
Smaller decoding exponents:
ball-collision decoding

Daniel J. Bernstein1, Tanja Lange2, and Christiane Peters2

1 Department of Computer Science
University of Illinois at Chicago, Chicago, IL 60607–7045, USA

djb@cr.yp.to
2 Department of Mathematics and Computer Science

Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, Netherlands
tanja@hyperelliptic.org, c.p.peters@tue.nl

Abstract. Very few public-key cryptosystems are known that can en-
crypt and decrypt in time b2+o(1) with conjectured security level 2b

against conventional computers and quantum computers. The oldest of
these systems is the classic McEliece code-based cryptosystem.

The best attacks known against this system are generic decoding at-
tacks that treat McEliece’s hidden binary Goppa codes as random linear
codes. A standard conjecture is that the best possible w-error-decoding
attacks against random linear codes of dimension k and length n take
time 2(α(R,W )+o(1))n if k/n→ R and w/n→W as n→ ∞.

Before this paper, the best upper bound known on the exponent α(R,W )
was the exponent of an attack introduced by Stern in 1989. This paper
introduces “ball-collision decoding” and shows that it has a smaller expo-
nent for each (R,W ): the speedup from Stern’s algorithm to ball-collision
decoding is exponential in n.

Keywords: McEliece cryptosystem, Niederreiter cryptosystem, post-
quantum cryptography, attacks, information-set decoding, collision de-
coding

1 Introduction

In 1978, McEliece introduced a code-based public-key cryptosystem that has
maintained remarkable strength against every proposed attack. The top threats
against McEliece’s system have always been generic decoding algorithms that
decode random linear codes. The standard conjecture is that the best possible
generic decoding algorithm takes exponential time for any constant asymptotic
code rate R and constant asymptotic error fraction W : i.e., time 2(α(R,W )+o(1))n

for some positive real number α(R,W ) if k/n → R and w/n → W as n → ∞.
Here n is the code length, k is the code dimension, and w is the number of errors.

Permanent ID of this document: 0e8c929565e20cf63e6a19794e570bb1. Date:
2011.05.27. This work was supported by the Cisco University Research Program, by
the National Institute of Standards and Technology under grant 60NANB10D263,
and by the European Commission under Contract ICT-2007-216646 ECRYPT II.



2 D. J. Bernstein, T. Lange, C. Peters

Two decades ago a flurry of fundamental algorithmic improvements produced
a new upper bound on the optimal decoding exponent α(R,W ). The upper
bound is the exponent of a 1989 algorithm by Stern [50]. This upper bound
arises from an asymptotic binomial-coefficient optimization and does not have a
simple formula, but it can be straightforwardly computed to high precision for
any particular (R,W ). For example, for W = 0.04 and R = 1 +W log2W + (1−
W ) log2(1−W ) = 0.7577 . . ., Stern’s algorithm shows that α(R,W ) ≤ 0.0809 . . ..

There have also been many polynomial-factor speedups in generic decod-
ing algorithms; there are dozens of papers on this topic, both inside and out-
side cryptography. Here is an illustration of the cumulative impact of many
of the speedups. McEliece’s original parameter suggestions (“n = 1024, k =
524, t = 50”) take about 5243

(
1024
50

)
/
(
500
50

)
≈ 281 operations to break by the sim-

ple information-set-decoding attack explained in McEliece’s original paper [41,
Section 3]. (McEliece estimated the attack cost as 5243(1− 50/1024)−524 ≈ 265;
this underestimate was corrected by Adams and Meijer in [2, Section 3].) The
attack we presented in [8], thirty years after McEliece’s paper, builds on several
improvements and takes only about 260.5 operations for the same parameters.
That attack was carried out successfully, decrypting a challenge ciphertext. More
recent improvements include [28] and [45]; see Section 4 for a more comprehen-
sive discussion of the literature.

However, polynomial factors are asymptotically 2o(n), and thus have no rele-
vance to the exponent α(R,W ) in 2(α(R,W )+o(1))n. The best known upper bound
on α(R,W ) has been unchanged since 1989.

Contents of this paper. This paper presents smaller upper bounds on the
decoding exponent α(R,W ). Specifically, this paper introduces a generic decod-
ing algorithm and demonstrates that this algorithm is, for every (R,W ), faster
than Stern’s algorithm by a factor exponential in n. We call this algorithm “ball-
collision decoding” because of a geometric interpretation explained in Section 4.
The change in the exponent is not very large — for example, this paper uses
ball-collision decoding to demonstrate that α(R,W ) ≤ 0.0807 . . . for the (R,W )
given above — but it is the first exponential improvement in decoding complexity
in more than twenty years.

This paper also evaluates the exact cost of ball-collision decoding, using the
same bit-operation-counting rules as in the previous literature, and uses this
evaluation to illustrate the impact of ball-collision decoding upon cryptographic
applications. For example, the parameters (6624, 5129, 117) were proposed in
[8, Section 7] at a 256-bit security level against a state-of-the-art refinement of
Stern’s algorithm; this paper shows that ball-collision decoding costs 2.6 times
fewer bit operations. At a theoretical 1000-bit security level the improvement
grows to 15.5. These concrete figures are consistent with the asymptotic analysis.

Of course, actually breaking these parameters remains very far out of reach,
and these results should not be interpreted as damaging the viability of the
McEliece cryptosystem. However, these results do raise new questions regard-
ing the proper choice of parameters for the McEliece cryptosystem. Section 8
discusses the problem of parameter selection for code-based cryptography.



Smaller decoding exponents: ball-collision decoding 3

We also wrote a straightforward reference implementation of ball-collision
decoding, and tested the implementation on a long series of random challenges
at a much lower security level. The costs and success probabilities observed in
these experiments matched the formulas shown in this paper.

Attack model. “Attacks” above refer only to passive single-target inversion
attacks. The original McEliece cryptosystem, like the original RSA cryptosystem,
is really just a trapdoor one-way function; when used naively as a public-key
cryptosystem it is trivially broken by chosen-ciphertext attacks such as Berson’s
attack [11] and the Verheul–Doumen–van Tilborg attack [53].

Protecting the McEliece system against these attacks, to meet the standard
notion of IND-CCA2 security for a public-key cryptosystem, requires appropriate
padding and randomization, similar to RSA-OAEP. As shown by Kobara and
Imai in [36], adding this protection does not significantly increase the cost of the
McEliece cryptosystem.

2 Review of the McEliece cryptosystem

The public key in the McEliece cryptosystem consists of a random-looking rank-
k matrix G ∈ Fk×n2 . The sender encrypts a message m in Fk2 by first multiplying
it with the matrix G, producing mG; choosing uniformly at random a word e in
Fn2 of Hamming weight w; and adding e to mG, producing a ciphertext mG+ e.
The cryptosystem parameters are n, k, w.

The legitimate receiver decrypts mG+ e using a secret key which consists of
a secret decoding algorithm producing the error vector e given mG + e. The
details are not relevant to our attack and can be found in, e.g., [44].

An attacker is faced with the problem of determining e given G and mG+ e.
Note that finding e is equivalent to finding the message m: subtracting e from
mG+ e produces mG, and then simple linear transformations produce m.

The set Fk2G =
{
mG : m ∈ Fk2

}
is called a linear code of length n and di-

mension k, specifically the linear code generated by G. The matrix G is called
a generator matrix for this code. The elements of Fk2G are called codewords.
If the linear code Fk2G equals {c ∈ Fn2 : Hc = 0} then the matrix H is called a
parity-check matrix for the code.

Without loss of generality one can assume that the matrix G in a CCA2-secure
version of the McEliece cryptosystem is given in systematic form G = (Ik|−AT )
where Ik is a k×k identity matrix and A an (n−k)×k matrix. Then the matrix
H = (A|In−k) is a parity-check matrix for the code generated by G.

An information set Z for H is a set of k integers in {1, 2, . . . , n} for which
the n − k columns of H that are not indexed by Z are linearly independent.
Applying Gaussian elimination to those n − k columns shows that codewords
are determined by their Z-indexed components. For example, {1, 2, . . . , k} is an
information set for H = (A|In−k).

Fix m ∈ Fk2 and e ∈ Fn2 with wt(e) = w. Write c = mG. By linearity one
has H(c + e) = Hc + He = He since Hc = 0. The result s = He is called the



4 D. J. Bernstein, T. Lange, C. Peters

syndrome of e. It is the sum of the w columns of H indexed by the positions of
1’s in e. The attacker’s task is equivalent to finding e given H and s = He.

3 The ball-collision-decoding algorithm

This section introduces ball-collision decoding. It first states the algorithm and
then discusses various optimizations. Section 4 explains how this algorithm re-
lates to previous algorithms.

The algorithm is given a parity-check matrix H ∈ F
(n−k)×n
2 , a syndrome

s ∈ Fn−k2 , and a weight w ∈ {0, 1, 2, . . .}. The goal of the algorithm is to find a
corresponding error vector e: i.e., a vector e ∈ Fn2 of weight w such that s = He.

Ball-collision decoding has its roots in information-set decoding, which was
used against the McEliece system in, e.g., [50], [17], [18], and [8]. The previous
algorithms select a random information set in the parity-check matrix and then
search for vectors having a particular pattern of non-zero entries. Ball-collision
decoding is similar but searches for a more complicated, and more likely, pattern.
See Section 4 for further discussion of the previous work.

The reader is encouraged to consider, while reading the algorithm, the case
that the algorithm is given a matrix H already in systematic form and that it
chooses Z = {1, 2, . . . , k} as information set. The matrix U in Step 4 is then
the identity matrix In−k. The algorithm divides H into blocks, and divides
the syndrome s into corresponding blocks, as specified by algorithm parameters
`1, `2:

H =

(
A1 I1 0
A2 0 I2

)
, s =

(
s1
s2

)
,

where s1 ∈ F`1+`22 , s2 ∈ Fn−k−`1−`22 , A1 ∈ F
(`1+`2)×k
2 , A2 ∈ F

(n−k−`1−`2)×k
2 ,

and each Ii is an identity matrix.

One iteration of ball-collision decoding:
Constants: n, k, w ∈ Z with 0 ≤ w ≤ n and 0 ≤ k ≤ n.
Parameters: p1, p2, q1, q2, k1, k2, `1, `2 ∈ Z with 0 ≤ k1, 0 ≤ k2, k = k1 + k2,

0 ≤ p1 ≤ k1, 0 ≤ p2 ≤ k2, 0 ≤ q1 ≤ `1, 0 ≤ q2 ≤ `2,
and 0 ≤ w − p1 − p2 − q1 − q2 ≤ n− k − `1 − `2.

Input: H ∈ F
(n−k)×n
2 and s ∈ Fn−k2 .

Output: Zero or more vectors e ∈ Fn2 with He = s and wt(e) = w.

1. Choose a uniform random information set Z. Subsequent steps of the algo-
rithm write “FZ2 ” to refer to the subspace of Fn2 supported on Z.

2. Choose a uniform random partition of Z into parts of sizes k1 and k2. Sub-
sequent steps of the algorithm write “Fk12 ” and “Fk22 ” to refer to the corre-
sponding subspaces of FZ2 .

3. Choose a uniform random partition of {1, 2, . . . , n} \ Z into parts of sizes
`1, `2, and n − k − `1 − `2. Subsequent steps of the algorithm write “F`12 ”
and “F`22 ” and “Fn−k−`1−`22 ” to refer to the corresponding subspaces of

F
{1,2,...,n}\Z
2 .



Smaller decoding exponents: ball-collision decoding 5

4. Find an invertible U ∈ F
(n−k)×(n−k)
2 such that the columns of UH indexed

by {1, 2, . . . , n}\Z are an (n−k)×(n−k) identity matrix. Write the columns

of UH indexed by Z as

(
A1

A2

)
with A1 ∈ F

(`1+`2)×k
2 , A2 ∈ F

(n−k−`1−`2)×k
2 .

5. Write Us as

(
s1
s2

)
with s1 ∈ F`1+`22 , s2 ∈ Fn−k−`1−`22 .

6. Compute the set S consisting of all triples (A1x0+x1, x0, x1) where x0 ∈ Fk12 ,
wt(x0) = p1, x1 ∈ F`12 , wt(x1) = q1.

7. Compute the set T consisting of all triples (A1y0 + y1 + s1, y0, y1) where
y0 ∈ Fk22 , wt(y0) = p2, y1 ∈ F`22 , wt(y1) = q2.

8. For each (v, x0, x1) ∈ S:
For each y0, y1 such that (v, y0, y1) ∈ T :

If wt(A2(x0 + y0) + s2) = w − p1 − p2 − q1 − q2:
Output x0 + y0 + x1 + y1 +A2(x0 + y0) + s2.

Note that Step 8 is a standard “join” operation between S and T ; it can be
implemented efficiently by sorting, by hashing, or by simple table indexing. In
[8, Section 6] we describe an efficient implementation of essentially the same
operation using only about 2`1+`2+1 bits of memory. See Sections 5 and 6 for
further discussion of arithmetic costs and memory-access costs.

Theorem 3.1 (Correctness of ball-collision decoding) The set of output
vectors e of the ball-collision decoding algorithm is the set of vectors e that satisfy
He = s and have weights p1, p2, q1, q2, w − p1 − p2 − q1 − q2 in Fk12 , Fk22 , F`12 ,
F`22 , and Fn−k−`1−`22 respectively.

Proof. Each element (v, x0, x1) ∈ S satisfies x0 ∈ Fk12 with wt(x0) = p1; v =
A1x0 +x1 and x1 ∈ F`12 with wt(x1) = q1. Similarly each element (v, y0, y1) ∈ T
satisfies y0 ∈ Fk22 with wt(y0) = p2; v = A1y0 + y1 + s1; y1 ∈ F`22 with wt(y1) =
q2. Now, with Z-indexed columns visualized as coming before the remaining
columns, we have

UHe = UH

 x0+y0
x1+y1

A2(x0+y0)+s2

 =

(
A1(x0+y0)+x1+y1

A2(x0+y0)+A2(x0+y0)+s2

)
=

(
s1
s2

)
= Us

so He = s. Furthermore, x0 + y0 ∈ Fk1+k22 has weights p1, p2 in Fk12 ,F
k2
2 ;

x1 + y1 ∈ F`1+`22 has weights q1, q2 in F`12 ,F
`2
2 ; and wt(A2(x0+y0)+s2) =

w−p1−p2−q1−q2.
Conversely, the iteration finds every vector e having this weight distribution

and satisfying He = s. Indeed, write e as x0 + y0 + x1 + y1 + e2 with x0 ∈
Fk12 , y0 ∈ Fk22 , x1 ∈ F`12 , y1 ∈ F`22 , and e2 ∈ Fn−k−`1−`22 . By hypothesis the
weights of x0, y0, x1, y1, e2 are p1, p2, q1, q2, w − p1 − p2 − q1 − q2, respectively.
Now define v = A1x0 +x1. The equation UHe = Us implies v = A1y0 + y1 + s1;
and e2 = A2(x0 + y0) + s2. Hence (v, x0, x1) ∈ S and (v, y0, y1) ∈ T . Finally
wt(A2(x0 + y0) + s2) = wt(e2) = w− p1 − p2 − q1 − q2 so the algorithm prints e
as claimed. ut



6 D. J. Bernstein, T. Lange, C. Peters

Finding an information set. The simplest way to choose a uniform ran-
dom information set is to repeatedly choose a uniform random size-k subset
Z ⊆ {1, 2, . . . , n} until the n− k columns of H indexed by {1, 2, . . . , n} \ Z are
linearly independent. Standard practice (see, e.g., Stern [50]) is to eliminate the
fruitless Gaussian-elimination steps here, at the expense of negligible bias, by
assembling the information set one column at a time, ensuring that each newly
added column is linearly independent of the previously selected columns. After
this optimization there is only one Gaussian-elimination step per iteration.

Reusing intermediate sums. Computing the vector A1x0 for a weight-p1
word x0 in Fk12 can be done by adding the specified p1 columns of A1 in p1 − 1
additions in F`1+`22 .

Computing A1x0 for all the
(
k1
p1

)
vectors x0 can be done more efficiently than

repeating this process for each of them. Start by computing all
(
k1
2

)
sums of 2

columns of A1; each sum costs one addition in F`1+`22 . Then compute all
(
k1
3

)
sums of 3 columns of A1 by adding one extra column to the previous results. Pro-
ceed in the same way until all

(
k1
p1

)
sums of p1 columns of A1 are computed. This

produces all required sums in only marginally more than one F`1+`22 addition
per sum; see Section 5 for a precise operation count.

Early abort. The vector A2(x0 + y0) + s2 is computed as a sum of p1 + p2 + 1
vectors of length n−k−`1−`2. Instead of computing the sum on all n−k−`1−
`2 positions one computes the sum row by row and simultaneously checks the
weight. If the weight exceeds w−p1−p2−q1−q2 one can discard this particular
pair (x0, y0).

We comment that one can further reduce the cost of this step by precomputing
sums of smaller sets of columns, but we do not use this idea in our analysis,
because it is not critical for the algorithm’s performance.

4 Relationship to previous algorithms

This section discusses the relationship of ball-collision decoding to previous
information-set-decoding algorithms.

Collision decoding vs. ball-collision decoding. We use the name “collision
decoding” for the special case q1 = q2 = 0 of ball-collision decoding. The idea
of collision decoding is more than twenty years old: Stern’s algorithm in [50] is,
aside from trivial details, exactly the special case q1 = q2 = 0, p1 = p2, k1 ≈ k2.
Dumer in [26] independently introduced the core idea, although in a more limited
form, and in [27] achieved an algorithm similar to Stern’s.

All state-of-the-art decoding attacks since [50] have been increasingly opti-
mized forms of collision decoding. Other approaches to decoding, such as “gra-
dient decoding” ([4]), “supercode decoding” ([5]), and “statistical decoding” (see
[3] and [43]), have never been competitive with Stern’s algorithm. This does not
mean that those approaches should be ignored; our generalization from collision



Smaller decoding exponents: ball-collision decoding 7

decoding to ball-collision decoding is inspired by one of the steps in supercode
decoding.

Collision decoding searches for collisions in F`1+`22 between points A1x0 and
points A1y0 + s1. Ball-collision decoding expands each point A1x0 into a small
ball (in the Hamming metric), namely {A1x0 + x1 : x1 ∈ F`12 ,wt(x1) = q1}; sim-
ilarly expands each point A1y0 into a small ball; and searches for collisions be-
tween these balls.

From the perspective of ball-collision decoding, the fundamental disadvantage
of collision decoding is that errors are required to avoid an asymptotically quite
large stretch of `1 + `2 positions. Ball-collision decoding makes a much more
reasonable hypothesis, namely that there are asymptotically increasingly many
errors in those positions. It requires extra work to enumerate the points in each
ball, but the extra work is only about the square root of the improvement in suc-
cess probability. The cost ratio is exponential when all parameters are optimized
properly; see Section 7.

Collision decoding also has a secondary disadvantage compared to ball-collision
decoding: its inner loop is slower, since computing A1x0 for a new x0 is consid-
erably more expensive than adding x1 for a new x1. The cost ratio here is only
polynomial, and is not relevant to the exponents (see Section 7), but is accounted
for in the bit-operation count (see Section 5). This disadvantage of collision de-
coding is also visible in the number of memory accesses to A1 (see Section 6);
however, standard practice in the literature on this topic is to count the number
of bit operations involved in arithmetic and to ignore the cost of memory access.

Additional credits. The simplest form of information-set decoding, introduced
by Prange in [47], did not allow errors in the information set. For asymptotic
analyses see [41], [1], and [2].

The idea of allowing errors was published by Lee and Brickell in [38], by
Leon in [39], and by Krouk in [37], but without Stern’s collision idea; in the
terminology of ball-collision decoding, with p2 = 0, q1 = q2 = 0, and `2 = 0.
For each pattern of p1 errors in k columns, Lee and Brickell checked the weight
of the remaining n − k columns; Leon and Krouk required `1 columns to have
weight 0, and usually checked only those columns. For asymptotic analyses see
[37], [23], and [24].

Overbeck and Sendrier [44] give a visual comparison of the algorithms by com-
paring to which interval they restrict how many errors. Figure 4.1 extends their
picture to include ball-collision decoding. It shows that the new algorithm allows
errors in an interval that had to be error-free in Leon’s and Stern’s algorithms.

The idea of allowing errors everywhere can be extracted, with considerable
effort, from the description of supercode decoding in [5]. After a detailed anal-
ysis we have concluded that the algorithm in [5] is much slower than collision
decoding. The same algorithm is claimed in [5] to have smaller exponents than
collision decoding (with astonishing gaps, often 15% or more), but this claim is
based on a chain of exponentially large inaccuracies in the algorithm analysis
in [5]. The starting point of the chain is [5, “Corollary 12”], which claims size(
k
e1

)(
y
e2

)
/2by for lists that actually have size

(
k
e1

)(
y
e2

)b
/2by.



8 D. J. Bernstein, T. Lange, C. Peters

Plain information-set decoding

0 w

Lee-Brickell
p w − p

k ℓ n− k − ℓ
Leon

p 0 w − p

Stern
p p 0 w − 2p

Ball-collision decoding (new)

p p q q w − 2p− 2q

Fig. 4.1. Error positions hypothesized by various decoding algorithms.

The idea of allowing errors everywhere can also be found in the much more
recent paper [28], along with a polynomial-factor “birthday” speedup obtained
by dropping Stern’s left-right separation. The algorithm analysis by Finiasz and
Sendrier in [28] concludes that the overall “gain compared with Stern’s algo-
rithm” is a constant times “ 4

√
πp/2”, which is bounded by a polynomial in n.

Our own assessment is that if parameters had been chosen more carefully then
the algorithm of [28] would have led to an exponential improvement over col-
lision decoding, contrary to the conclusions in [28]. This algorithm would still
have retained the secondary disadvantage described above, and therefore would
not have been competitive with ball-collision decoding.

A more detailed analysis of the “birthday” speedup in collision decoding ap-
peared in [45] along with an optimized generalization to Fq. These modifications
can be adapted to ball-collision decoding but would complicate the algorithm
statement and analysis without changing the exponent of binary decoding; we
have skipped these modifications for simplicity.

One way to speed up Gaussian elimination is to change only one information-
set element in each iteration. This idea was introduced by Omura, according to
[22, Section 3.2.4]. It was applied to increasingly optimized forms of information-
set decoding by van Tilburg in [51] and [52], by Chabanne and Courteau in
[19], by Chabaud in [20], by Canteaut and Chabanne in [16], by Canteaut and
Chabaud in [17], and by Canteaut and Sendrier in [18]. In [8] we improved the
balance between Gaussian-elimination cost and error-searching cost by changing
c information-set elements in each iteration for an optimized value of c. The
ideas of reusing sums and aborting weight calculations also appeared in [8], in
the context of an improved collision-decoding algorithm.



Smaller decoding exponents: ball-collision decoding 9

5 Complexity analysis

This section analyzes the complexity of ball-collision decoding. In particular,
this section analyzes the success probability of each iteration and the number of
bit operations needed for each iteration.

Success probability. Assume that e is a uniform random vector of weight w.
One iteration of ball-collision decoding finds e exactly if it has the right weight
distribution, namely weight p1 in the first k1 positions specified by the informa-
tion set, weight p2 in the remaining k2 positions specified by the information set,
weight q1 on the first `1 positions outside the information set, and weight q2 on
the next `2 positions outside the information set.

The probability that e has this weight distribution is, by a simple counting
argument, exactly

b(p1, p2, q1, q2, `1, `2) =

(
n

w

)−1(
n− k − `1 − `2

w − p1 − p2 − q1 − q2

)(
k1
p1

)(
k2
p2

)(
`1
q1

)(
`2
q2

)
.

The expected number of iterations of the outer loop is, for almost all H, very
close to the reciprocal of the success probability of a single iteration. We explicitly
disregard, without further comment, the extremely unusual codes for which the
average number of iterations is significantly different from the reciprocal of the
success probability of a single iteration. For further discussion of this issue and
how unusual it is see, e.g., [24] and [10].

Gaussian elimination. There are many ways to speed up Gaussian elimination,
as discussed in Section 4; implementors are encouraged to use those optimiza-
tions. However, in this paper we will be satisfied with a quite naive form of
Gaussian elimination, taking (1/2)(n− k)2(n+ k) bit operations; our interest is
in large input sizes, and elimination takes negligible time for those sizes.

Building the set S. The total cost of computing A1x0 for all x0 of Hamming
weight p1, using intermediate sums as explained in Section 3, is

(`1 + `2)

((
k1
2

)
+

(
k1
3

)
+ · · ·

(
k1
p1

))
.

Using L(k, p) =
∑p
i=1

(
k
i

)
as a shorthand, the costs can be written as (`1 +

`2) (L(k1, p1)− k1). The `1+`2 factor is the number of bit operations to compute
A1x0 from A1x

′
0 where x0 extends x′0 by a single bit.

Then for each x0 all
(
`1
q1

)
possible words x1 in F`12 of weight q1 are added to

A1x0, producing A1x0 + x1. For x1, as for x0, we loop over the possible sets
of indices, and reuse sums obtained from subsets. This slightly increases the
number of sums up to L(`1, q1), but decreases the cost of each sum down to a
single bit operation, computing A1x0 + x1 from A1x0 + x′1. Overall this step
takes min{1, q1}

(
k1
p1

)
L(`1, q1) bit operations; note that for q1 = 0 the cost of this

step is indeed 0.
Each choice of (x0, x1) adds one element to S. Hence, the number of elements

in S equals exactly the number of choices for x0 and x1, i.e. #S =
(
k1
p1

)(
`1
q1

)
.



10 D. J. Bernstein, T. Lange, C. Peters

Building the set T . The set T is built similarly to the set S. The only difference
is that the expression A1y0 + y1 + s1 involves adding s1 and thus the single
columns (corresponding to weight-1 words y0) already cost (`1 + `2)

(
k2
1

)
bit

operations. In total this step takes (`1 + `2)L(k2, p2) + min{1, q2}
(
k2
p2

)
L(`2, q2).

The set T contains exactly #T =
(
k2
p2

)(
`2
q2

)
elements.

Checking collisions. The last step does one check for every (x0, x1, y0, y1)
satisfying the equation A1x0 + x1 = A1y0 + y1 + s1. There are

(
k1
p1

)(
k2
p2

)(
`1
q1

)(
`2
q2

)
choices of (x0, x1, y0, y1).

If the vectors v appearing in S and T were uniformly distributed among the
2`1+`2 possible values then on average #S ·#T · 2−`1−`2 checks would be done.
The expected number of checks is extremely close to this for almost all H; as
above we disregard the extremely unusual codes with different behavior.

Each check consists of computing wt(A2(x0 + y0) + s2) and testing whether it
equals w− p1 − p2 − q1 − q2. When using the early-abort weight calculation, on
average only 2(w− p1 − p2 − q1 − q2 + 1) bits of the result are computed before
the weight is found too high. Each bit of the result costs p1 + p2 bit operations
because x0 + y0 has weight p1 + p2.

Cost of one iteration. To summarize, the total cost per iteration of the inner
loop with parameters p1, p2, q1, q2, `1, `2 amounts to

c(p1, p2, q1, q2, `1, `2)

=
1

2
(n− k)2(n+ k) + (`1 + `2)

(
L(k1, p1) + L(k2, p2)− k1

)
+ min{1, q1}

(
k1
p1

)
L(`1, q1) + min{1, q2}

(
k2
p2

)
L(`2, q2)

+ 2(w − p1 − p2 − q1 − q2 + 1)(p1 + p2)

(
k1
p1

)(
k2
p2

)(
`1
q1

)(
`2
q2

)
2−`1−`2 .

6 Concrete parameter examples

This section considers concrete examples in order to show the speedup gained by
ball-collision decoding in comparison to collision decoding. The first parameters
were previously proposed to achieve 256-bit security against current attacks. We
designed the second parameters according to similar rules to achieve a 1000-bit
security level against current attacks. We do not mean to suggest that 1000-bit
security is of any real-world relevance; we consider it to illustrate the asymptotic
superiority of ball-collision decoding.

Finiasz and Sendrier in [28] presented “lower bounds on the effective work
factor of existing real algorithms, but also on the future improvements that
could be implemented”; and said that beating these bounds would require the
introduction of “new techniques, never applied to code-based cryptosystems”.
For each set of parameters we evaluate the Finiasz–Sendrier lower bound and
the costs of three algorithms:



Smaller decoding exponents: ball-collision decoding 11

(1) collision decoding (q1 = q2 = 0),
(2) collision decoding using the birthday trick from [28] as analyzed in [45], and
(3) ball-collision decoding.

Ball-collision decoding beats the Finiasz–Sendrier lower bound in both of these
examples. The main reason for this is that ball-collision decoding dodges the
secondary disadvantage described in Section 4; the lower bound assumes that
each new vector requires `1 + `2 bit operations to update A1x0, but in ball-
collision decoding each new vector requires just 1 bit operation to update x1.

We emphasize that all of these costs and bounds use the same model of com-
putation, counting the number of bit operations for arithmetic and disregarding
costs of memory access, copies, etc. A table-indexing join operation can easily
be carried out for free in this model. We would prefer a more carefully defined
model of computation that includes realistic memory-access costs, such as the
Brent–Kung circuit model [13], but the bit-operation model is simpler and is
standard in papers on this topic.

256-security revisited. According to [8, Section 7] a binary code with length
n = 6624, k = 5129, w = 117 achieves 256-bit security. The best collision-
decoding parameters are actually slightly below 2256 bit operations: they use
2181.4928 iterations (on average), each taking 274.3741 bit operations, for a total
of 2255.8669 bit operations.

Collision decoding with the birthday trick takes, with optimal parameters,
2255.54880 bit operations. The birthday trick increases the cost per iteration by a
factor of 2.2420 compared to the classical collision-decoding algorithm, to 275.5390

bit operations. However, the trick increases the chances of finding the desired
error vector noticeably, reducing the number of iterations by a factor of 2.7951,
to 2180.0099. Thus the birthday trick yields an overall 1.2467× speedup.

The Finiasz–Sendrier lower bound is 2255.1787 bit operations, 1.6112× smaller
than the cost of collision decoding.

Ball-collision decoding with parameters k1 = 2565, k2 = 2564, `1 = `2 = 47,
p1 = p2 = 8, and q1 = q2 = 1 needs only 2254.1519 bit operations to attack the
same system. On average the algorithm needs 2170.6473 iterations each taking
283.5046 bit operations.

Ball-collision decoding thus costs 3.2830× less than collision decoding, 2.6334×
less than collision decoding with the birthday trick, and 2.0375× less than the
Finiasz–Sendrier lower bound.

1000-bit security. Attacking a system based on a code of length n = 30332,
k = 22968, w = 494 requires 21000.9577 bit operations using collision decoding
with the optimal parameters k1 = k2 = 11484, `1 = `2 = 140, p1 = p2 = 27 and
q1 = q2 = 0.

The birthday trick reduces the cost by a factor of 1.7243, to 21000.1717 bit oper-
ations. This means that this system offers 1000-bit security against all previously
known attacks.

The Finiasz–Sendrier lower bound is 2999.45027 bit operations, 2.8430× smaller
than the cost of collision decoding and 1.6488× smaller than the cost of collision
decoding with the birthday trick.



12 D. J. Bernstein, T. Lange, C. Peters

Ball-collision decoding with parameters k1 = k2 = 11484, `1 = `2 = 156,
p1 = p2 = 29, and q1 = q2 = 1 needs only 2996.21534 bit operations. This is
26.767× smaller than the cost of collision decoding, 15.523× smaller than the
cost of collision decoding with the birthday trick, and 9.415× smaller than the
Finiasz–Sendrier lower bound.

7 Asymptotic complexity of ball-collision decoding

This section analyzes the asymptotic behavior of the cost of ball-collision decod-
ing, and shows that it always has a smaller asymptotic exponent than the cost
of collision decoding.

Input sizes. Fix a real number W with 0 < W < 1/2, and fix a real number R
with −W log2W − (1−W ) log2(1−W ) ≤ 1−R < 1.

Consider codes and error vectors of very large length n, where the codes have
dimension k ≈ Rn, and the error vectors have weight w ≈ Wn. More precisely,
fix functions k,w : {1, 2, . . .} → {1, 2, . . .} that satisfy limn→∞ k(n)/n = R and
limn→∞ w(n)/n = W ; more concisely, k/n→ R and w/n→W .

Attack parameters. Fix real numbers P,Q,L with 0 ≤ P ≤ R/2, 0 ≤
Q ≤ L, and 0 ≤ W − 2P − 2Q ≤ 1 − R − 2L. Fix ball-collision parameters
p1, p2, q1, q2, k1, k2, `1, `2 with pi/n→ P , qi/n→ Q, ki/n→ R/2, and `i/n→ L.

We have also analyzed more general asymptotic parameter spaces, for example
splitting P into P1, P2 where pi/n→ Pi. Balanced parameters always turned out
to be asymptotically optimal (as one would expect), so this section focuses on
the parameter space (P,Q,L) stated above. Note that the asymptotic optimality
of P1 = P2 does not imply the concrete optimality of p1 = p2; for example,
(p1, p2) = (2, 1) appears to be optimal for some small input sizes.

In the formulas below, expressions of the form x log2 x are extended (continu-
ously but not differentiably) to 0 at x = 0. For example, the expression P log2 P
means 0 if P = 0.

Success probability. We repeatedly invoke the standard asymptotic formula
for binomial coefficients, namely

1

n
log2

(
(α+ o(1))n

(β + o(1))n

)
→ α log2 α− β log2 β − (α− β) log2(α− β),

to compute the asymptotic exponent of the success probability of a single itera-
tion of ball-collision decoding:

B(P,Q,L) = lim
n→∞

1

n
log2

((
n

w

)−1(
n−k−`1−`2

w−p1−p2−q1−q2

)(
k1
p1

)(
k2
p2

)(
`1
q1

)(
`2
q2

))
= W log2W+(1−W ) log2(1−W )

+(1−R−2L) log2(1−R−2L)−(W−2P−2Q) log2(W−2P−2Q)

−(1−R−2L−(W−2P−2Q)) log2(1−R−2L−(W−2P−2Q))

+R log2(R/2)−2P log2 P−(R−2P ) log2(R/2−P )

+2L log2 L−2Q log2Q−2(L−Q) log2(L−Q).



Smaller decoding exponents: ball-collision decoding 13

The success probability of a single iteration is asymptotically 2n(B(P,Q,L)+o(1)).

Iteration cost. We similarly compute the asymptotic exponent of the cost of
an iteration:

C(P,Q,L)

= lim
n→∞

1

n
log2

((
k1
p1

)(
`1
q1

)
+

(
k2
p2

)(
`2
q2

)
+

(
k1
p1

)(
`1
q1

)(
k2
p2

)(
`2
q2

)
2−`1−`2

)
= max{(R/2) log2(R/2)− P log2 P − (R/2− P ) log2(R/2− P )

+ L log2 L−Q log2Q− (L−Q) log2(L−Q),

R log2(R/2)− 2P log2 P − (R− 2P ) log2(R/2− P )

+ 2L log2 L− 2Q log2Q− 2(L−Q) log2(L−Q)− 2L}.

The cost of a single iteration is asymptotically 2n(C(P,Q,L)+o(1)). Note that we
have simplified the iteration cost to

(
k1
p1

)(
`1
q1

)
+
(
k2
p2

)(
`2
q2

)
+
(
k1
p1

)(
`1
q1

)(
k2
p2

)(
`2
q2

)
2−`1−`2 .

The cost is actually larger than this, but only by a factor ≤ poly(n), which we
are free to disregard since 1

n log2 poly(n)→ 0. We also comment that the bounds
are valid whether or not qi = 0.

Overall attack cost. The overall asymptotic ball-collision-decoding-cost expo-
nent is the difference D(P,Q,L) of the iteration-cost exponent C(P,Q,L) and
the success-probability exponent B(P,Q,L), thus

D(P,Q,L) = max{−(R/2) log2(R/2)+P log2 P+(R/2−P ) log2(R/2−P )

−L log2 L+Q log2Q+(L−Q) log2(L−Q),−2L}
−W log2W−(1−W ) log2(1−W )

−(1−R−2L) log2(1−R−2L)+(W−2P−2Q) log2(W−2P−2Q)

+(1−R−2L−(W−2P−2Q)) log2(1−R−2L−(W−2P−2Q)).

Example: Take W = 0.04 and R = 1 + W log2W + (1 −W ) log2(1 −W ) =
0.7577078109 . . .. Choose P = 0.004203556640625, Q = 0.000192998046875, and
L = 0.017429431640625; we use very high precision here to simplify verification.
The success-probability exponent is −0.0458435310 . . ., and the iteration-cost
exponent is 0.0348588632 . . ., so the overall cost exponent is 0.0807023942 . . ..
Ball-collision decoding with these parameters thus costs 2(0.0807023942...+o(1))n to
correct (0.04 + o(1))n errors in a code of rate 0.7577078109 . . .+ o(1).

Collision-decoding cost and the lower bound. Traditional collision decod-
ing is the special case p1 = p2, k1 = k2, `1 = `2, q1 = q2 = 0 of ball-collision
decoding. Its asymptotic cost exponent is the case Q = 0 of the ball-collision
decoding exponent stated above.

Consider again W = 0.04 and R = 1 + W log2W + (1 − W ) log2(1 − W ).
Choosing P = 0.00415087890625, Q = 0, and L = 0.0164931640625 achieves
decoding exponent 0.0809085120 . . .. We partitioned the (P,L) space into small
intervals and performed interval-arithmetic calculations to show that Q = 0



14 D. J. Bernstein, T. Lange, C. Peters

cannot do better than 0.0809; ball-collision decoding therefore has a slightly
smaller exponent than collision decoding in this case.

We performed similar calculations for other pairs (W,R) and in each case
found that the infimum of all collision-decoding-cost exponents was beaten by
a ball-collision-decoding-cost exponent. Ball-collision decoding therefore has a
smaller exponent than collision decoding, as stated in the introduction of this
paper.

The case Q = 0 is always suboptimal. The interval-arithmetic calculations
described above are proofs of the suboptimality of Q = 0 for some specific pairs
(W,R). These proofs have the advantage of computing explicit bounds on the
collision-decoding-cost exponents for those pairs (W,R), but the proofs have two
obvious disadvantages.

The first disadvantage is that these proofs do not cover all pairs (W,R); they
leave open the possibility that ball-collision decoding has the same exponent
as collision decoding for other pairs (W,R). The second disadvantage is that
the proofs are much too long to verify by hand. The first disadvantage could
perhaps be addressed by much more extensive interval-arithmetic calculations,
partitioning the space of pairs (W,R) into boxes so small that, within each
box, the ball-collision-decoding exponent is uniformly better than the minimum
collision-decoding exponent; but this would exacerbate the second disadvantage.

To address both of these disadvantages we give, in the full version of this
paper [9], a hand-verifiable proof that Q = 0 is always suboptimal: for every
(W,R), ball-collision decoding has a smaller asymptotic cost exponent than col-
lision decoding. Specifically, we prove the following theorem about the overall
asymptotic cost exponent:

Theorem 7.1 For each R,W it holds that

min{D(P, 0, L) : 0 ≤ P ≤ R/2, 0 ≤W−2P ≤ 1−R−2L}
> min{D(P,Q,L) : 0 ≤ P ≤ R/2, 0 ≤ Q ≤ L, 0 ≤W−2P−2Q ≤ 1−R−2L}.

Note that {(P, 0, L)} and {(P,Q,L)} are compact sets, and D is continuous,
so we are justified in writing “min” rather than “inf”. The proof strategy ana-
lyzes generic perturbations of D and combines all necessary calculations into a
small number of elementary inequalities in the proofs in the full version of this
paper [9].

8 Choosing McEliece parameters

The traditional approach to selecting cryptosystem parameters is as follows:

– Consider the fastest known attacks against the system. For example, in the
case of RSA, consider the latest refinements [35] of the number-field sieve.

– Restrict attention to parameters for which these attacks take time at least
2b+δ. Here b is the desired security level, and δ is a “security margin” meant
to protect against the possibility of further improvements in the attacks.



Smaller decoding exponents: ball-collision decoding 15

– Within the remaining parameter space, choose the most efficient parameters.
The definition of efficiency depends on the target application: it could mean
minimal key size, for example, or minimum decryption time.

This approach does not make clear how to choose the security margin δ. Some
applications have ample time and space for cryptography, and can simply in-
crease δ to the maximum value for which the costs of cryptography are still
insignificant; but in some applications cryptography is an important bottleneck,
and users insist on minimizing δ for the sake of performance.

Finiasz and Sendrier in [28] identified a bound on “future improvements” in
attacks against the McEliece cryptosystem, and suggested that designers use
this bound to “choose durable parameters”. The general idea of identifying bot-
tlenecks in any possible attack, and of using those bottlenecks to systematically
choose δ, is quite natural and attractive, and has been used successfully in many
contexts. However, as discussed in Section 6, ball-collision decoding disproves
the specific bound in [28], violating one of the assumptions in [28] and raising
the question of how many more assumptions can be violated.

We propose replacing the bound in [28] with the simpler bound

min

{
1

2

(
n

w

)(
n− k
w − p

)−1(
k

p

)−1/2
: p ≥ 0

}
;

i.e., choosing the code length n, code rate k/n, and error fraction w/n so that this
bound is at least 2b. As usual, implementors can exploit the remaining flexibility
in parameters to optimize decryption time, compressed key size k(n − k), or
efficiency in any other metric of interest.

This bound has several attractive features. It is easy to estimate via standard
binomial-coefficient approximations. It is easy to compute exactly. It covers a
very wide class of attacks, as explained in the full version [9] of this paper. It
is nevertheless in the same ballpark as the cost of known attacks: for example,
it is 249.69 for the original parameters (n, k, w) = (1024, 524, 50), and 2236.49 for
(n, k, w) = (6624, 5129, 117). Note that these numbers give lower bounds on the
cost of the attack. Parameters protecting against this bound pay only about a
20% performance penalty at high security levels, compared to parameters that
merely protect against known attacks.

The reader can easily verify that parameters (n, k, w) = (3178, 2384, 68)
achieve 128-bit security against this bound. For 256-bit security (n, k, w) =
(6944, 5208, 136) are recommended.

References

[1] C.M. Adams, H. Meijer, Security-related comments regarding McEliece’s public-
key cryptosystem, in Crypto ’87 [46] (1987), 224–228; see also newer version [2].
Citations in this document: §4.

[2] C.M. Adams, H. Meijer, Security-related comments regarding McEliece’s public-key
cryptosystem, IEEE Transactions on Information Theory 35 (1988), 454–455; see
also older version [1]. Citations in this document: §1, §4.



16 D. J. Bernstein, T. Lange, C. Peters

[3] A. Al Jabri, A statistical decoding algorithm for general linear block codes, in IMA
2001 [31] (2001), 1–8. Citations in this document: §4.

[4] A.E. Ashikhmin, A. Barg, Minimal vectors in linear codes, IEEE Transactions on
Information Theory 44 (1998), 2010–2017. Citations in this document: §4.

[5] A. Barg, E.A. Krouk, H.C.A. van Tilborg, On the complexity of minimum distance
decoding of long linear codes, IEEE Transactions on Information Theory 45 (1999),
1392–1405. Citations in this document: §4, §4, §4, §4, §4, §4.

[6] L. Batten, R. Safavi-Naini (editors), Information security and privacy: 11th Aus-
tralasian conference, ACISP 2006, Melbourne, Australia, July 35, 2006, proceed-
ings, Lecture Notes in Computer Science, 4058, Springer, 2006. See [43].

[7] D.J. Bernstein, J. Buchmann, E. Dahmen (editors), Post-quantum cryptography,
Springer, 2009. See [44].

[8] D.J. Bernstein, T. Lange, C. Peters, Attacking and defending the McEliece cryp-
tosystem, in PQCrypto 2008 [14] (2008), 31–46. URL: http://eprint.iacr.org/
2008/318. Citations in this document: §1, §1, §3, §3, §4, §4, §6.

[9] D.J. Bernstein, T. Lange, C. Peters, Smaller decoding exponents: ball-collision de-
coding (full version) (2010). URL: http://eprint.iacr.org/2010/585. Citations
in this document: §7, §7, §8.

[10] D.J. Bernstein, T. Lange, C. Peters, H.C.A. van Tilborg, Explicit bounds for generic
decoding algorithms for code-based cryptography, in WCC 2009 (2009). Citations
in this document: §5.

[11] T.A. Berson, Failure of the McEliece public-key cryptosystem under message-resend
and related-message attack, in Crypto ’97 [33] (1997), 213–220. Citations in this
document: §1.

[12] M. Blaum, P.G. Farrell, H.C.A. van Tilborg (editors), Information, coding and
mathematics, Kluwer International Series in Engineering and Computer Science,
687, Kluwer, 2002. See [53].

[13] R.P. Brent, H.T. Kung, The area-time complexity of binary multiplication, Journal
of the ACM 28 (1981), 521–534. URL: http://wwwmaths.anu.edu.au/~brent/

pub/pub055.html. Citations in this document: §6.
[14] J. Buchmann, J. Ding (editors), Post-quantum cryptography, second international

workshop, PQCrypto 2008, Cincinnati, OH, USA, October 17-19, 2008, proceed-
ings, Lecture Notes in Computer Science, 5299, Springer, 2008. See [8].

[15] P. Camion, P. Charpin, S. Harari (editors), Eurocode ’92: proceedings of the in-
ternational symposium on coding theory and applications held in Udine, October
23–30, 1992, Springer, 1993. See [20].

[16] A. Canteaut, H. Chabanne, A further improvement of the work factor in an attempt
at breaking McEliece’s cryptosystem, in EUROCODE 94 [21] (1994). URL: http://
www.inria.fr/rrrt/rr-2227.html. Citations in this document: §4.

[17] A. Canteaut, F. Chabaud, A new algorithm for finding minimum-weight words in a
linear code: application to McEliece’s cryptosystem and to narrow-sense BCH codes
of length 511, IEEE Transactions on Information Theory 44 (1998), 367–378. URL:
ftp://ftp.inria.fr/INRIA/tech-reports/RR/RR-2685.ps.gz. Citations in this
document: §3, §4.

[18] A. Canteaut, N. Sendrier, Cryptanalysis of the original McEliece cryptosystem, in
Asiacrypt ’98 [42] (1998), 187–199. Citations in this document: §3, §4.

[19] H. Chabanne, B. Courteau, Application de la méthode de décodage itérative
d’Omura à la cryptanalyse du système de McEliece, Université de Sherbrooke, Rap-
port de Recherche, number 122 (1993). Citations in this document: §4.

[20] F. Chabaud, Asymptotic analysis of probabilistic algorithms for finding short code-
words, in [15] (1993), 175–183. Citations in this document: §4.

http://eprint.iacr.org/2008/318
http://eprint.iacr.org/2008/318
http://eprint.iacr.org/2010/585
http://wwwmaths.anu.edu.au/~brent/pub/pub055.html
http://wwwmaths.anu.edu.au/~brent/pub/pub055.html
http://www.inria.fr/rrrt/rr-2227.html
http://www.inria.fr/rrrt/rr-2227.html
ftp://ftp.inria.fr/INRIA/tech-reports/RR/RR-2685.ps.gz


Smaller decoding exponents: ball-collision decoding 17

[21] P. Charpin (editor), Livre des résumé — EUROCODE 94, Abbaye de la Bussière
sur Ouche, France, October 1994, 1994. See [16].

[22] G.C. Clark, Jr., J. Bibb Cain, Error-correcting coding for digital communication,
Plenum, 1981. Citations in this document: §4.

[23] J.T. Coffey, R.M. Goodman, The complexity of information set decoding, IEEE
Transactions on Information Theory 35 (1990), 1031–1037. Citations in this doc-
ument: §4.

[24] J.T. Coffey, R.M. Goodman, P. Farrell, New approaches to reduced complexity
decoding, Discrete and Applied Mathematics 33 (1991), 43–60. Citations in this
document: §4, §5.

[25] G.D. Cohen, J. Wolfmann (editors), Coding theory and applications, Lecture Notes
in Computer Science, 388, Springer, 1989. See [50].

[26] I.I. Dumer, Two decoding algorithms for linear codes, Problemy Peredachi Infor-
matsii 25 (1989), 24–32. Citations in this document: §4.

[27] I.I. Dumer, On minimum distance decoding of linear codes, in [32] (1991), 50–52.
Citations in this document: §4.

[28] M. Finiasz, N. Sendrier, Security bounds for the design of code-based cryptosys-
tems, in Asiacrypt 2009 [40] (2009). URL: http://eprint.iacr.org/2009/414.
Citations in this document: §1, §4, §4, §4, §4, §6, §2, §8, §8, §8, §8.

[29] S. Goldwasser (editor), Advances in cryptology — CRYPTO ’88, proceedings of the
conference on the theory and application of cryptography held at the University
of California, Santa Barbara, California, August 21–25, 1988, Lecture Notes in
Computer Science, 403, Springer, 1990. See [51].

[30] C.G. Günther, Advances in cryptology — EUROCRYPT ’88, proceedings of the
workshop on the theory and application of cryptographic techniques held in Davos,
May 25–27, 1988, Lecture Notes in Computer Science, 330, Springer-Verlag, Berlin,
1988. See [38].

[31] B. Honary (editor), Cryptography and coding: proceedings of the 8th IMA inter-
national conference held in Cirencester, December 17–19, 2001, Lecture Notes in
Computer Science, 2260, Springer, 2001. See [3].

[32] G.A. Kabatianskii (editor), Fifth joint Soviet-Swedish international workshop on
information theory, Moscow, 1991, 1991. See [27].

[33] B.S. Kaliski Jr. (editor), Advances in cryptology — CRYPTO ’97: 17th annual in-
ternational cryptology conference, Santa Barbara, California, USA, August 17–21,
1997, proceedings, Lecture Notes in Computer Science, 1294, Springer, 1997. See
[11].

[34] K. Kim (editor), Public key cryptography: proceedings of the 4th international work-
shop on practice and theory in public key cryptosystems (PKC 2001) held on Cheju
Island, February 13–15, 2001, Lecture Notes in Computer Science, 1992, Springer,
2001. See [36].

[35] T. Kleinjung, K. Aoki, J. Franke, A.K. Lenstra, E. Thomé, J. W. Bos, P. Gaudry, A.
Kruppa, P.L. Montgomery, D.A. Osvik, H. te Riele, A. Timofeev, P. Zimmermann,
Factorization of a 768-bit RSA modulus, in Crypto 2010 [48] (2010), 333–350. URL:
http://eprint.iacr.org/2010/006. Citations in this document: §8.

[36] K. Kobara, H. Imai, Semantically secure McEliece public-key cryptosystems —
conversions for McEliece PKC, in PKC 2001 [34] (2001), 19–35. Citations in this
document: §1.

[37] E.A. Krouk, Decoding complexity bound for linear block codes, Problemy Peredachi
Informatsii 25 (1989), 103–107. Citations in this document: §4, §4.

http://eprint.iacr.org/2009/414
http://eprint.iacr.org/2010/006


18 D. J. Bernstein, T. Lange, C. Peters

[38] P.J. Lee, E.F. Brickell, An observation on the security of McEliece’s public-key
cryptosystem, in Eurocrypt ’88 [30] (1988), 275–280. URL: http://dsns.csie.

nctu.edu.tw/research/crypto/HTML/PDF/E88/275.PDF. Citations in this docu-
ment: §4.

[39] J.S. Leon, A probabilistic algorithm for computing minimum weights of large error-
correcting codes, IEEE Transactions on Information Theory 34 (1988), 1354–1359.
Citations in this document: §4.

[40] M. Matsui (editor), Advances in cryptology — ASIACRYPT 2009, 15th interna-
tional conference on the theory and application of cryptology and information secu-
rity, Tokyo, Japan, December 6–10, 2009, proceedings, Lecture Notes in Computer
Science, 5912, Springer, 2009. See [28].

[41] R.J. McEliece, A public-key cryptosystem based on algebraic coding theory,
JPL DSN Progress Report (1978), 114–116. URL: http://ipnpr.jpl.nasa.gov/
progress_report2/42-44/44N.PDF. Citations in this document: §1, §4.

[42] K. Ohta, D. Pei (editors), Advances in cryptology — ASIACRYPT’98: proceedings
of the international conference on the theory and application of cryptology and
information security held in Beijing, Lecture Notes in Computer Science, 1514,
Springer, 1998. See [18].

[43] R. Overbeck, Statistical decoding revisited, in ACISP 2006 [6] (2006), 283–294.
Citations in this document: §4.

[44] R. Overbeck, N. Sendrier, Code-based cryptography, in [7] (2009), 95–145. Citations
in this document: §2, §4.

[45] C. Peters, Information-set decoding for linear codes over Fq, in Post-Quantum
Cryptography [49] (2010), 81–94. Citations in this document: §1, §4, §2.

[46] C. Pomerance (editor), Advances in cryptology — CRYPTO ’87, proceedings of the
conference on the theory and applications of cryptographic techniques held at the
University of California, Santa Barbara, California, August 16–20, 1987, Lecture
Notes in Computer Science, 293, Springer, 1987. URL: http://dsns.csie.nctu.
edu.tw/research/crypto/HTML/PDF/C87/224.PDF. See [1].

[47] E. Prange, The use of information sets in decoding cyclic codes, IRE Transactions
on Information Theory IT-8 (1962), S5–S9. Citations in this document: §4.

[48] T. Rabin (editor), Advances in cryptology — CRYPTO 2010, 30th annual cryptol-
ogy conference, Santa Barbara, CA, USA, August 15–19, 2010, proceedings, Lecture
Notes in Computer Science, 6223, Springer, 2010. See [35].

[49] N. Sendrier (editor), Post-quantum cryptography, third international workshop,
PQCrypto, Darmstadt, Germany, May 25-28, 2010, proceedings, Lecture Notes
in Computer Science, 6061, Springer, 2010. See [45].

[50] J. Stern, A method for finding codewords of small weight, in [25] (1989), 106–113.
Citations in this document: §1, §3, §3, §4, §4.

[51] J. van Tilburg, On the McEliece public-key cryptosystem, in Crypto ’88 [29] (1990),
119–131. Citations in this document: §4.

[52] J. van Tilburg, Security-analysis of a class of cryptosystems based on linear error-
correcting codes, Ph.D. thesis, Technische Universiteit Eindhoven, 1994. Citations
in this document: §4.

[53] E.R. Verheul, J.M. Doumen, H.C.A. van Tilborg, Sloppy Alice attacks! Adaptive
chosen ciphertext attacks on the McEliece public-key cryptosystem, in [12] (2002),
99–119. Citations in this document: §1.

http://dsns.csie.nctu.edu.tw/research/crypto/HTML/PDF/E88/275.PDF
http://dsns.csie.nctu.edu.tw/research/crypto/HTML/PDF/E88/275.PDF
http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
http://dsns.csie.nctu.edu.tw/research/crypto/HTML/PDF/C87/224.PDF
http://dsns.csie.nctu.edu.tw/research/crypto/HTML/PDF/C87/224.PDF

