. Therefore inverting
HFE systems is polynomial for all fields;

2. If q is fixed and D is of the scale O(nα), then inverting HFE systems is
quasi-polynomial.

If, on the other hand, q is of the scale O(n), then our results are inconclusive and
the possibility remains that inverting HFE systems is actually exponential with
respect to this parameter. Comparisons with the results of [9, 12], suggest that
our formulas asymptotically may be proportional to the degree of regularity at
least for the case where q is a prime.

This paper is organized as follows. We first briefly introduce HFE cryptosys-
tems in the section below. In Section 3, we review the definition and basic prop-
erties of the degree of regularity from [9]. In Section 4, we show how the notion
of rank can give a useful closed formula bound on the degree of regularity and
apply this to the analysis of the complexity of the Gröbner basis attacks on HFE
systems.

In the appendix, we develop the key ideas of [9] in a more abstract math-
ematical framework using the language of graded algebras. This allows us to
create different but abstractly more transparent proofs for the main theorems
that we use in the paper.

After the present paper was submitted, a paper by Bettale, Faugère and
Perret [2] was published that has some commonality with ours. In this article,
the authors come to similar conclusions on the security of the HFE systems, but
with respect only to the Kipnis-Shamir attack. They conjecture that if D is fixed
the complexity of the Kipnis-Shamir attack is polynomial in n, the degree of the
extension. Their experimental data backs up this conjecture.



2 HFE Systems

2.1 Quadratic Operators

Denote by F a finite field of order q and let K be an extension of F of degree n.
Any function from K to K can be expressed as a polynomial with coefficients in
K and degree less than qn. Thus it has the general form

P (X) =
qn−1∑
i=0

aiX
i, ai ∈ K .

There are two distinct notions of degree for P , the degree over K and the degree
over F. The degree over K, denoted by degK(P ) is the degree in the usual sense
of degree of a polynomial function. On the other hand, the functions Xqi

are all
linear over F. Thus the degree of the monomial Xd will be the sum of the digits
in the base q expansion of d; that is, if d =

∑
i diq

i, degF(Xd) =
∑

i di. When
q = 2, this is the Hamming weight of the binary representation of d. The degree
of P over F, denoted degF(P ) is the maximum of the degree of the monomial
terms.

An F-quadratic function from K to K is thus a polynomial all of whose
monomial terms have exponent qi + qj or qi for some i and j. The general form
of an F-quadratic function is

P (X) =
n−1∑
i,j=0

aijX
qi+qj

+
n−1∑
i=0

biX
qi

+ c .

2.2 HFE Systems

In an HFE cryptosystem, plaintext from Fn is encrypted using an identification
of Fn with K and an F-quadratic map P . The nature of P is further hidden by
pre- and post-composition with invertible affine linear maps L1, L2 : Fn → Fn.
Thus if φ : Fn → K is the chosen linear isomorphism, the encryption is performed
by the function P̄ = L1 ◦ φ−1 ◦ P ◦ φ ◦L2. Decryption is performed by inverting
the maps L1 and L2 and applying a standard root-finding algorithm for P .
The public key is the function P̄ expressed in terms of its quadratic component
functions p̄1, . . . , p̄n : Fn → F. Provided the degree of P is not too high the
decryption process will be manageable. However the direct solution of a system
of quadratic multivariate equations

p̄1 = b1, . . . , p̄n = bn

is a hard problem which provides the system with a certain level of security.



2.3 Gröbner Basis Attacks

One of the most successful attacks on HFE systems is to apply the refined
Gröbner basis algorithms F4 (and maybe F5 if we do know how to make it work
as efficiently as claimed) to convert the system of equations p̄1 = b1, . . . , p̄n = bn
to a simpler system that can be solved quickly. From the point of view of security
analysis it is sufficient to consider the system p1 = 0, . . . , pn = 0 where the pi

are the component functions of φ−1 ◦P ◦φ with respect to the given basis. From
this point on, we restrict our attention to this case.

Implementation of the Gröbner basis algorithm involves searching through
combinations of multiples of the pi by polynomials of a fixed degree for poly-
nomials of smaller degree. If the combination

∑
i gipi has smaller degree then

the corresponding combination of leading components
∑

i g
h
i p

h
i is zero. Here,

by the leading component of a multivariate polynomial g we mean the multi-
variate polynomial gh derived from removing all the monomial terms of g with
degree lower than the degree of g, or the highest homogeneous component of
g. In general, the decisive moment in the calculation is when non-trivial such
combinations occur. These non-trivial relations will very likely generate what
is called mutants [3, 4, 15], which are instrumental in solving the system. Ob-
viously the combinations ph

i p
h
j − ph

j p
h
i are tautologically zero and the equation

((ph
i )q−1 − 1)ph

i = 0 is a result of the identity aq = a in F. A non-trivial relation
is one that does not follow from these trivial identities. The degree at which
the first non-trivial relation occurs is called the degree of regularity. Extensive
experimental evidence has shown that the algorithm will terminate at or shortly
after the degree of regularity. Thus the calculation of the degree of regularity is
crucial to understanding the complexity of the algorithm.

3 Degree of Regularity

We begin with the formal definition of degree of regularity as given in [9] and
we summarize the key results from that paper. More abstract versions of these
results are also given in the appendix. Let

A = F[X1, . . . , Xn]/ 〈Xq
1 −X1, . . . , X

q
n −Xn〉 .

This is the algebra of functions from Fn to F. Let p1, . . . , pn be quadratic elements
of A. Denote by Ak the subspace of A consisting of functions representable by
a polynomial of degree less than or equal to k. For all j we have a natural map
ψj : An

j →
∑

iAjpi given by

ψj(a1, . . . , an) =
∑

i

aipi .

We are interested in ‘degree falls’; a degree fall occurs when the ai have degree j
but

∑
i aipi has degree less than degree j+2. Obviously we can have trivial degree

falls of the form pjpi +(−pi)pj or (pq−1
i −1)pi. The degree of regularity of the set



{p1, . . . , pn} is the first degree (measured as deg ai+deg pi) at which a non-trivial
degree fall occurs. Obviously we can restrict our attention to the highest degree
terms in the ai and work modulo terms of smaller degree. Mathematically this
means working in the associated graded ring B = F[X1, . . . , Xn]/ 〈Xq

1 , . . . , X
q
n〉.

The degree of regularity of the {p1, . . . , pn} in A will be the first degree at
which we find non-trivial relations among the leading components ph

1 , . . . , p
h
n

(considered as elements of B).
Denote by Bk the subspace of B consisting of homogeneous elements of degree

k. Consider an arbitrary set of homogeneous quadratic elements {λ1, . . . , λn} ∈
B2. For all j we have a natural map ψj : Bn

j → Bj+2 given by

ψj(b1, . . . , bn) =
∑

i

biλi .

LetRj(λ1, . . . , λn) = kerψj ; this is the subspace of relations of the form
∑

i biλi =
0. Inside Rj(λ1, . . . , λn) is the subspace of trivial relations, Tj(λ1, . . . , λn) gen-
erated by elements of the form:

1. b(0, . . . , 0, λj , 0, . . . , 0,−λi, 0 . . . , 0) for 1 ≤ i < j ≤ n and b ∈ Bj−2; where
λj is in the i-th position and −λi is in the j-th position;

2. b(0, . . . , 0, λq−1
i − 1, 0 . . . , 0) for 1 ≤ i ≤ n and b ∈ Bj−2(q−1); where λq−1

i is
in the i-th position;

The space of non-trivial relations is the quotient spaceRj(λ1, . . . , λn)/Tj(λ1, . . . , λn).

Definition 3.1. The degree of regularity of {λ1, . . . , λn} is defined by

Dreg({λ1, . . . , λn}) = min{j | Rj−2({λ1, . . . , λn})/Tj−2({λ1, . . . , λn}) 6= 0}

It turns out that the degree of regularity is dependent only on the subspace
generated by the λi so we can simplify the notation a little by denoting the space
generated by the λi by V and writing Dreg(V ) for Dreg({λ1, . . . , λn}).

Two important properties of the degree of regularity were observed in [9].
First, the degree of regularity of a space is less than or equal to the degree of
regularity of a subspace.

Property 3.2. [9, Property 11] Let V ′ be a subspace of V . Then Dreg(V ) ≤
Dreg(V ′).

Second, the degree of regularity is invariant under field extension. Let K be
an extension of F. Define BK = K[X1, . . . , Xn]/ 〈Xq

1 , . . . , X
q
n〉 and denote by VK

be the K-subspace of BK generated by the λi.

Property 3.3. [9, §4.4] Let K be an extension of F. Then Dreg(VK) = Dreg(V ).

Returning to the situation where P is a quadratic map with component
functions p1, . . . , pn ∈ A. Let V and V h be the vector spaces generated by the
p1, . . . , pn and their leading components ph

1 , . . . , p
h
n (considered as elements of

B). Our goal is to find a bound for Dreg(V h). We begin by extending the base



field to K. When we extend the base field in A, we pass from functions from
Fn to F to functions from Fn to K. Via the linear isomorphism φ−1 : K → Fn,
this algebra is isomorphic to the algebra of functions from K to K which is
simply K[X]/

〈
Xqn −X

〉
. It follows from elementary Galois theory that the

space VK corresponds under this identification with the space generated by
P, P q, . . . , P qn−1

. If we filter the algebra K[X]/
〈
Xqn −X

〉
by degree of func-

tions over F, then the linear component is spanned by X,Xq, . . . , Xqn−1
. The

associated graded ring will then be the algebra BK = K[X0, . . . , Xn−1] where Xi

corresponds to Xqi

and Xq
i = 0. This is naturally isomorphic to the algebra B

with coefficients extended to K (proofs in Appendix B). Thus the processes of
extending the base field and taking the associated graded ring commute.

Let Pi denote the leading component of P qi

in BK. Thus for instance if P is
defined as above, then

P0 =
n−1∑
i,j=0

aijXiXj .

The space generated by the Pi is exactly V h
K , the subspace of BK generated by

the ph
i . Putting all the above together we get the following important theorem.

A brief proof is given in Appendix B.

Theorem 3.4 ([9]).

Dreg({p1, . . . , pn}) = Dreg({ph
1 , . . . , p

h
n}) = Dreg({P0, . . . , Pn−1})

Using Property 2, we get the following immediate corollary.

Corollary 3.5. Dreg({p1, . . . , pn}) ≤ min{Dreg(Q) | Q ∈ V h
K }

4 Bounding the Degree of Regularity using Q-Rank

Up to this point we have been following the ideas of [12, 9]. In particular, the
proofs of all the above results are given in [9], which is the basis for this work. We
now, however, take a significant change of direction. The bounds on the degree of
regularity in [12, 9] and previous authors are all found by counting dimensions.
The basic idea going back to [21, 1] is that if dimBn

j − dimTj > dimBn+2
j ,

then Rj ) Tj and the degree of regularity has been reached. This approach
was refined in [12] by using Property 1 to reduce to subsets {P0, . . . , Ps} which,
for HFE systems, involve significantly fewer variables. It was further refined in
[9] where the authors observed that the space on the right hand side of the
inequality could be replaced by a significantly smaller space, allowing a more
accurate computational estimate of the degree of regularity. The disadvantage
of the approach in [9] was that no general formula for the degree of regularity
could be derived.

Our approach is completely different. Instead of counting and comparing
dimensions we actually find non-trivial relations in specific dimensions. Surpris-
ingly, an important bound can be found by restricting to the case of a single



polynomial. We begin by giving a bound on the degree of regularity of a single
polynomial in terms of its rank. Applying this formula to P0 yields a bound on
the degree of regularity of an HFE system in terms of its degree.

The degree of regularity of a single polynomial has been studied in great detail
in the cases where q = 2 and 3 [6, 7]. In order to obtain the desired bound, we do
not need the kind of exact information found in those papers. We merely need
to demonstrate the existence of non-trivial relations. This we can do explicitly
using the classification of quadratic forms. Recall that P0 is a homogeneous
quadratic polynomial in the algebra K[X0, . . . , Xn−1]/

〈
Xq

0 , . . . , X
q
n−1

〉
. Using

the classification theorem of quadratic forms over finite fields, we are able to
explicitly construct nontrivial relations and hence derive a simple bound for the
degree of regularity of P0 in terms of its rank.

We now briefly review the classification of quadratic forms over a finite field.
We begin with the case when q is odd. A quadratic form in n indeterminates is a
homogeneous quadratic polynomial in the polynomial ring K[X1, . . . , Xn]. Two
forms P and Q are said to be equivalent (written P ∼ Q) if there is an invertible
linear change of variables L which transforms P into Q:

P ◦ L(X1, ..., Xn) = Q(X1, ..., Xn).

Pick an element c ∈ K that is not a square. Then a quadratic form is equivalent
to one of the two types

1. X2
1 + · · ·+X2

r−1 +X2
r

2. X2
1 + · · ·+X2

r−1 + cX2
r

for some r ≤ n [17, §62]. The same classification applies to quadratic elements
of the quotient ring K[X1, . . . , Xn]/ 〈Xq

1 , . . . , X
q
n〉.

When q is even, the situation is complicated by the fact that X2 is linear
rather than quadratic when q = 2. It is shown in [14, Theorem 6.30] that a
quadratic polynomial in the polynomial algebra K[X1, . . . , Xn] is equivalent to
an polynomial of one of the following forms for some r ≤ n:

1. X1X2 + ...+Xr−1Xr

2. X1X2 + ...+Xr−2Xr−1 +X2
r

3. X1X2 + ...+Xr−1Xr +X2
r−1 + cX2

r where c ∈ K\{0} satisfies TRK(c) = 1.

For q > 2 this classification carries over to the quotient ring K[X1, . . . , Xn]/
〈Xq

1 , . . . , X
q
n〉. When q = 2, all quadratic elements of the quotient ring are equiv-

alent to an element of the first type. In all cases the number r is known as the
rank of Q. Note that if q = 2, the rank of a quadratic element must be at least
2.

When r = 1 (in which case q > 2), Q is actually equal to aX2
1 for some a ∈ K.

It is easily verified that the smallest non-trivial relation is Xq−2(aX2) = 0 and
hence that Dreg(Q) = q. More generally we have the following inequality.

Theorem 4.1. Let Q be quadratic of rank r. If r > 1,

Dreg(Q) ≤ r(q − 1)
2

+ 2 .



Proof. In the case of a single polynomial, the definition of degree of regularity
can be expressed in terms of non-trivial annihilators. Let Q be an arbitrary
quadratic element of B = K[X1, . . . , Xn]/ 〈Xq

1 , . . . , X
q
n〉. The annihilators of Q

are the elements of Ann(Q) = {f ∈ B | fQ = 0}. The trivial annihilators are the
multiples of Qq−1. The degree of regularity is the first k such that there is a non-
trivial annihilator of Q of degree k−2. The degree of regularity is invariant under
a linear change of variables, so it is sufficient to prove the result by exhibiting
explicit non-trivial annihilators for each of the above types of quadratic elements.

Because of the different types of standard forms we need to consider sepa-
rately the cases when q is odd and even. We also need to divide these cases into
the cases when r is odd or even.

– Case 1: q odd, r even

Set s = r/2. In this case Q is of the form

Q = X2
1 +X2

2 + · · ·+X2
2s−1 + aX2

2s

for some a ∈ K. Let

Ki = Xq−1
2i−1 −X2

2iX
q−3
2i−1 +X4

2iX
q−5
2i−1 + · · ·+ (−1)(q−1)/2Xq−1

2i

for i = 1, . . . , s− 1; and

Ki = Xq−1
2s−1 − aX2

2sX
q−3
2s−1 + a2X4

2sX
q−5
2s−1 + · · ·+ (−a)(q−1)/2Xq−1

2s

Set
K = K1K2 . . .Ks .

It is clear that

Ki(X2
2i−1 +X2

2i) = Xq+1
2i−1 − (−1)(q+1)/2Xq+1

2i = 0 ,

for i = 1, ..., s− 1; and

Ks(X2
2s−1 + aX2

2s) = Xq+1
2s−1 − (−a)(q+1)/2Xq+1

2s = 0 .

Hence KQ = 0. Thus K ∈ Ann(Q) ∩ Bs(q−1). We claim that K /∈
〈
Qq−1

〉
.

Consider the quotient algebra

B̄ = B/
〈
X2

2i−1 +X2
2i, i = 1, ..., s− 1; X2

2s−1 + aX2
2s

〉
.

The algebra B̄ has a basis consisting of monomials with the powers of the vari-
ables X2, X4, . . . , X2s at most 1. It is clear that the image of Q (and hence also
Qq−1) in B̄ is zero, whereas the image of K is

s∏
i

Xq−1
2i−1

(
q + 1

2

)s

which is non-zero. Therefore K is not in the ideal generated by Qq−1. Hence
Dreg(Q) ≤ r(q − 1)/2 + 2.



– Case 2: q odd, r odd

Set s = (r − 1)/2. In this case Q is of the form

Q = X2
1 +X2

2 + · · ·+X2
2s−1 +X2

2s + aX2
2s+1

for some a ∈ K. From the classification of quadratic forms [20] we have

X2
2s−1 +X2

2s + aX2
2s+1 ∼ X2

2s−1 −X2
2s − aX2

2s+1 ∼ X2s−1X2s − aX2
2s+1

so Q can be taken to be of the form:

Q = X2
1 +X2

2 + · · ·+X2
2s−2 +X2s−1X2s − aX2

2s+1 .

Let
Ki = Xq−1

2i−1 −X2
2iX

q−3
2i−1 +X4

2iX
q−5
2i−1 + · · ·+ (−1)(q−1)/2Xq−1

2i

for i = 1, . . . , s− 1; and

K ′ =
(X2s−1X2s)(q+1)/2 − a(q+1)/2X

(q+1)
2s+1

X2s−1X2s − aX2
2s+1

X
(q−1)/2
2s−1 .

Note that

K ′(X2s−1X2s − aX2
2s+1) = (X2s−1X2s)(q+1)/2X

(q−1)/2
2s−1 = 0 .

Set
K = K1K2 . . .Ks−1K

′.

Note that the degree of K is (s− 1)(q − 1) + 3(q − 1)/2 = r(q − 1)/2. Again we
see that KQ = 0 and so K ∈ Ann(Q)∩Br(q−1)/2. Consider the quotient algebra

B̄ = B/
〈
X2

2i−1 +X2
2i, i = 1, ..., s− 1; X2s−1X2s − aX2

2s+1

〉
,

Then B̄ has a basis consists of monomials in which the powers of the variables
X2, X4, . . . , X2(s−1), X2s+1 are at most one. The image of Q in B̄ is zero, but
that of K is

s−1∏
i=1

Xq−1
2i−1

(
q + 1

2

)s−1

Xq−1
2s−1X

(q−1)/2
2s

(
q + 1

2

)
which is non-zero. Hence K is not in the ideal generated by Qq−1 and Dreg(Q) ≤
r(q − 1)/2 + 2.

– Case 3: q even, r even (Q of type (1) or (3))

First suppose that Q is of the form Q = X1X2 + · · ·+X2s−1X2s where r = 2s.
Set H = Xq−1

1 Xq−1
3 . . . Xq−1

2s−1. Then it is easily seen that H ∈ Ann(Q)∩Bs(q−1).
Consider the quotient algebra

B̄ = B/ 〈X1 −X2, . . . , X2s−1 −X2s〉 .



The image of Q in B̄ is

Q̄ = X2
1 +X2

3 + · · ·+X2
2s−1 = (X1 +X3 + · · ·+X2n−1)2

so the image of Qq−1 is Q̄q−1 = 0. On the other hand the image of H is

Xq−1
1 Xq−1

3 . . . Xq−1
2s−1

which is non-zero. Thus H /∈
〈
Qq−1

〉
Hence Dreg(Q) ≤ r(q − 1)/2 + 2.

Next suppose that Q is of the form Q = X1X2 + · · ·+X2s−1X2s +X2
2s−1 +

αX2
2s. Let L be a finite extension field of K in which the equation 1 +X + aX2

has a root. In L[X1, . . . , Xr], Q is equivalent to X1X2+· · ·+X2s−1X2s. Since the
degree of regularity is invariant under extensions of the base field by Property
2, it follows from the first part that Dreg(Q) ≤ r(q − 1)/2 + 2.

– Case 4: q even, r odd (Q of type (2))

Note that in this case we must have q > 2. We may assume that Q is of the form
Q = X1X2 + · · ·+X2s−1X2s +X2

2s+1 where r = 2s+ 1. Set

H = Xq−1
1 Xq−1

3 . . . Xq−1
2s−3X

q/2
2s−1(X2s−1X2s +X2

2s+1)
(q−2)/2 .

Note that degH = r(q − 2)/2 and

HQ = (X2s−1X2s +X2
2s+1)

q/2X
q/2
2s−1 = Xq

2s−1X
q/2
2s +Xq

2s+1X
q/2
2s−1 = 0 .

Consider the quotient algebra

B̄ = B/ 〈X1 −X2, . . . , X2s−1 −X2s〉 .

The image of Q in B̄ is Q̄ = X2
1 + X2

3 + · · · + X2
2s−1 + X2

2s+1 = (X1 + X3 +
· · · + X2s−1 + X2s+1)2 so the image of Qq−1 is Q̄q−1 = 0. On the other hand
the image of H is Xq−1

1 Xq−1
3 . . . Xq−1

2s−3X
q/2
2s−1(X

2
2s−1 + X2

2s+1)
(q−2)/2 which is

non-zero. Thus H /∈
〈
Qq−1

〉
Hence Dreg(Q) ≤ r(q − 1)/2 + 2.

Note that for q odd, these bounds were conjectured to be optimal in [7].
Experimental evidence suggests that this is not the case when q is even.

Let us define the Q-Rank of a quadratic operator P (X) to be the minimal
rank of elements of the space V h

K generated by P0, . . . , Pn−1.

Q-RankP = min{RankQ | Q ∈ V h
K }

Note in particular that Q-Rank(P ) ≤ Rank(P0).

Theorem 4.2. Let P be a quadratic operator of degree D. If Q-Rank(P ) > 1,
the degree of regularity of the associated system is bounded by

(q − 1) Q-Rank(P )
2

+ 2 .

In particular, this is less than or equal to

(q − 1)(blogq(D − 1)c+ 1)
2

+ 2 .

If Q-Rank(P ) = 1, then the degree of regularity is less than or equal to q.



Proof. The first assertion follows from Theorem 4.1 and Corollary 3.5. Suppose
that

P (X) =
∑

qi+qj≤D

aijX
qi+qj

+
∑

qi≤D

biX
qi

+ c .

Then
P0 =

∑
qi+qj≤D

aijXiXj .

Let k be the largest subscript of a variable Xk that occurs non-trivially in P0

(that is, aik 6= 0 for some i). The rank of P0 is bounded by the number of
variables involved in its expression which is at most k + 1. On the other hand,
by our assumption on D, D ≥ qk + 1 or equivalently, k ≤ blogq(D − 1)c. Thus
the rank of P0 is at most blogq(D − 1)c+ 1.

Example 4.3. Consider a Matsumoto-Imai operator of the form P (X) = X1+2θ

over the field GF (2). Then P0 = X0Xθ has rank 2. So our theorem implies
that the degree of regularity is less than or equal to three. This is precisely the
statement that linearization equations exist in this case [18]. On the other hand
if we consider a Matsumoto-Imai operator over a field of order q = 2m, then the
degree of regularity remains 3 but our bound is 2m + 1. Therefore our estimate
formula needs to be improved when q is not a prime.

For fixed q the degree of regularity is O(logq D). Consider now a Gröbner
basis attack on an HFE system of degreeD. We continue to make the assumption
that these algorithms will terminate at degree equal to the degree of regularity or
shortly after this. The runtime of this algorithm will be O(n3Dreg). Assuming that
the security parameter is chosen in such a way that D = O(nα), the runtime for
the Gröbner basis attack on an HFE system over any base field will be 2O(log(n)2);
that is, it will be quasi-polynomial.

On the other hand, suppose that q itself is a component of the security
parameter and is taken to be of scale O(n) (this assumption is reasonable since
it will only increase the computation complexity for HFE systems by the scale
of O(log2 n)). If the bound above is asymptotically sharp then the degree of
regularity will be at least of the scale O(n), and therefore inverting HFE systems
will be exponential.

We do not expect or believe the bound obtained in Theorem 4.2 to be optimal
in any degree of generality. We compare the bound (q−1)(blogq(D−1)c+1)/2+2
with that obtained by Dubois and Gama for a large number of values of n and D
and prime q from [9]. The tables Appendix C give a detailed comparison of our
bound with the bound calculated in [9]. As n becomes large relative to q, the two
bounds appear to be getting closer, though ours are frequently slightly higher. It
seems possible that there may be a tighter upper bound of the form cq logq(D)
for some scalar c when q is a prime. The discontinuities in the Dubois-Gama
data are close to the discontinuities of blogq(D − 1)c and the jump size seems
proportional to q.



5 Conclusion

By finding explicit non-trivial relations, we prove that the degree of regularity of
a multivariate quadratic cryptosystem over a field of arbitrary characteristic q is
bounded above by a simple linear function of its Q-Rank and q. These universal
estimate formulas for the degree of regularity for HFE systems for all finite fields
allow us to show that if the degree D of the HFE formula is fixed and the number
of variables increased, the complexity of a Gröbner basis attack on this system
will grow as a polynomial function in n; if, on the other hand, the degree of the
HFE polynomial is O(nα), then the algorithm will take quasi-polynomial time,
as was observed in the case q = 2 in [12].

Our bounds on the degree of regularity are not likely to be optimal even
for large n - we look for relations involving a single polynomial rather than the
whole polynomial systems to prove our estimates. We expect in general that there
will be some non-trivial relations resulting from relations between polynomials
in subsystems, which have smaller degree than relations coming from single
polynomials. On the other hand there is a surprising similarity between our
bounds and those found by Dubois and Gama using a very different approach.
Of course, it is possible that neither bound is close to being optimal and it would
be interesting to run experimental trials for large values of n, D and q. However,
memory limitations prevent us from being able to do this at sufficiently large
values. Taking all this into account, we conjecture that our formulas should give
a good asymptotic estimate (up to a linear factor) of the degree of regularity in
the case q when is prime. If this is true, this would imply that inverting an HFE
system with q of size O(n) is actually exponential.
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tation of semi-regular overdetermined algebraic equations. In: International Con-
ference on Polynomial System Solving - ICPSS, pp 71 -75. Nov 2004

2. Bettale L. and Faugère J.-C and Perret, L: Cryptanalysis of Multivariate and Odd-
Characteristic HFE Variants, Public Key Cryptography, 2011, 441-458, Lecture
Notes in Computer Science, V.6571, Springer, 2011



3. Ding, J.: Mutants and its impact on polynomial solving strategies and algorithms.
Privately distributed research note, University of Cincinnati and Technical Uni-
versity of Darmstadt, 2006.

4. Ding, J., Buchmann, J., Mohamed, M., Mohamed, W., Weinmann, R.-P.: Mutant
XL, First International Conference on Symbolic Computation and Cryptography
– SCC 2008

5. Ding, J., Gower, J., Schmidt, D.: Multivariate Public Key Cryptography, Advances
in Information Security series, Springer, 2006.

6. Ding, J., Hodges, T.J., Kruglov, V.: Growth of the ideal generated by a quadratic
boolean function. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp.
13-27. Springer, Berlin (2010)

7. Ding, J., Hodges, T.J., Kruglov, V., Schmidt, D., Tohaneanu, S.: Growth of the
ideal generated by a multivariate quadratic function over GF(3), preprint

8. Ding, J., Schmidt, D., Werner, F.: Algebraic attack on HFE revisited. In: Wu, T.-
C., Lei, C.-L., Rijmen V., Lee, D.-T. (eds.) Information Security, 11th International
Conference, ISC 2008. LNCS, vol. 5222, pp. 215-227. Springer, Berlin (2008)

9. Dubois, V., Gama, N.: The degree of regularity of HFE systems. In: Abe, M. (ed.)
Advances in Cryptology - ASIACRYPT 2010 - 16th International Conference on
the Theory and Application of Cryptology and Information Security. LNCS, vol.
6477, pp. 557-576. Springer, Berlin (2010)

10. Faugère, J.-C., Joux, A.: Algebraic cryptanalysis of hidden field equation (HFE)
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A Degree of Regularity

Let F be a finite field with |F| = q. Denote by B =
⊕N

k=0Bk a graded finite
dimensional algebra over F. Let V ⊂ Bd be a homogeneous subspace. Then for
all j we have a natural map φj : Bj ⊗V → BjV given by φ(

∑
bi ⊗ vi) =

∑
bivi.

Let Rj(V ) = kerφj . Inside Rj(V ) there is a subspace of “trivial relations” Tj(V )
spanned by the elements

1. b(v ⊗ w − w ⊗ v) where v, w ∈ V and b ∈ Bj−d;
2. b(vq−1 ⊗ v) where v ∈ V and b ∈ Bj−(q−1)d.

A similar basis-dependent definition of trivial relations was give in [9]. It can be
shown that these two definitions coincide.

Following Dubois and Gama [9], we define the degree of regularity of V to
be the degree of the first space BjV in which non-trivial relations occur.

Definition A.1. For a homogeneous subspace V ⊂ Bd, the degree of regularity
of V is defined to be

Dreg(V ) = min{j | Tj−d(V ) ( Rj−d(V )}

Let A be a filtered algebra over F and let GrA =
⊕

j Aj/Aj+1. Let V be a
subspace of Aj . We denote by V̄ its image in GrA; that is, V̄ = V + Aj−1 ⊂
Aj/Aj−1.

Definition A.2. For a subspace V ⊂ Ad, we define the degree of regularity of
V by

Dreg(V ) =

{
d if dim V̄ < dimV

Dreg(V̄ ) otherwise

Extension of the base field does not affect the degree of regularity.

Theorem A.3. Let B be a graded algebra over F, let K be an extension field of
F and let B̃ = K⊗F B. Let Ṽ = K⊗ V ⊂ B̃. Then Dreg(V ) = Dreg(Ṽ ).

Secondly, the degree of regularity of a subspace is at least that of the original
space.

Theorem A.4. Let B be a graded algebra. Let V be a homogeneous subspace
and let V ′ be a subspace of V . Then Dreg(V ) ≤ Dreg(V ′).



B Quadratic Operators

Let K be an extension of F of degree n; hence |K| = qn. An F-quadratic function
P : K → K takes the form

P (X) =
∑
i,j

aijX
qi

Xqj

+
∑

i

biX
qi

+ c

for some aij , bi, c ∈ K.
Fix a dual basis {ei ∈ K, xi ∈ K∗ = HomF(K,F)} for K over F. Define

A = Fun(K,F) = F[x1, . . . , xn]

Note that xq
i = xi andA is naturally isomorphic to F[T1, . . . , Tn]/(T q

1−T1, . . . , T
q
n−

Tn). Note also that dimF A = qn and a basis for A is given by all monomials of
the form

xi1
1 . . . xin

n , where 0 ≤ ij ≤ q − 1.

Analogously we have that

Ã = Fun(K,K) = K[X]

where Xqn

= X. It can be easily verified that

Ã ∼= K⊗F A = K[x1, . . . , xn]

This isomorphism identifies X with the element
∑

i eixi.
We can filter both of these algebra by degree over F. Thus for A we define

A0 = F, A1 =
∑

i

Fxi + F, Ai+1 = A1Ai

For Ã we note that the maps Xqi

are F-linear and that they span the K-space
of F-linear maps from K to K. Thus we define

Ã0 = K, Ã1 =
∑

i

KXqi

+ K, Ãi+1 = Ã1Ãi

Recall from basic Galois theory that
∑

i KXqi

=
∑

i Kxi. From this it follows
easily that Ãi

∼= K⊗F Ai and that

B̃ = GrÃ ∼= K⊗F GrA = K⊗F B.

Define X̄i = Xqi

+ Ã0 ∈ B̃1 and x̄i = xi + A0 ∈ B1. Note that X̄q = 0 and
x̄q = 0 for all i. Note also that X̄i =

∑
i e

qi

i x̄i and that B̃1 =
∑

Kx̄i. Hence

B̃ = K[X̄1, . . . , X̄n] = K[x̄1, . . . , x̄n].

Now consider a quadratic operator P . Let pi = xi ◦ P and let V =
∑

Fpi.



Theorem B.1.
∑

Kpi =
∑

KP qi

.

Proof. Note that ∑
Kpi = {L ◦ P | L ∈

∑
Kxi}

= {L ◦ P | L ∈
∑

KXqi

}

=
∑

KP qi

since Xqi ◦ P = P qi

.

Let P̄i be the image of P qi

in B̃; that is, P̄i = P qi

+ Ã1 .

Corollary B.2.
∑

Kp̄i =
∑

KP̄i.

Proof.∑
Kp̄i =

∑
K(pi +A1) =

∑
Kpi + Ã1 =

∑
K(P qi

+ Ã1) =
∑

KP̄i.

C Comparison with Dubois-Gama Bounds

The following tables give a detailed comparison of our bound with the bound
calculated in [9].

In these tables, the symbol D stands for the bound on the degree of the HFE
polynomial used in [9]. Rather than restrict by the total degree D of the HFE
operator, their restriction is given by

P (X) =
∑

i,j≤D

aijX
qi+qj

+
∑

qi≤D

biX
qi

+ c .

Thus D is one less than the number of variables involved in the polynomial P0

and so Q-Rank ≤ D + 1. In the same row as D, DG Dreg stands for the bound
on the degree of regularity given in [9], and DH Dreg stands for the bound
obtained from Theorem 4.2 using D + 1 in place of Q-Rank. Thus DH Dreg
= (q − 1)(D + 1)/2 + 2.

The authors would like to thank Vivien Dubois and Nicolas Gama for pro-
viding the detailed data that made this comparison possible.



Table 1. Comparison with Dubois-Gama bound

q = 3 q = 5 q = 7 q = 11 q = 13 q = 17 q = 19 q = 23
Dreg Dreg Dreg Dreg Dreg Dreg Dreg Dreg

n D DG DH D DG DH D DG DH D DG DH D DG DH D DG DH D DG DH D DG DH
8 3 5 6 2 6 8 2 6 11 2 6 17 2 6 20 2 6 26 2 6 29 2 6 35
12 3 5 6 3 7 10 2 7 11 2 7 17 2 7 20 2 7 26 2 7 29 2 7 35
16 3 6 6 3 9 10 2 9 11 2 9 17 2 9 20 2 9 26 2 9 29 2 9 35
20 4 7 7 3 10 10 3 12 14 2 11 17 2 11 20 2 11 26 2 11 29 2 11 35
24 4 7 7 3 10 10 3 13 14 2 13 17 2 13 20 2 13 26 2 13 29 2 13 35
28 4 7 7 3 10 10 3 14 14 2 14 17 2 14 20 2 14 26 2 14 29 2 14 35
32 4 7 7 3 10 10 3 14 14 2 16 17 2 16 20 2 16 26 2 16 29 2 16 35
36 4 7 7 3 10 10 3 14 14 3 21 22 2 18 20 2 18 26 2 18 29 2 18 35
40 4 7 7 3 10 10 3 14 14 3 22 22 2 20 20 2 20 26 2 20 29 2 20 35
44 4 7 7 3 10 10 3 14 14 3 22 22 2 21 20 2 21 26 2 21 29 2 21 35
48 4 7 7 3 10 10 3 14 14 3 22 22 3 25 26 2 23 26 2 23 29 2 23 35
52 5 8 8 3 10 10 3 14 14 3 22 22 3 25 26 2 24 26 2 25 29 2 25 35
56 5 8 8 4 12 12 3 14 14 3 22 22 3 25 26 2 24 26 2 25 29 2 25 35
60 5 8 8 4 12 12 3 14 14 3 22 22 3 25 26 2 24 26 2 25 29 2 25 35
64 5 8 8 4 12 12 3 14 14 3 22 22 3 25 26 2 24 26 2 25 29 2 25 35
68 5 8 8 4 12 12 3 14 14 3 22 22 3 25 26 2 24 26 2 25 29 2 25 35
72 5 8 8 4 12 12 3 14 14 3 22 22 3 25 26 2 24 26 2 25 29 2 25 35
76 5 8 8 4 12 12 3 14 14 3 22 22 3 25 26 3 32 34 2 25 29 2 25 35
80 5 8 8 4 12 12 3 14 14 3 22 22 3 25 26 3 32 34 2 25 29 2 25 35
84 5 8 8 4 12 12 3 14 14 3 22 22 3 25 26 3 32 34 2 25 29 2 25 35
88 5 8 8 4 12 12 3 14 14 3 22 22 3 25 26 3 32 34 3 36 38 2 25 35
92 5 8 8 4 12 12 3 14 14 3 22 22 3 25 26 3 32 34 3 36 38 2 25 35
96 5 8 8 4 12 12 3 14 14 3 22 22 3 25 26 3 32 34 3 36 38 2 25 35
100 5 8 8 4 12 12 3 14 14 3 22 22 3 25 26 3 32 34 3 36 38 2 25 35
104 5 8 8 4 12 12 3 14 14 3 22 22 3 25 26 3 32 34 3 36 38 2 25 35
108 5 8 8 4 12 12 3 14 14 3 22 22 3 25 26 3 32 34 3 36 38 2 25 35
112 5 8 8 4 12 12 3 14 14 3 22 22 3 25 26 3 32 34 3 36 38 2 25 35
116 5 8 8 4 12 12 3 14 14 3 22 22 3 25 26 3 32 34 3 36 38 2 25 35
120 5 8 8 4 12 12 3 14 14 3 22 22 3 25 26 3 32 34 3 36 38 2 25 35
124 5 8 8 4 12 12 3 14 14 3 22 22 3 25 26 3 32 34 3 36 38 3 42 46


