
Constant-round Leakage-resilient
Zero-knowledge from Collision Resistance

Susumu Kiyoshima

NTT Secure Platform Laboratories, Tokyo, Japan
kiyoshima.susumu@lab.ntt.co.jp

Abstract. We construct a constant-round leakage-resilient zero-knowledge
argument system under the existence of collision-resistant hash function
family. That is, using collision-resistant hash functions, we construct a
constant-round zero-knowledge argument system such that for any cheat-
ing verifier that can obtain arbitrary amount of leakage of the prover’s
state, there exists a simulator that can simulate the adversary’s view by
obtaining at most the same amount of leakage of the witness. Previously,
leakage-resilient zero-knowledge protocols were constructed only under a
relaxed security definition (Garg-Jain-Sahai, CRYPTO’11) or under the
DDH assumption (Pandey, TCC’14).

Our leakage-resilient zero-knowledge argument system satisfies an addi-
tional property that it is simultaneously leakage-resilient zero-knowledge,
meaning that both zero-knowledgeness and soundness hold in the pres-
ence of leakage.

1 Introduction

Zero-knowledge (ZK) proofs and arguments [14] are interactive proof/argument
systems with which the prover can convince the verifier of the correctness of a
mathematical statement while providing zero additional knowledge. This “zero
additional knowledge” property is formalized thorough the simulation paradigm.
Specifically, an interactive proof or argument is said to be zero-knowledge if for
any adversarial verifier there exists a simulator that can output a simulated view
of the adversary.

Recently, Garg et al. [12] introduced a new notion of zero-knowledgeness
called leakage-resilient zero-knowledge (LRZK). Roughly speaking, LRZK is a
notion of zero-knowledgeness in the setting where adversarial verifiers can obtain
arbitrary leakage on the entire state of the honest prover (including the witness
and the randomness) during the entire protocol execution. LRZK is motivated
by the studies of side-channel attacks (e.g., [18, 2, 27]), which demonstrated that
adversaries might be able to obtain leakage of honest parties’ secret states by
attacking physical implementations of cryptographic algorithms.

Informally speaking, LRZK requires that the protocol does not reveal any-
thing beyond the validity of the statement and the leakage that the adversary
obtained. More formally, LRZK is defined as follows. In the definition of LRZK,

2 Susumu Kiyoshima

the cheating verifier is allowed to make arbitrary number of leakage queries dur-
ing the interaction with a honest prover, where each leakage query f is answered
by f(w, tape) for the witness w and the randomness tape that the honest prover
generated thus far. On the other hand, the simulator is allowed to make queries
to the leakage oracle Lw, which is parametrized by the witness w of the hon-
est prover and outputs f(w) on input any function f . LRZK is then defined
by requiring that for any cheating verifier V ∗ there exists a simulator S such
that for any ` ∈ N, when V ∗ obtains ` bits of leakage of the prover’s state via
leakage queries, S can simulate the view of V ∗ by obtaining ` bits of leakage of
the witness via queries to the leakage oracle Lw.1

In [12], Garg et al. showed a proof system that satisfies a weaker notion of
LRZK called (1 + ε)-LRZK. Specifically, they showed that for any ε > 0, there
exists a proof system such that when V ∗ obtains ` bits of leakage from the prover,
a simulator can simulate the verifier’s view by obtaining at most (1 + ε) · ` bits
of leakage from Lw. The round complexity of this protocol is at least ω(log n)/ε,
and its security is proven under a standard general assumption (the existence of
statistically hiding commitment scheme that is public-coin w.r.t. the receiver).

A natural question left open by [12] is whether we can construct a LRZK
protocol without weakening the security requirement. That is, the question is
whether we can reduce ε to 0 in the protocol of [12]. This question is particularly
of theoretical interest because reducing ε to 0 is optimal in the sense that λ-LRZK
for λ < 0 is impossible to achieve in the plain model [12].

Recently, this question was solved affirmatively by Pandey [23], who con-
structed the first LRZK argument system by using the DDH assumption and
collision-resistant hash functions. Pandey’s protocol has only constant number
of rounds; therefore, it follows that asymptotically optimal round complexity
can be achievable even in the presence of leakage.

A question that is explicitly left open by Pandey [23, Section 1] is whether
we can construct LRZK protocols under a standard general assumption. In fact,
although the protocol of Pandey [23] is superior to the protocol of Garg et al.
[12] in terms of both leakage resilience (LRZK v.s. (1 + ε)-LRZK) and round
complexity (constant v.s. ω(log n)/ε), the assumption of the former is seemingly
much stronger than that of the latter (the DDH assumption v.s. the existence
of statistically hiding commitment scheme that is public-coin w.r.t. the receiver,
which is implied by, say, the existence of collision-resistant hash function family
or even the existence of one-way functions2).

Question. Can we construct a (constant-round) leakage-resilient zero-
knowledge protocol under standard general assumptions?

1 In [22], it is pointed out that nowadays leakage tolerance is the commonly accepted
term for this security notion. In this paper, however, we use the term “leakage
resilience” for this security notion for consistency with previous works [12, 23].

2 A constant-round one can be constructed from collision-resistant hash functions [21,
10] and a polynomial-round one can be constructed from one-way functions [15].

Constant-round Leakage-resilient ZK from Collision Resistance 3

1.1 Our Results

In this paper, we answer the above question affirmatively by constructing a
LRZK protocol from collision-resistant hash functions (CRHFs). Like the proto-
col of [23], our protocol has only constant number of rounds. Also, our protocol
has an additional property that it is public coin (w.r.t. the verifier).

Theorem. Assume the existence of collision-resistant hash function family. Then,
there exists a constant-round public-coin leakage-resilient zero-knowledge argu-
ment for NP.

Simultaneously leakage-resilient zero-knowledge. Our protocol has an ad-
ditional property that it is simultaneously leakage-resilient zero-knowledge [12],
meaning that not only zero-knowledgeness but also soundness holds in the pres-
ence of leakage. The leakage-resilient (LR) soundness (i.e., soundness in the
presence of leakage) of our protocol follows immediately from its public-coin
property. In fact, any public-coin interactive proof/argument system is LR sound
for arbitrary amount of leakage of the verifier because the verifier has no secret
state in public-coin protocols.

To the best of our knowledge, our protocol is the first simultaneously LRZK
protocol. The (1 + ε)-LRZK protocol of Garg et al. [12] is LR sound in a weak
sense—it is LR sound when there is an a-priori upper bound on the amount
of leakage—but is not LR sound when the amount of leakage is unbounded,3

and similarly, the LRZK protocol of Pandey [23] is also not LR sound with
unbounded amount of leakage. In contrast, our protocol is sound even when
cheating verifiers obtain arbitrary amount of leakage.

The summary of the previous results and ours is given in Table 1. In the
table, “bounded-LR sound” means that the soundness holds when there is an
a-priori upper bound on the amount of leakage from the verifier.

Table 1. Summary of the results on LRZK protocols. The round complexity of the
protocol of [12] depends on the assumption that is used to instantiate the underlying
statistically-hiding commitment scheme; in particular, when only one-way functions
(OWFs) are used, there is a polynomial additive overhead because statistically hiding
commitment schemes currently require polynomial number of rounds in this case [15].

LR ZKness LR soundness #(round) Assumptions

[12] (1 + ε)-LRZK bounded-LR sound
poly(n) + ω(logn)/ε OWFs

ω(logn)/ε CRHFs

[23] LRZK - O(1) DDH + CRHFs

This work LRZK LR sound O(1) CRHFs

3 This is because in the protocol of [12], the verifier commits to the challenge bits of
Blum’s Hamiltonicity protocol in advance and hence an cheating prover can easily
break the soundness by obtaining the challenge bits via leakage.

4 Susumu Kiyoshima

1.2 Related Works

Several works study interactive protocols in the presence of arbitrary leakage
in the models other than the plain model, e.g., the work about leakage-tolerant
UC-secure protocols in the CRS model [5], the work about non-transferable inter-
active proof systems in the CRS model with leak-free input encoding/updating
phase [1], and the works about secure computation protocols in the CRS model
with leak-free preprocessing/input-encoding phase and constant fraction of hon-
est parties [8, 7, 6]. We remind the readers that, like [12, 23], this work considers
LRZK protocols in the plain model without any leak-free phase.

In [22], Ostrovsky et al. showed an impossibility result about black-box LRZK
in the model with only leak-free input-encoding phase (i.e., without CRS and
preprocessing). We notice that this impossibility result does not contradict our
result since the definition of LRZK in [22] is different from the one we use (i.e.,
the definition given by [12]). Specifically, in the definition of [22], the simulator
is not allowed to obtain any leakage, whereas in the definition that we use,
the simulator can obtain the same amount of leakage as the cheating verifier.
(In other words, Ostrovsky et al. [22] considers leakage resilience whereas we
consider leakage tolerance; see Footnote 1.)

2 Overview of Our Techniques

2.1 Previous Techniques

Since our techniques rely on the techniques that are used in the previous LRZK
protocols of [12, 23], we start by recalling these protocols.

Protocol of [12]. In [12], Garg et al. constructed a (1 + ε)-leakage-resilient
zero-knowledge proof system, i.e., a proof system such that when V ∗ obtains `
bits of leakage from the prover, its view can be simulated by obtaining at most
(1 + ε) · ` bits of leakage from Lw.

A key idea behind the protocol of [12] is to give the simulator two indepen-
dent ways of cheating—one for simulating prover’s messages and the other for
simulating leakages. Concretely, Garg et al. constructed their protocol by com-
bining two well-known techniques of constant-round zero-knowledge protocols—
the technique by Goldreich and Kahan [13] that requires the verifier to commit
to its challenges in advance and the technique by Feige and Shamir [11] that uses
equivocal commitment schemes. They then proved the security by considering a
simulator that simulates the prover’s messages by extracting the challenges and
simulates the leakages by using the equivocality of the commitment scheme.

In more details, the protocol of [12] consists of the following two phases. In
the first phase, the verifier uses an extractable commitment scheme to commit to
a challenge string ch of Blum’s Hamiltonicity protocol and trapdoor information
td of an equivocal commitment scheme.4 In the second phase, the prover and

4 Actually, there is a coin-tossing protocol that determines the parameter of the equiv-
ocal commitment, and td is the trapdoor for biasing the outcome of the coin-tossing.

Constant-round Leakage-resilient ZK from Collision Resistance 5

the verifier execute Blum’s Hamiltonicity protocol that is instantiated with the
equivocal commitment scheme. In simulation, the simulator extracts ch and td
in the first phase and then simulates the prover’s messages and the leakages
in the second phase by using the knowledge of ch and td in the following way.
(For simplicity, we assume that Blum’s protocol is executed only once instead
of many times in parallel.)

When the extracted challenge ch is 0, the simulator commits to a randomly
permuted graph of statement G, and after V ∗ decommits the challenge ch
(which must be 0), the simulator decommits the commitment to the per-
muted graph of G.
Notice that the simulator does exactly the same things as a honest prover.
Hence, the simulator can simulate prover’s randomness tape easily and there-
fore can answer any leakage query f from V ∗ by querying f(·, tape) to Lw.

When the extracted challenge ch is 1, the simulator commits to a randomly
chosen cycle graph H at the beginning and then partially decommits it in
the last step so that only the edges on the cycle are revealed.
When V ∗ makes a leakage query, the simulator answers it by using w and
td to compute randomness that “explains” the commitment to H as a com-
mitment to a permuted graph of G. (Recall that the prover is supposed to
commit to a permuted graph of G). Specifically, the simulator answers a

leakage query f from V ∗ by querying the following function f̃(·) to Lw.

1. On input w, function f̃ first computes a permutation π that maps the
Hamiltonian cycle w in G to the cycle in H (i.e., computes π such that
π(G) has the same cycle as H).

2. Then, by using equivocality5 with trapdoor td, it computes randomness
tape that explains the commitment to H as a commitment to π(G) (i.e.,
it computes tape such that committing to π(G) with randomness tape
will generate the same commitment as the one that the simulator has
sent to V ∗ by committing to H).

3. Finally, it outputs f(w, tape).
Notice that since π(G) has the same cycle as H, the simulated leakages (from
which V ∗ may be able to compute π(G)) are consistent with the cycle of H
that is decommitted by the simulator in the last step.

We remark that the reason why the protocol of [12] satisfies only (1 + ε)-
LRZK (rather than standard LRZK) is that the extraction of ch and td involves
the rewinding of V ∗. In fact, since V ∗ can make new leakage queries after being
rewound, the simulator need to obtain new leakages from Lw in each rewinding
and hence the simulator need to obtain more bits of leakage than V ∗.

Protocol of [23]. In [23], Pandey constructed a constant-round LRZK argu-
ment system under the DDH assumption. Roughly speaking, Pandey’s idea is

5 What is actually used here is adaptive security, which guarantees that for each
underlying commitment, it is possible to compute randomness tape0 and tape1 such
that tapeb explains the commitment as a commitment to b for each b ∈ {0, 1}.

6 Susumu Kiyoshima

to replace the rewinding simulation technique in the protocol of [12] with the
“straight-line” simulation technique of Barak [3]. In particular, Pandey replaced
the first phase of the protocol of [12] with the following one.

1. First, the prover and the verifier execute an encrypted version of so called
Barak’s preamble [3, 25, 24], which determines a “fake statement” that is false
except with negligible probability.

2. Next, the prover and the verifier execute Yao’s garbled circuit protocol [28]
in which the prover can obtain ch and td only when it has a valid witness
for the fake statement.

From the security of the encrypted Barak’s preamble, no cheating prover can
make the fake statement true; hence, ch and td are hidden from the cheating
prover. In contrast, a non-black-box simulator can make the fake statement
true by using the knowledge of the code of the verifier; hence, the simulator
can obtain ch and td without rewinding V ∗. An issue is that, to guarantee
leakage resilience, it is required that Yao’s protocol is executed in a way that
all prover’s messages are pseudorandom (since otherwise it is hard to simulate
randomness that explains the simulated prover’s messages as honest prover’s
messages during the simulation of the leakages). Since Yao’s protocol involves
executions of an oblivious transfer protocol (in which the prover behaves as a
receiver), this property is hard to satisfy. Pandey solved this problem by using the
DDH assumption, under which there exists an oblivious transfer protocol such
that all receiver’s messages are indistinguishable from random group elements.

2.2 Our Techniques

The reason why the protocols of [12, 23] either guarantee only weaker security
or rely on a stronger assumption is that the simulation involves extraction from
V ∗. In fact, in [12], the simulator need to obtain more amount of leakage than
V ∗ because it rewinds V ∗ during extraction, and in [23], the DDH assumption
is required because Yao’s protocol is used for extraction.

Based on this observation, our strategy is to modify the protocols of [12, 23]
so that no extraction is required in simulation. We first remove the extraction
of trapdoor td and next remove the extraction of challenge ch.

Removing Extraction of Trapdoor td. We first modify the protocols of [12,
23] so that leakages can be simulated without extracting the trapdoor td of an
equivocal commitment scheme.

Our main tool is Hamiltonicity commitment scheme H-Com [11, 9], which is a
well-known instance-dependent equivocal commitment scheme based on Blum’s
Hamiltonicity protocol. H-Com is parametrized by a graph G with q = poly(n)
vertices. To commit to 0, the committer chooses a random permutation π and
commits to the adjacent matrix of π(G) using any commitment scheme Com; to
decommit, the committer reveals π and decommits all the entries of the matrix.
To commit to 1, the committer commits to the adjacent matrix of a random

Constant-round Leakage-resilient ZK from Collision Resistance 7

q-cycle graph; to decommit, the committer decommits only the entries that cor-
responds to the edges on the cycle. H-Com satisfies equivocality when G has
a Hamiltonian cycle; this is because after committing to 0, the committer can
decommit it to both 0 and 1 given a Hamiltonian cycle w in G.

Given H-Com, we remove the extraction of td by combining H-Com with an
encrypted variant of Barak’s preamble. Specifically, we replace the equivocal
commitment scheme in the protocols of [12, 23] with H-Com that depends on the
fake statement G′ that is obtained by the encrypted Barak’s preamble. From
the security of Barak’s preamble, any cheating prover cannot make G′ true and
hence it cannot use the equivocality of H-Com, whereas the simulator can make
G′ true and hence it can use the equivocality of H-Com as desired.

Remark 1. As observed in [23], it is not straightforward to use the encrypted
Barak’s preamble in the presence of leakage. Roughly speaking, in the encrypted
Barak’s preamble, the prover commits to its messages instead of sending them in
clear, and in the proof of soundness, it is required that the prover’s messages are
extractable from the commitments. The problem is that it is not easy to guar-
antee this extractability in the presence of leakage (this is because the prover’s
messages are typically not pseudorandom in the techniques of extractability).
Pandey [23] solved this problem by having the prover use a specific extractable
commitment scheme based on the DDH assumption. In this paper, we instead
have the prover use a commitment scheme that satisfies only very weak ex-
tractability but the prover’s messages of which are pseudorandom and the secu-
rity of which is based on the existence of CRHFs.6 For details, see Section 4.1.

Removing Extraction of Challenge ch. Next, we modify the protocols of
[12, 23] so that prover’s messages can be simulated without extracting the chal-
lenge ch of Hamiltonicity protocol.

We first notice that although the simulator can use equivocality without
extraction as shown above, it is not easy for the simulator to use equivocality for
simulating prover’s messages. This is because when the leakages to V ∗ includes
the randomness that is used for commitments, V ∗ may be able to determine the
committed values from the leakages and therefore equivocation may be detected
by V ∗.

As our main technical tool, then, we introduce a specific instance-dependent
equivocal commitment scheme GJS-Com that we obtain by considering the tech-
nique of [12] on Hamiltonicity protocol in the context of H-Com. Recall that, as
explained in Section 2.1, in [12] Garg et al. use Blum’s Hamiltonicity protocol
that is instantiated with an equivocal commitment scheme. Here, we use H-Com
that is instantiated with an equivocal commitment scheme (i.e., we use H-Com in
which the adjacent matrix is committed to by an equivocal commitment scheme).
The equivocal commitment scheme that we use here is, as above, H-Com that
depends on the fake statement generated by the encrypted Barak’s preamble.7

6 This extractability is used only in the proof of soundness. Hence, the proof of zero-
knowledgeness works even in the presence of this extractable commitment scheme.

7 Actually, we use an adaptively secure H-Com [9, 19]. See footnote 5.

8 Susumu Kiyoshima

Hence, the commitment scheme GJS-Com is a version of H-Com that is instan-
tiated by using H-Com itself as the underling commitment scheme.8 GJS-Com
depends on two statements of the Hamiltonicity problem: The “outer” H-Com
(the H-Com that is implemented with H-Com) depends on the real statement G,
and the “inner” H-Com (the H-Com that is used to implement H-Com) depends
on the fake statement G′. GJS-Com inherits equivocality from the outer H-Com,
i.e., given a witness for the real statement G, a GJS-Com commitment to 0 can
be decommitted to both 0 and 1.

Since GJS-Com is obtained by considering the technique of [12] in the context
of H-Com, it satisfies a property that is useful for proving LRZK property. First,
observe that given GJS-Com, the second phase of the LRZK protocol of [12] (i.e.,
Hamiltonicity protocol phase) can be viewed as follows.

1. The prover commits to 0 by using GJS-Com.
2. The verifier reveals the challenge ch ∈ {0, 1} that is committed to in the first

phase.
3. When ch = 0, the prover decommits the GJS-Com commitment to 0 honestly,

and when ch = 1, the prover decommits it to 1 by using the equivocality
with the knowledge of Hamiltonian cycle w in G.

When the second phase of the protocol of [12] is viewed in this way, the key
property that is used in the simulation of the leakages in [12] is the following.

– Given a Hamiltonian cycles in G and G′, a GJS-Com commitment to 1 (in
which a random cycle graph is committed) can be “explained” as a com-
mitment to 0 (in which a permutation of G is committed) by using the
equivocality of the inner H-Com.
Furthermore, even after being explained as a commitment to 0, the commit-
ment can later be decommitted to 1 in a consistent way with the explained
randomness (cf. function f̃ in Section 2.1).

Because of this property, even when the simulator commits to 1 instead of 0 using
GJS-Com to simulate the messages, the simulator can answer any leakage query
f from V ∗ by querying Lw a function f̃ that, on input w, computes randomness
tape that explains the commitment to 1 as a commitment to 0 and then outputs
f(w, tape).

A problem of this property is that it can be used only in a very limited
situation. Specifically, this property can be used only when the simulator knows
which GJS-Com commitment will be decommitted to 1, and this is the reason
why the extraction of ch is required in the simulation strategy of [12, 23]. Hence,
to remove the extraction of ch, we need to use GJS-Com in a way that, given
a witness for the fake statement, the simulator can predict which value each
GJS-Com commitment will be decommitted to.

Our key observation is that we can use this property if we use GJS-Com
to implement the Hamiltonicity protocol in which the fake statement is proven.
Concretely, we consider the following protocol.

8 In the “inner” H-Com, the underlying commitment scheme is Com as before.

Constant-round Leakage-resilient ZK from Collision Resistance 9

1. The prover and the verifier execute an encrypted variant of Barak’s preamble.
Let G′ be the fake statement and let q′ be the number of the nodes of G′.

2. (a) The prover commits to a q′ × q′ zero matrix by using GJS-Com.
(b) The verifier sends a challenge ch ∈ {0, 1}.
(c) When ch = 0, the prover sends a random permutation π over G′ to the

verifier and then decommit the GJS-Com commitments to the adjacent
matrix of π(G′) by using the equivocality of GJS-Com with the knowledge
of a witness for the real statement.
When ch = 1, the prover chooses a random q′-cycle graph H and decom-
mits some of the GJS-Com commitments to 1 by using the equivocality
of GJS-Com so that the decommitted entries of the matrix correspond
to the cycle in H.

(d) When ch = 0, the verifier verifies whether the decommitted graph is
π(G′). When ch = 1, the verifier verifies whether the decommitted entries
corresponds to a q′-cycle in a graph.

Since any charting prover cannot make the fake statement G′ true, GJS-Com is
statistically binding when the real statement G is false, and hence soundness
follows. In contrast, the simulator can cheat in Barak’s preamble so that it
knows a Hamiltonian cycle w′ in the fake statement G′, and therefore it can
simulate the prover’s messages by “honestly” proving the fake statement, i.e.,
by committing to π(G′) in step 2(a) for a randomly chosen π and then revealing
the entire graph π(G′) or only the cycle π(w′) depending on the value of ch.
Furthermore, since in step 2(a) the simulator do know which value each GJS-Com
commitment will be decommitted to (the commitments to the edges on π(w′)
will be always decommitted to 1 and others will be decommitted honestly or will
not be decommitted), the simulator can simulate the leakage in the same way
as in the protocol of [12] by using the property of GJS-Com described above.

This completes the overview of our techniques. The details are given in what
follows.

3 Preliminaries

3.1 Notations

We use n to denote the security parameter. For any k ∈ N, we use [k] to denote
the set {1, . . . , k}. For any randomized algorithm Algo, we use Algo(x; r) to
denote the execution of Algo with input x and randomness r, and we use Algo(x)
to denote the execution of Algo with input x and uniform randomness.

We use LHC to denote the languages of the Hamiltonian graphs. For any
G ∈ LHC, we use RHC(G) to denote the set of the Hamiltonian cycles in G.
Generally, for any language L and any instance x ∈ L, we use RL(x) to denote
the set of the witnesses for x ∈ L.

For any two-party protocol 〈A,B〉, we use trans [A(x)↔ B(y)] to denote
a random variable representing the transcript of the interaction between A
and B with input x and y respectively, and use outputA [A(x)↔ B(y)] (resp.,

10 Susumu Kiyoshima

outputB [A(x)↔ B(y)]) to denote a random variable representing the output of
A (resp., B) in the interaction between A and B with input x and y respectively.

3.2 Leakage-resilient Zero-knowledge

We recall the definition of leakage-resilient zero-knowledgeness [12]. For conve-
nience, we use a slightly different formulation of the definition.

For any interactive proof system 〈P, V 〉, any ppt cheating receiver V ∗, any
statement x ∈ L, any witness w ∈ RL(x), and any oracle machine S called
simulator, consider the following two experiments.

REALV ∗(x,w, z)
1. Execute V ∗(x, z) with a honest prover P (x,w) of 〈P, V 〉.

During the interaction, V ∗ can make arbitrary number of adaptive leak-
age queries on the state of P . A leakage query consists of an efficiently
compatible function fi (described as a circuit) and it is answered with
fi(w, tape), where tape is the randomness used by P so far.

2. Output the view of V ∗.

IDEALS(x,w, z)
1. Execute S(x, z) with access to a leakage oracle Lw. A query to Lw con-

sists of an efficiently computable function f and answered with f(w).
Let τ be the output of S.

2. If τ is not a valid view of V ∗, the output of the experiment is ⊥. Oth-
erwise, let ` be the total length of the leakage that V ∗ obtains in τ . If
the total length of the answers that S obtained from Lw is larger than
`, the output of the experiment is ⊥. Otherwise, the output is τ .

Let REALV ∗(x,w, z) be the random variable representing the output of REALV ∗(x,w, z)
and IDEALS(x,w, z) be the random variable representing the output of IDEALS(x,w, z).

Definition 1. An interactive argument system 〈P, V 〉 for a language L with
witness relation R is leakage-resilient zero knowledge if for every ppt ma-
chine V ∗ and every sequence {wx}x∈L such that (x,wx) ∈ RL, there exists a
ppt oracle machine S such that the following hold.

Indistinguishability condition.

{REALV ∗(x,wx, z)}x∈L,z∈{0,1}∗ ≈ {IDEALS(x,wx, z)}x∈L,z∈{0,1}∗ .

Leakage-length condition. For every x ∈ L and z ∈ {0, 1}∗,

Pr [IDEALS(x,wx, z) = ⊥] = 0 .

3.3 Commitment Scheme

Recall that commitment schemes are two-party protocols between a committer
C and a receiver R. We say that a commitment is valid if there exists a value to
which it can be decommitted. We denote by value(·) a function that, on input
a commitment (i.e., a transcript in the commit phase), outputs its committed
value if it is uniquely determined and outputs ⊥ otherwise.

Constant-round Leakage-resilient ZK from Collision Resistance 11

3.4 Naor’s Commitment

We recall Naor’s statistically binding commitment scheme Com, which can be
constructed from one-way functions [20, 16].

Commit phase. The commit phase consists of two rounds. In the first round,
the receiver sends a random 3n-bit string r ∈ {0, 1}3n. In the second round,
the committer chooses a random seed s ∈ {0, 1}n for a pseudorandom generator
PRG : {0, 1}n → {0, 1}3n and then sends PRG(s) if it wants to commit to 0 and
sends PRG(s)⊕ r if it wants to commit to 1.

We use Comr(·) to denote an algorithm that, on input b ∈ {0, 1}, computes
a commitment to b as above by using r as the first-round message.

Decommit phase. In the decommit phase, the committer reveals the seed s.

Security. Com is statistically binding and computational hiding. Furthermore,
the binding and hiding property hold even when the same first-round message r
is used in multiple commitments.

Committing to strings. For any ` ∈ N, we can commit to an `-bit string by
simply committing to each bit using Com. We notice that the same first-round
message r can be used in all the commitments.

We abuse the notation and use Comr(·) to denote an algorithm that, on input
m ∈ {0, 1}∗, computes a commitment to m as above by using r as the first-
round message. Notice that Comr(·) has pseudorandom range. Thus, by using
an algorithm Compub that outputs a random 3n`-bit string on input 1`, we can
obtain a “fake commitment” that is indistinguishable from a real commitment.

3.5 Hamiltonicity Commitment

We recall a well-known instance-dependent commitment scheme H-Com [11, 9]
that is based on Blum’s zero-knowledge proof for Hamiltonicity.

Commit phase. H-Com is parametrized by a graph G. Let q be the number of
its vertices. To commit to 0, the committer chooses a random permutation π
over the vertices of G and then commits to the adjacent matrix of π(G) by using
Com. To commit to 1, the committer chooses a random q-cycle graph and then
commits to its adjacent matrix by using Com.

We use H-ComG,r(·) to denote an algorithm that, on input b ∈ {0, 1}, com-
putes a commitment to b as above by using r as the first-round message of all
the Com commitments.

Decommit phase. When the committer committed to 0, it reveals π, and also
reveals all the entries of the adjacent matrix by decommitting all the Com com-
mitments. When the committer committed to 1, it reveals only the entries cor-
responding to the edges on the q-cycle by decommitting the Com commitments
in which these entries are committed.

12 Susumu Kiyoshima

Security. H-Com is computationally hiding, and it is statistically binding when
G 6∈ LHC.

Equivocality. When G ∈ LHC, a commitment to 0 can be decommitted to 1
given a Hamiltonian cycle w ∈ RHC(G) in G. Specifically, a commitment to 0
can be decommitted to 1 by decommitting the entries that corresponds to the
edges on π(w) (i.e., the cycle that is obtained by applying π on w).

3.6 Adaptive Hamiltonicity Commitment

We recall the adaptively secure Hamiltonicity commitment scheme AH-Com,
which was used in, e.g., [9, 19].

Commit phase. AH-Com is parametrized by a graph G. Let q be the number of
its vertices. To commit to 0, the committer does the same things as in H-Com;
i.e., it chooses a random permutation π over the vertices of G and then commits
to the adjacent matrix of π(G) by using Com. To commit to 1, the committer
chooses a random q-cycle graph and then commits to its adjacent matrix in the
following way: For all the entries corresponding to the edges on the q-cycle, it
commits to 1 by using Com, and for all the other entries, it simply sends random
3n-bit strings instead of committing to 0. (Since Com has pseudorandom range,
random 3n-bit strings are indistinguishable from Com commitments.)

We use AH-ComG,r(·) to denote an algorithm that, on input b ∈ {0, 1},
computes a commitment to b as above by using r as the first-round message of
all the Com commitments.

Decommit phase. To decommit, the committer reveals all the randomness used
in the commit phase. We use AH-Decr(·, ·, ·) to denote an algorithm that, on
input c, b, ρ such that AH-Comr(b; ρ) = c, outputs a decommitment d as above.

Security. Like H-Com, AH-Com is computationally hiding both when G ∈ LHC

and when G 6∈ LHC, and it is statistically binding when G 6∈ LHC.

Adaptive security. When G ∈ LHC, a commitment to 0 can be “explained”
as a valid commitment to 1 given a witness w ∈ RHC(G). Specifically, for a
commitment c to 0, we can compute ρ such that AH-Com(1; ρ) = c. This is
because commitments to the entries that do not correspond to the edges on
π(w) are indistinguishable from random strings.

Formally, there exists an algorithm AH-ExplainAsOne such that for security
parameter n ∈ N, graphsG ∈ LHC, witness w ∈ RHC(G), and string r ∈ {0, 1}3n,
the following hold.

Correctness. Given witness w ∈ RHC(G) and c, ρ such that AH-ComG,r(0; ρ) =
c, AH-ExplainAsOneG,r outputs ρ′ such that AH-ComG,r(1; ρ′) = c.

Indistinguishability. Consider the following two probabilistic experiments.
EXPAH

0 (n,G,w, r)
/* commit to 1 and reveal randomness */

Constant-round Leakage-resilient ZK from Collision Resistance 13

1. Computes c← AH-ComG,r(1).
Let ρ1 be the randomness used in AH-Com.

2. Output (c, ρ1).

EXPAH
1 (n,G,w, r)

/* commit to 0 and explain it as commitment to 1 */

1. Computes c← AH-ComG,r(0).
Let ρ0 be the randomness used in AH-Com.
Compute ρ1 := AH-ExplainAsOneG,r(w, c, ρ0).

2. Output (c, ρ1).

Let EXPAH
b (n,G,w, r) be the random variable representing the output of

EXPAH
b (n,G,w, r) for each b ∈ {0, 1}. Then, the following two ensembles

are computationally indistinguishable.

–
{
EXPAH

0 (n,G,w, r)
}
n∈N,G∈LHC,w∈RHC(G),r∈{0,1}3n

–
{
EXPAH

1 (n,G,w, r)
}
n∈N,G∈LHC,w∈RHC(G),r∈{0,1}3n

3.7 Barak’s Non-black-box Zero-knowledge Protocols

As explained in Section 2, in our LRZK protocol, we use a variant of so called
“encrypted” Barak’s preamble [25, 24], which is based on the preamble stage
of Barak’s non-black-box zero-knowledge protocol [3]. In this section, we re-
call Barak’s non-black-box zero-knowledge protocol. Our variant of encrypted
Barak’s preamble is described in Section 4.1.

Barak’s non-black-box zero-knowledge protocol is constructed from any collision-
resilient hash function family H. Informally speaking, Barak’s protocol BarakZK
proceeds as follows.

Protocol BarakZK
1. The verifier V sends a random hash function h ∈ H and the first-round

message r1 ∈ {0, 1}3n of Com to the prover P .
2. P sends c← Comr1(0n) to V . Then, V sends random string r2 to P .
3. P proves the following statement by a witness-indistinguishable argument.

– x ∈ L, or
– (h, c, r2) ∈ Λ, where (h, c, r2) ∈ Λ holds if and only if there exists a

machine Π such that c is a commitment to h(Π) and Π outputs r2 in
nlog logn steps.

Note that the statement proven in the last step is not in NP. Thus, P proves
this statement by a witness-indistinguishable universal argument (WIUA), with
which P can prove any statement in NEXP. Intuitively, BarakZK is sound since
Π(c) 6= r holds with overwhelming probability even when a cheating prover
P ∗ commits to h(Π) for a machine Π. On the other hand, the zero-knowledge
property can be proven by using a simulator that commits to h(Π) such that
Π is a machine that emulates the cheating verifier V ∗; since Π(c) = V ∗(c) = r
holds from the definition, the simulator can give a valid proof in the last step.

14 Susumu Kiyoshima

For our purpose, it is convenient to consider a variant of BarakZK that we
denote by 〈PB, VB〉. 〈PB, VB〉 is the same as BarakZK except that in the last step,
instead of proving x ∈ L∨(h, c, r2) ∈ Λ by using WIUA, P proves (h, c, r2) ∈ Λ by
using four-round public-coin universal argument system UA [4]. (Hence, 〈PB, VB〉
is no longer zero-knowledge protocol.) The formal description of 〈PB, VB〉 is
shown in Fig. 1. We remark that in 〈PB, VB〉, the language proven in the last step
is replaced with a slightly more complex language as in, e.g., [3, 25, 24, 23]. This
replacement is important for using 〈PB, VB〉 in the setting of leakage-resilient
zero-knowledge, because the cheating verifier can obtain arbitrary information
(i.e., leakage) before sending r2.

Stage 1:
The verifier VB sends a random hash function h ∈ H to the prover PB, where
the domain of h is {0, 1}∗ and the range of h is {0, 1}n. VB also sends r1 ∈
{0, 1}3n (the first-round message of Com) to PB.

Stage 2:
1. PB computes c← Comr1(0n) and send c to VB.

2. VB sends random r2 ∈ {0, 1}n+n2

to PB.
Stage 3: PB proves statement (h, r1, c, r2) ∈ Λ by using UA.

1. VB sends the first-round message α.
2. PB sends the second-round message β.
3. VB sends the third-round message γ.
4. PB sends the fourth-round message δ.

. .

Language Λ:
(h, r1, c, r2) ∈ Λ if and only if there exist
– a machine Π
– randomness rand for Com
– a string y such that |y| ≤ n2

such that
– c = Comr1(h(Π); rand), and
– Π(c, y) outputs r2 within nlog logn steps.

Fig. 1. Encrypted Barak’s preamble 〈PB, VB〉.

In essentially the same way as the soundness of BarakZK, we can prove the
following lemma on 〈PB, VB〉, which roughly states that there exists a “hard”
language LB on the transcript of 〈PB, VB〉 such that no cheating prover can
generate a transcript that is included in LB.

Lemma 1 (Soundness). Let LB be the language defined in Fig. 2. Then, for
any cheating prover P ∗ against 〈PB, VB〉, any n ∈ N, and any z ∈ {0, 1}∗,

Pr [τ ← trans [P ∗(1n, z)↔ VB(1n)] : τ ∈ LB] ≤ negl(n) .

A proof sketch of this lemma is given in the full version of this paper [17].

Constant-round Leakage-resilient ZK from Collision Resistance 15

Language LB:
τ = (h, r1, c, r2, α, β, γ, δ) ∈ LB if and only if (α, β, γ, δ) is an accepting tran-
script of UA for statement (h, r1, c, r2) ∈ Λ.

Fig. 2. A “hard” language LB.

3.8 Somewhat Extractable Commitment Scheme

As we mentioned in Remark 1 in Section 2.2, in our variant of encrypted Barak’s
preamble, we use a commitment scheme that satisfies only very weak extractabil-
ity, which we call somewhat extractability. An important point is that since only
very weak extractability is required, we can construct a somewhat extractable
commitment scheme such that the committer sends only pseudorandom mes-
sages. Furthermore, we can construct such a scheme from one-way functions.

Concretely, we consider the commitment scheme SWExtCom in Fig. 3. SWExtCom
is the same as the extractable commitment scheme of [26] except that in the last
step, the committer simply reveals the values that it committed to in the first
step (instead of decommitting the commitments). Because of this simplification,
SWExtCom does not satisfy extractability in the standard sense. Still, it is not
hard to see that SWExtCom satisfies extractability in the sense that, given two
valid commitments c and c′ such that the transcripts of the commit stage are
identical but those of the challenge stage are different, the committed value of c
can be extracted. Formally, SWExtCom satisfies the following extractability.

Lemma 2 (Somewhat extractability). Let us say that two commitments c =
({ci,b}i∈[n],b∈{0,1}, {ei}i∈[n], {ai,ei}i∈[n]) and c′ = ({c′i,b}i∈[n],b∈{0,1}, {e′i}i∈[n], {a′i,ei}i∈[n])
are admissible if

– ci,b = c′i,b for every i ∈ [n] and b ∈ {0, 1},
– there exists i∗ ∈ [n] such that ei∗ 6= e′i∗ , and
– the committed value of ci,b is uniquely determined for every i ∈ [n] and
b ∈ {0, 1}.

Let Extract(·, ·) be the algorithm shown in Fig. 3. Then, for any two admissible

commitments c and c′, if both c and c′ are valid, ṽ
def
= Extract(c, c′) is equal to

value(c) (i.e., ṽ is the committed value of c).

Proof. First, when c and c′ are valid, ai∗,ei∗ and a′i∗,e′
i∗

are the committed values

of ci∗,ei∗ and ci∗,e′
i∗

(since otherwise, any decommitments of c and c′ would be
rejected because the decommitted values of ci∗,ei∗ and ci∗,e′

i∗
are not consistent

with ai∗,ei∗ and a′i∗,e′
i∗

). Second, when c and c′ are valid, the committed value of

c can be computed by XORing the committed values of ci∗,ei∗ and ci∗,e′
i∗

(since

otherwise, any decommitments of c and c′ would be rejected). From these, the
lemma follows. ut

A nice property of SWExtCom is that all the messages that the committer
sends in the commit phase are pseudorandom. Formally, we have the following
lemma.

16 Susumu Kiyoshima

Commit phase. The committer C and the receiver R receive common inputs
1n. To commit to v ∈ {0, 1}n, the committer C does the following with the
receiver R.
Commit stage. For each i ∈ [n], the committer C chooses a pair of random

n-bit strings (ai,0, ai,1) such that ai,0 ⊕ ai,1 = v. Then, for each i ∈ [n] in
parallel, C commits to ai,0 and ai,1 by using Com. For each i ∈ [n] and
b ∈ {0, 1}, let ci,b be the commitment to ai,b.

Challenge stage. R sends random n-bit string e = (e1, . . . , en) to C.
Reply stage. For each i ∈ [n], C sends ai,ei to R.

Decommit phase. C sends v to R and decommits ci,b to ai,b for all i ∈ [n]
and b ∈ {0, 1}. R checks whether a1,0 ⊕ a1,1 = · · · = an,0 ⊕ an,1 = v holds
and whether a1,e1 , . . . , an,en are equal to the values that were revealed in the
commit phase.

. .

Extracting algorithm Extract.
On input two commitments c = ({ci,b}i∈[n],b∈{0,1}, {ei}i∈[n], {ai,ei}i∈[n]) and
c′ = ({c′i,b}i∈[n],b∈{0,1}, {e′i}i∈[n], {a′i,ei}i∈[n]) such that ci,b = c′i,b for every
i ∈ [n] and b ∈ {0, 1}, do the following.
1. Find any i ∈ [n] such that ei 6= e′i. If no such i exist, output fail.

2. Output ṽ
def
= ai,ei ⊕ a′i,e′i .

Fig. 3. A somewhat extractable commitment scheme SWExtCom.

Lemma 3 (Existence of public-coin fake committing algorithm). Let C
be a honest committer algorithm of SWExtCom. There exists a ppt public-coin
algorithm Cpub such that for any ppt cheating receiver R∗ that interacts with C
in the commit phase of SWExtCom, the following ensembles are computationally
indistinguishable.

– {outputR∗ [C(v)↔ R∗(1n, z)]}n∈N,v∈{0,1}n,z∈{0,1}∗
– {outputR∗ [Cpub(1n)↔ R∗(1n, z)]}n∈N,v∈{0,1}n,z∈{0,1}∗

Proof (sketch). Cpub is an algorithm that is the same as C except that, instead of
sending commitments of Com, it sends fake commitments of Com using Compub

(i.e., sends random strings with the same length as the Com commitments). Since
Com has pseudorandom range, the indistinguishability can be proven by using a
standard hybrid argument (in which the commitments of Com are replaced with
random strings one by one). The formal proof is omitted. ut

4 Building Blocks

4.1 Special-purpose Encrypted Barak’s Preamble

In our LRZK protocol, we use a variant of so called “encrypted” Barak’s pream-
ble [25, 24]. The encrypted Barak’s preamble is the same as (a variant of) Barak’s

Constant-round Leakage-resilient ZK from Collision Resistance 17

Stage 1:
The verifier VB sends a random hash function h ∈ H to the prover PB. VB

also sends r1 ∈ {0, 1}3n (the first-round message of Com) to PB.
Stage 2:

1. PB gives a fake commitment c of Com to VB by running c← Compub(1n).

2. VB sends random r2 ∈ {0, 1}n+n2

to PB.
Stage 3 (Encrypted UA):

1. VB sends the first-round message α of UA for statement (h, r1, c, r2) ∈ Λ.
2. PB gives a fake commitment of SWExtCom to VB by running Cpub(1n).

Let β̂ be the fake commitment (i.e., the transcript of this step).
3. VB sends the third-round message γ of UA for statement (h, r1, c, r2) ∈ Λ.
4. PB gives a fake commitment of SWExtCom to VB by running Cpub(1n).

Let δ̂ be the fake commitment.

. .

Language Λ (same as the one in Fig. 1):
(h, r1, c, r2) ∈ Λ if and only if there exist
– a machine Π
– randomness rand for Com
– a string y such that |y| ≤ n2

such that
– c = Comr1(h(Π); rand), and
– Π(c, y) outputs r2 within nlog logn steps.

Fig. 4. Special-purpose encrypted Barak’s preamble 〈PB,VB〉.

non-black-box zero-knowledge protocol 〈PB, VB〉 in Section 3.7 except that PB

commits to its UA messages β and δ instead of sending them in clear. In this
paper, we use a variant in which, instead of giving valid commitments, PB gives
fake commitments of Com and SWExtCom by using Compub and Cpub. A nice
property of this variant is that the prover sends only random strings; as will
become clear later, this property is useful for constructing leakage-resilient pro-
tocols. The formal description of this variant, which we denote by 〈PB,VB〉, is
shown in Fig. 4.

We first show that, as in the case of 〈PB, VB〉, there exists a “hard” language
on the transcript of 〈PB,VB〉.

Lemma 4 (Soundness). Let LB be the language defined in Fig. 5. Then, for
any cheating prover P∗ against 〈PB,VB〉, any n ∈ N, and any z ∈ {0, 1}∗,

Pr [τ ← trans [P∗(1n, z)↔ VB(1n)] : τ ∈ LB] ≤ negl(n) .

Proof. Assume for contradiction that there exists P∗ such that for infinitely
many n’s, there exists z ∈ {0, 1}∗ such that

Pr [τ ← trans [P∗(1n, z)↔ VB(1n)] : τ ∈ LB] ≥ 1

p(n)

18 Susumu Kiyoshima

Language LB:
(h, r1, c, r2, α, β̂, γ, δ̂) ∈ LB if and only if there exist
– decommitments d1, d2 ∈ {0, 1}poly(n) for SWExtCom
– the second-round and the fourth-round messages β, δ ∈ {0, 1}n of UA

such that
– d1 is a valid decommitment of β̂ to β, and
– d2 is a valid decommitment of δ̂ to δ, and
– (α, β, γ, δ) is an accepting transcript of UA for statement (h, r1, c, r2) ∈ Λ.

Fig. 5. Language LB.

for a polynomial p(·). We use P∗ to construct a cheating prover P ∗ against
〈PB, VB〉 and show that it contradicts the soundness of 〈PB, VB〉 (i.e., Lemma 1).

Consider the following cheating prover P ∗ against 〈PB, VB〉. First, P ∗ inter-
nally invokes P∗. Then, while externally interacting with a honest VB of 〈PB, VB〉,
P ∗ interacts with internal P∗ as a verifier of 〈PB,VB〉 in the following way.

– In Stage 1 and 2 (of 〈PB,VB〉), P ∗ forwards all messages from external VB
to internal P∗ and forwards all messages from internal P∗ to external VB.
(Notice that the verifier of 〈PB, VB〉 and that of 〈PB,VB〉 are identical.) Let
(h, r1, c, r2) be the transcript of these stages.

– In Stage 3-1, P ∗ forwards α from external VB to internal P∗.
– In Stage 3-2, P ∗ interacts with internal P∗ as a honest receiver of SWExtCom

and obtains β̂1. Let st be the current state of P∗. Then, P ∗ rewinds P∗
to the point just before the challenge stage of SWExtCom, interacts with
P∗ again, and obtains β̂2. Then, P ∗ computes a potential committed value

β̃
def
= Extract(β̂1, β̂2) of β̂1 (recall that Extract is the extracting algorithm of

SWExtCom shown in Fig. 3) and sends β̃ to external VB.
– In Stage 3-3, P ∗ receives γ from VB and sends it to internal P∗ (which is

restarted from state st).
– In Stage 3-4, P ∗ interacts with internal P∗ as a honest receiver of SWExtCom

and obtains δ̂1. Then, P ∗ rewinds P∗ to the point just before the challenge
stage of SWExtCom, interacts with P∗ again, and obtains δ̂2. Then, P ∗ com-
putes δ̃ := Extract(δ̂1, δ̂2) and sends δ̃ to external VB.

Whenever internal P∗ aborts, P ∗ also aborts.
Before analyzing the success probability of P ∗, we first introduce some termi-

nologies regarding the internally emulated interaction between P∗ and VB. Let
τ = (h, r1, c, r2, α, β̂1, γ, δ̂1) be its transcript. Notice that since P ∗ emulates VB

for internal P∗ perfectly, we have τ ∈ LB with probability at least 1/p(n).

– We say that a transcript τ1 up until the commit stage of SWExtCom in Stage
3-2 is good if under the condition that τ1 is a prefix of τ , the probability that
τ ∈ LB holds is at least 1/2p(n).

– We say that a transcript τ2 up until the commit stage of SWExtCom in Stage
3-4 is good if (1) a prefix of τ2 up until the commit stage of SWExtCom in

Constant-round Leakage-resilient ZK from Collision Resistance 19

Stage 3-2 is good and (2) under the condition that τ2 is a prefix of τ , the
probability that τ ∈ LB holds is at least 1/4p(n).

We then analyze the success probability of P ∗ as follows. Let GOOD1 be the
event that a prefix of τ up until the commit stage of SWExtCom in Stage 3-2 is
good, and let GOOD2 be the event that a prefix of τ up until the commit stage
of SWExtCom in Stage 3-4 is good. From an average argument, we have

Pr [GOOD1] ≥ 1

2p(n)
and Pr [GOOD2 | GOOD1] ≥ 1

4p(n)
.

Hence, we have

Pr [GOOD2] = Pr [GOOD1 ∧ GOOD2] ≥ 1

8 (p(n))
2 . (1)

Also, from the definition of GOOD2, we have

Pr [τ ∈ LB | GOOD2] ≥ 1

4p(n)
. (2)

Hence, from Equation (1) and (2), we have

Pr [GOOD1 ∧ GOOD2 ∧ τ ∈ LB] = Pr [GOOD2 ∧ τ ∈ LB] ≥ 1

32 (p(n))
3 . (3)

Next, we observe that when the transcript up until the commit stage of SWExtCom
in Stage 3-2 is good, P∗ gives a valid commitment of SWExtCom in Stage 3-2
with probability at least 1/2p(n), and similarly, when the transcript up until the
commit stage of SWExtCom in Stage 3-4 is good, P∗ gives a valid commitment of
SWExtCom in Stage 3-4 with probability at least 1/4p(n). (This is because when
the transcript is in LB, the SWExtCom commitments in Stage 3-2 and 3-4 are
valid.) Hence, under the condition that GOOD1∧GOOD2∧ τ ∈ LB, the probability

that both of β̂2 and δ̂2 are valid is at least 1/8(p(n))2. Also, from the definition

of LB, both of β̂1 and δ̂1 are valid when τ ∈ LB, and furthermore, β̂1 and β̂2
(resp, δ̂1 and δ̂2) are admissible except with negligible probability. Hence, from

Lemma 2, for β̃ = Extract(β̂1, β̂2) and δ̃ = Extract(δ̂1, δ̂2) we have

Pr
[
β̃ = value(β̂1) ∧ δ̃ = value(δ̂1) | GOOD1 ∧ GOOD2 ∧ τ ∈ LB

]
≥ 1

8(p(n))2
− negl(n) . (4)

Hence, from Equation (3) and (4), we have

Pr
[
GOOD1 ∧ GOOD2 ∧ τ ∈ LB ∧ β̃ = value(β̂1) ∧ δ̃ = value(δ̂1)

]
≥ 1

256(p(n))5
− negl(n) .

20 Susumu Kiyoshima

Notice that from the definition of LB, when τ ∈ LB ∧ β̃ = value(β̂1) ∧ δ̃ =

value(δ̂1), it holds that (α, β̃, γ, δ̃) is an accepting UA proof for (h, r1, c, r2) ∈ Λ.
Hence, we have

Pr
[
(h, r1, c, r2, α, β̃, γ, δ̃) ∈ LB

]
≥ 1

256(p(n))5
− negl(n) ,

which contradicts Lemma 1. ut

We next note that a non-black-box simulator can simulate the transcript τ
in such a way that τ ∈ LB holds, and the simulator can additionally output a
witness for τ ∈ LB.

Lemma 5 (Simulatability). Let LB be the language defined in Fig. 5. Then,
for any ppt cheating verifier V∗ against 〈PB,VB〉, there exists a ppt simulator
S such that the following hold.

– Let S1(x, z) be the random variable representing the first output of S(x, z).
Then, the following indistinguishability holds.

{viewV∗ [PB(1n)↔ V∗(1n, z)]}n∈N,z∈{0,1}∗ ≈ {S1(1n, z)}n∈N,z∈{0,1}∗

– For any n ∈ N and z ∈ {0, 1}∗, the following holds.

Pr

[
(v, w)← S(1n, z);
reconstruct transcript τ from view v of V∗ : w ∈ RLB(τ)

]
≥ 1− negl(n)

This lemma can be proven in essentially the same way as the zero-knowledge
property of Barak’s non-black-box zero-knowledge protocol. A proof sketch is
given in the full version [17].

4.2 Special-purpose Instance-dependent Commitment

In our LRZK protocol, we use a special-purpose instance-dependent commit-
ment scheme GJS-Com, which is shown in Fig. 6. GJS-Com is parametrized
by two graphs, G and G′, and obtained by modifying Hamiltonicity commit-
ment scheme H-ComG,r in such a way that the adjacent matrix is committed
to by using AH-ComG′,r instead of Comr. GJS-Com inherits many properties
from H-Com—hiding, binding, and equivocality—and additionally, thanks to the
adaptive security of AH-Com, it provides adaptive security in the following sense:
When G ∈ LHC and G′ ∈ LHC, a commitment to 1 can be explained as a valid
commitment to 0, and furthermore, even after being explained as a commitment
to 0, it can be decommitted to 1 in a consistent way. Details follow.

Lemma 6 (Hiding and binding). GJS-Com is computationally hiding. Fur-
thermore, it is statistically binding when G 6∈ LHC and G′ 6∈ LHC.

Constant-round Leakage-resilient ZK from Collision Resistance 21

Parameters:
– Security parameter n.
– Two graphs G and G′, where the number of vertices in G is q = poly(n)

and that in G′ is q′ = poly′(n).
Inputs:

– C has secret input b ∈ {0, 1}, which is the value to be committed to.
Commit phase:

1. R sends the first-round message r ∈ {0, 1}3n of Com.
2. To commit to 0, C chooses a random permutation π over the ver-

tices of G, computes H0 := π(G), and commits to its adjacent
matrix A0 = {a0,i,j}i,j∈[q] by using AH-ComG′,r, i.e., sends ci,j ←
AH-ComG′,r(a0,i,j) for every i, j ∈ [q].

To commit to 1, C chooses a random q-cycle graph H1 and commits
to its adjacent matrix A1 = {a1,i,j}i,j∈[q] by using AH-ComG′,r, i.e.,
sends ci,j ← AH-ComG′,r(a1,i,j) for every i, j ∈ [q].

Let GJS-ComG,G′,r(·) be a function that, on input b ∈ {0, 1}, computes a
commitment to b as above by considering r as the first-round message from
the receiver.

Decommit phase:
– When C committed to 0, it reveals π and decommits ci,j to a0,i,j for

every i, j ∈ [q]. R verifies whether the decommitted matrix is the adjacent
matrix of π(G).

– When C committed to 1, it decommits ci,j to 1 for every i, j such that
edge (i.j) is on the q-cycle in H1 (i.e., every i, j such that a1,i,j = 1).
R verifies whether the decommitted entries correspond to the edges on a
Hamilton cycle.

Let GJS-Decr(·) be a function that, on input (c, b, ρ) such that
GJS-ComG,G′,r(b; ρ) = c, outputs a decommitment to b as above.

Fig. 6. Special-purpose instance-dependent commitment GJS-Com.

Lemma 7 (Equivocality). There exists an algorithm GJS-EquivToOne that is
parametrized by graphs G,G′ and a string r ∈ {0, 1}3n and satisfies the follow-
ing: When G ∈ LHC, on input any w ∈ RHC(G) and any c and ρ such that
GJS-ComG,G′,r(0; ρ) = c, GJS-EquivToOneG,G′,r outputs a valid decommitment
of c to 1.

Proofs of these two lemmas are straightforward. We give the proofs in the
full version [17].

Lemma 8 (Adaptive security). There exists an algorithm GJS-ExplainAsZero
that is parametrized by graphs G,G′ and a string r ∈ {0, 1}3n and satisfies the
following.

Correctness. When G,G′ ∈ LHC, on input any w ∈ RHC(G) and w′ ∈ RHC(G′)
and any c and ρ1 such that GJS-ComG,G′,r(1; ρ1) = c, GJS-ExplainAsZeroG,G′,r

outputs ρ0 such that GJS-ComG,G′,r(0; ρ0) = c.

22 Susumu Kiyoshima

Indistinguishability. For security parameter n ∈ N, graphs G,G′ ∈ LHC, wit-
nesses w ∈ RHC(G) and w′ ∈ RHC(G′), and string r ∈ {0, 1}3n, consider
the following two probabilistic experiments.

EXPGJS
0 (n,G,G′, w, w′, r)

/* commit to 0 and decommit it to 1 using equivocality */

1. Compute c← GJS-ComG,G′,r(0).
Let ρ0 be the randomness used in GJS-Com.

2. Compute d1 := GJS-EquivToOneG,G′,r(c, w, ρ0).
3. Output (c, ρ0, d1).

EXPGJS
1 (n,G,G′, w, w′, r)

/* commit & decommit to 1 and explain it as commitment to 0 */

1. Compute c← GJS-ComG,G′,r(1).
Let ρ1 be the randomness used in GJS-Com.
Compute d1 := GJS-DecG,G′,r(c, 1, ρ).

2. Compute ρ0 := GJS-ExplainAsZeroG,G′,r(c, w,w′, ρ1).
3. Output (c, ρ0, d1).

Let EXPGJS
b (n,G,G′, w, w′, r) be the random variable representing the output

of EXPGJS
b (n,G,G′, w, w′, r) for each b ∈ {0, 1}. Then, the following two

ensembles are computationally indistinguishable.

–
{
EXPGJS

0 (n,G,G′, w, w′, r)
}
n∈N,G,G′∈LHC,w∈RHC(G),w′∈RHC(G′),r∈{0,1}3n

–
{
EXPGJS

1 (n,G,G′, w, w′, r)
}
n∈N,G,G′∈LHC,w∈RHC(G),w′∈RHC(G′),r∈{0,1}3n

Proof (sketch). GJS-ExplainAsZero is shown in Fig. 7. A key idea is that given
the ability to explain AH-Com commitments to 0 as AH-Com commitments to
1, we can explain a GJS-Com commitment to 1 (which is AH-Com commitments
to the adjacent matrix of a cycle graph) as a GJS-Com commitment to 0 (which
is AH-Com commitments to the adjacent matrix of a Hamiltonian graph G).
Intuitively, this is because a cycle graph can be transformed to any Hamilto-
nian graph by appropriately adding edges (which corresponds to changing some
entries of the adjacent matrix from 0 to 1). A formal proof is given in the full
version [17].

ut

5 Our Leakage-resilient Zero-knowledge Argument

Theorem 1. Assume the existence of collision-resistant hash function family.
Then, there exists a constant-round public-coin leakage-resilient zero-knowledge
argument system LR-ZK.

Proof. LR-ZK is shown in Fig. 8. Since 〈PB,VB〉 can be constructed from any
collision-resistant hash function family, and SWExtCom can be constructed from
any one-way function (which can be obtained from any collision-resistant hash
function family), LR-ZK can be constructed from any collision-resistant hash

Constant-round Leakage-resilient ZK from Collision Resistance 23

Parameter:
– Graphs G,G′ ∈ LHC

– String r ∈ {0, 1}3n
Input:

– Witnesses w ∈ RHC(G) and w′ ∈ RHC(G′)
– Commitment c and randomness ρ1 s.t. GJS-ComG,G′,r(1; ρ1) = c

Output:
1. Parse c as {ci,j}i,j∈[q], where each ci,j is a AH-Com commitment. Also,

from ρ1, reconstruct A1 = {a1,i,j}i,j∈[q] and {σ1,i,j}i,j∈[q] such that A1 is
the adjacent matrix of a q-cycle graph H1 and AH-ComG′,r(a1,i,j ;σ1,i,j) =
ci,j for every i, j ∈ [q].

2. Choose a random permutation π under the condition that a q-cycle in

H0
def
= π(G) coincides with the q-cycle in H1 (i.e., H0 has the same cycle

as H1).a Let A0 = {a0,i,j}i,j∈[q] be the adjacent matrix of H0.

3. For every i, j ∈ [q], define σ0,i,j by σ0,i,j
def
= σ1,i,j when a0,i,j = a1,i,j and

by σ0,i,j
def
= AH-ExplainAsOneG′,r(w′, ci,j , σ1,i,j) when a0,i,j 6= a1,i,j .

b

4. Outputs ρ0
def
= (π, {σ0,i,j}i,j∈[q]).

a Given w, this can be done efficiently.
b When a0,i,j 6= ai,j , it holds that a0,i,j = 1 and a1,i,j = 0.

Fig. 7. GJS-ExplainAsZero.

function family. Also, by inspection, it can be seen that LR-ZK is public-coin
and has constant number of rounds.

Roughly speaking, the soundness of LR-ZK can be proven as follows. From the
soundness of 〈PB,VB〉, we have τ 6∈ LB (and hence G′ 6∈ LHC) in Stage 1 except
with negligible probability. Hence, GJS-ComG,G′ is statistically binding except
with negligible probability, and thus we can use essentially the same argument
as in the proof of the soundness of Blum’s Hamiltonicity protocol to show that
any cheating prover can give valid response in Stage 2-3 of all n iterations only
with negligible probability. The formal proof is given in the full version [17].

In the following, we prove leakage-resilient zero-knowledgeness.

Lemma 9. LR-ZK is leakage-resilient zero-knowledge.

In the following, we prove this lemma only w.r.t. a simplified version of LR-ZK
in which Stage 2-1, 2-2, and 2-3 are executed only once (instead of executed n
times in parallel). The proof w.r.t. LR-ZK can be obtained by modifying the
following proof in a straight-forward way.

Proof. Without loss of generality, we assume that after receiving each message
from the prover, the cheating verifier makes exactly a single leakage query. To
see that we indeed do not lose generality, observe that instead of making two
queries f1 and f2, the cheating verifier can always query a single query f such
that, on input witness w and prover’s randomness tape, it computes the first

24 Susumu Kiyoshima

Input.
– Common input is graph G ∈ LHC.

Let n
def
= |G|, and q be the number of vertices in G.

– Private input to the prover P is witness w ∈ RHC(G).
Stage 1.

– P and V execute special-purpose encrypted Barak’s preamble 〈PB,VB〉.
Let τ be the transcript.

– P and V reduce statement “τ ∈ LB” to Hamiltonicity problem via general
NP reduction. Let G′ be the graph that P and V obtained. Let q′ be the
number of vertices in G′.

Stage 2.
– V sends the first-round message r ∈ {0, 1}3n of Com to P .
– P and V do the following for n times in parallel.

1. P commits to a q′ × q′ zero matrix in a bit-by-bit manner by using
GJS-ComG,G′,r. That is, P sends ci,j ← GJS-ComG,G′,r(0) to V for
every i, j ∈ [q′]. Let ρi,j be the randomness that was used to compute
ci,j .

2. V sends a random bit ch ∈ {0, 1} to P .
3. When ch = 0:

• P chooses a random permutation π and computes H0 := π(G′).
Let A0 = {a0,i,j}i,j∈[q′] be the adjacent matrix of H0.

• P sends π to V and decommits the GJS-Com commitments in
Stage 2-1 to A0 by using the equivocality of GJS-Com. That
is, for every i, j ∈ [q], P sends a honest decommitment di,j :=
GJS-DecG,G′,r(ci,j , 0, ρi,j) to V when a0,i,j = 0 and sends a
fake decommitment di,j := GJS-EquivToOneG,G′,r(ci,j , w0, ρi,j)
to V when a0,i,j = 1.

• V computes H0 = π(G′) and verifies whether the decommitted
matrix is equal to the adjacent matrix of H0.

When ch = 1:
• P chooses a random q′-cycle graph H1. Let A1 = {a1,i,j}i,j∈[q′]

be the adjacent matrix of H1.
• P decommits ci,j to a1,i,j for every i, j such that a1,i,j = 1

(i.e., for every i, j such that edge (i, j) is on the q′-cycle of H1).
That is, for every such i and j, P sends a fake decommitment
di,j := GJS-EquivToOneG,G′,r(ci,j , w0, ρi,j) to V .

• V checks whether the decommitted entries of the matrix cor-
respond to the edges on a q′-cycle.

Fig. 8. Constant-round leakage-resilient zero-knowledge argument LR-ZK.

leakage L1 := f1(w, tape), chooses the second query f2 adaptively, computes the
second leakage L2 := f2(w, tape), and outputs (L1, L2).

Description of the simulator. Given access to leakage oracle Lw and input
(G, z), our simulator S simulates the view of cheating verifier V ∗ by internally
invoking V ∗(G, z) and interacting with it as follows.

Constant-round Leakage-resilient ZK from Collision Resistance 25

Simulating messages and leakages in Stage 1. Roughly speaking, S simulates
the messages in Stage 1 by interacting with V ∗ in the same way as the simulator
of 〈PB,VB〉 (cf. Lemma 5). To simulate the leakages in Stage 1, S uses the
fact that Stage 1 of LR-ZK is public coin w.r.t. the prover and therefore all
the randomness that a honest prover generates during Stage 1 is the messages
themselves. Specifically, S simulates the leakages by considering the messages
msgs that it has sent to V ∗ thus far as the randomness of the prover. An issue
is that due to the existence of leakage queries, S cannot use the simulator of
〈PB,VB〉 in a modular way. Nonetheless, S can still use the technique used in
the simulator of 〈PB,VB〉 as long as the length of the leakages is bounded by
n2. (Notice that when the length of leakage exceeds n2, S can simply obtain a
Hamiltonian cycle w of G from Lw.)

Formally, S interacts with V ∗ as follows.

1. After receiving h and r1 from V ∗, S sends c ← Comr1(h(V ∗)) to V ∗. Let
rand be the randomness that was used in this step.
Leakage query: When V ∗ makes a leakage query f , S does the following.
– Let tape := c.
– If the output length of f is more than n2, S obtains w from Lw and

returns f(w‖ tape) to V ∗.
– Otherwise, S queries f(·, tape) to Lw, obtains reply L from Lw, and

forwards L to V ∗.
If S obtained w, from now on S interacts with V ∗ in exactly the same way
as a honest prover. Otherwise, do the following.

2. After receiving r2 and α from V ∗, S computes the second-round UA message
β by using witness (V ∗, rand, L) and then honestly commits to β by using

SWExtCom. Let β̂ be the commitment and d1 be the decommitment.
Leakage query: When V ∗ makes a leakage query f , S sets tape := msgs,
queries f(·, tape) to Lw, and forwards the reply from Lw to V ∗, where msgs
are the messages that S has sent to V ∗ thus far.

3. After receiving γ from V ∗, S computes the fourth-round UA message δ and
then honestly commits to δ by using SWExtCom. Let δ̂ be the commitment
and d2 be the decommitment.
Leakage query: When V ∗ makes a leakage query f , S answers it in exactly
the same way as above.

Let τ
def
= (h, r1, c, r2, α, β̂, γ, δ̂) and w̄

def
= (d1, d2, β, δ). Since (V ∗, rand, L) is a

valid witness for (h, r1, c, r2) ∈ Λ, we have τ ∈ LB and w̄ ∈ RLB
(τ). Let G′

and w′ be the graph and its Hamiltonian cycle that are obtained by reducing
statement “τ ∈ LB” to Hamiltonicity problem through the NP reduction.

Simulating messages Stage 2. If S obtained w during Stage 1, it interacts with V ∗

in the same way as a honest prover. Otherwise, S interacts with V ∗ as follows.
The idea is that, since S know a witness w′ for G′ ∈ LHC, S can correctly
respond to the challenge for both ch = 0 and ch = 1 by committing to a random
permutation of G′ in the first step.

26 Susumu Kiyoshima

1. S chooses a random permutation π and computes H := π(G′). Then, S com-
mits to the adjacent matrix A = {ai,j}i,j∈[q′] of H by using GJS-ComG,G′,r.
That is, S sends ci,j ← GJS-ComG,G′,r(ai,j) to V ∗ for every i, j ∈ [q′].
Let {ρi,j}i,j∈[q′] be the randomness used in the GJS-Com commitments and
π(w′) be the Hamiltonian cycle in H that is obtained by applying π on
Hamiltonian cycle w′ in G′.

2. S receives a random bit ch ∈ {0, 1} from V ∗.
3. When ch = 0, S sends π to V and decommits ci,j to ai,j honestly for every

i, j ∈ [q′]. That is, S sends di,j := GJS-DecG,G′,r(ci,j , ai,j , ρi,j) to V for
every i, j ∈ [q′].

When ch = 1, S decommits ci,j to 1 honestly for every i, j such that edge
(i, j) is on the Hamiltonian cycle π(w′) in H. That is, for every such i
and j, S sends di,j := GJS-DecG,G′,r(ci,j , ai,j , ρi,j) to V ∗.

Simulating leakage queries in Stage 2. When V ∗ makes a leakage query f , S
simulates the leakage as follows. Recall that in Stage 2-1, a honest prover commits
to a q′×q′ zero matrix whereas S commits to the adjacent matrix of H. Hence, S
simulates the leakage by “explaining” commitments {ci,j}i,j∈[q′] to {ai,j}i,j∈[q′]
as commitments to {0} by using the adaptive security of GJS-Com and the
knowledge of w′. Concretely, S does the following.

– First, for each i, j ∈ [q′], S constructs a function Fi,j(·) such that on input
w, it outputs ρ̃i,j such that GJS-ComG,G′,r(0; ρ̃i,j) = ci,j . Concretely, when
ai,j = 0, Fi,j(·) is a function that always outputs ρi,j , and when ai,j = 1,

Fi,j(·)
def
= GJS-ExplainAsZeroG,G′,r(ci,j , ·, w′, ρi,j).

– Next, S constructs a function f̃ such that on input w, it computes tape :=
msgs‖{Fi,j(w)}i,j∈[q′] and outputs f(w, tape).

– Finally, S queries f̃ to Lw and forwards the reply from Lw to V ∗.

Amount of total leakage. From the construction of S, it always obtains at
most the same amount of leakages as V ∗.

Indistinguishability of views. For any cheating verifier V ∗ and any sequence
{wG}G∈LHC such that wG ∈ RHC(G), we show the following indistinguishability.

{REALV ∗(G,wG, z)}G∈LHC,z∈{0,1}∗ ≈ {IDEALS(G,wG, z)}G∈LHC,z∈{0,1}∗ . (5)

Toward this end, we consider the following hybrid experiments.

Hybrid HYB0(G, z) is identical with experiment REALV ∗(G,w, z). That is, V ∗

interacts with honest P (G,w) and obtains leakage that is computed honestly
based on witness w and the prover’s randomness. The outputs of this hybrid
is the view of V ∗.

Hybrid HYB1(G, z) is the same as HYB0 except for the following.

Constant-round Leakage-resilient ZK from Collision Resistance 27

– In Stage 1, a honest prover is replaced with the simulator. That is, c is
computed by committing to h(V ∗), β̂ is computed by committing to β,

and δ̂ is computed by committing to δ.
Let τ and w̄ be the statement and the witness generated in it. Let G′

and w′ be the graph and its Hamiltonian cycle that are obtained by
reducing statement “τ ∈ LB” to Hamiltonicity problem through the NP
reduction.

– The leakage queries are answered by considering that the randomness
generated by the prover during Stage 1 is equal to the messages sent to
V ∗ during Stage 1.

Hybrid HYB2(G, z) is the same as HYB1 except for the following.
– As in S, a random permutation π is chosen randomly at the beginning

of Stage 2-1. Let H
def
= π(G′), and A = {ai,j}i,j∈[q′] be the adjacent

matrix of H. Let π(w′) be the Hamiltonian cycle in H that is obtained
by applying π on Hamiltonian cycle w′ in G′.
We remark that in this hybrid, the prover still commits to a q′ × q′ zero
matrix as in HYB1. Also, the leakage query immediately after Stage 2-1
is answered in exactly the same way as in HYB1. In particular, when the
leakage query is answered, π is not included in the randomness generated
by the prover in Stage 2-1.

– In Stage 2-3, graph H0 or H1 is chosen as follows.
When ch = 0, H0 := H.
When ch = 1, H1 is the graph that is obtained by removing every edge

in H except for the ones on Hamiltonian cycle π(w′).
The leakage query immediately after Stage 2-3 is answered in the same
way as in HYB1 by considering that H0 or H1 was chosen during Stage
2-3 as in HYB1.

Hybrid HYB3(G, z) is the same as HYB2 except for the following.
– In Stage 2-1, for every i, j ∈ [q′], commitment ci,j is computed by com-

mitting to ai,j (instead of 0), i.e., ci,j ← GJS-ComG,G′,r(ai,j).
– In Stage 2-3, for every i, j ∈ [q′], if commitment ci,j need to be decom-

mitted, it is decommitted to ai,j honestly.
– When the leakage queries are answered during Stage 2, the randomness
ρi,j used for computing ci,j is simulated by ρ̃i,j that is computed by
function Fi,j as in S for every i, j ∈ [q′].

Hybrid HYB4(G, z) is identical with IDEALS(x,w, z). That is, S(G, z) is exe-
cuted given access to Lw. The outputs of this hybrid is that of S.

Claim 1. The output of HYB0(G, z) and that of HYB1(G, z) are computationally
indistinguishable.

Proof. HYB1 differs from HYB0 only in that fake commitments of Com and
SWExtCom are replaced with real commitments. Hence, the indistinguishabil-
ity follows from the security of Compub and Cpub (see Section 3.4 and 3.8). ut

Claim 2. The output of HYB1(G, z) and that of HYB2(G, z) are computationally
indistinguishable.

28 Susumu Kiyoshima

Proof. This claim can be proven by inspection. Observe that HYB2 differs from
HYB1 only in the way graph H0 or H1 is chosen in Stage 2. When ch = 0, the
distribution of H0 in HYB2 is the same as that in HYB1 since H0 is obtained both
in HYB2 and HYB1 by applying a random permutation on G′. When ch = 1, the
distribution of H1 in HYB2 is the same as that in HYB1 since the Hamiltonian
cycle w′ in G′ is mapped to a random q-cycle by π. Hence, the output of HYB2

is identically distributed with that of HYB1. ut

Claim 3. The output of HYB2(G, z) and that of HYB3(G, z) are computationally
indistinguishable.

Proof. Assume for contradiction that for infinitely many G ∈ LHC, there exists
z ∈ {0, 1}∗ such that a distinguisher D distinguishes the output of HYB2(G, z)
and that of HYB3(G, z) with advantage 1/p(n) for a polynomial p(·). Fix any
such G and z. To derive a contradiction, we consider the following intermediate
hybrids.

Hybrid HYB2:0(G, z) is identical with HYB2(G, z).
Hybrid HYB2:k(G, z) , where k ∈ [q′2], is the same as HYB2:k−1 except for the

following. Let u
def
= b(k − 1)/q′c+ 1 and v

def
= k − b(k − 1)/q′c · q′.

– In Stage 2-1, commitment cu,v is computed by committing to au,v (in-
stead of 0), i.e., cu,v ← GJS-ComG,G′,r(au,v).

– In Stage 2-3, if commitment cu,v need to be decommitted, it is decom-
mitted to au,v honestly.

– When the leakage queries are answered during Stage 2, the randomness
ρu,v used for computing cu,v is simulated by ρ̃u,v that is computed by
function Fu,v as in S.

Clearly, HYB2:q′2 is identical with HYB3. Hence, there exists k∗ ∈ [q′2] such that
the output of HYB2:k∗−1 and that of HYB2:k∗ can be distinguished with advantage
1/q′2p(n). Furthermore, from an average argument, there exists a prefix σ of the
execution of HYBk∗−1 up until permutation π is chosen in Stage 2-1 (i.e., just
before {ci,j}i,j∈[q′] is sent to V ∗) such that under the condition that a prefix of the
execution is σ, the output of HYB2:k∗−1 and that of HYB2:k∗ can be distinguished
with advantage 1/q′2p(n). Notice that σ determines G′, w′, r, {ai,j}i,j∈[q′].

We derive a contradiction by showing that we can break the adaptive security
of GJS-Com (Lemma 8). Specifically, we show that EXPGJS

0 (n,G,G′, w, w′, r)
and EXPGJS

1 (n,G,G′, w, w′, r) can be distinguished with advantage 1/q′2p(n).
Toward this end, consider the following distinguisher D′.

– Externally, D′ takes (c, ρ0, d1) as well as (n,G,G′, w, w′, r) as input. D′ also
takes (σ, z) as non-uniform input.

– Internally, D′ invokes V ∗ and simulates HYB2:k∗−1(G, z) for V ∗ from σ hon-

estly except for the following. Let u∗
def
= b(k∗ − 1)/q′c + 1 and v∗

def
=

k∗−b(k∗− 1)/q′c · q′. Notice that it must hold that au∗,v∗ = 1 since HYB2:k∗

is identical with HYB2:k∗−1 when au∗,v∗ = 0.
• In Stage 2-1, commitment cu∗,v∗ is defined by setting cu∗,v∗ := c.

Constant-round Leakage-resilient ZK from Collision Resistance 29

• In Stage 2-3, when commitment cu∗,v∗ is decommitted, it is decommitted
to au∗,v∗ = 1 by sending d1.

• When the leakage queries are answered during Stage 2, the randomness
ρu∗,v∗ used for computing cu∗,v∗ is simulated by setting ρ̃u∗,v∗ := ρ0.

Let view be the view of V ∗. Then, D′ outputs D(view).

When (c, ρ0, d1) ← EXPGJS
0 (n,G,G′, w, w′, r) (i.e., when c is a commitment

to 0, ρ0 is the randomness that is used to generate c, and d1 is a decommit-
ment to 1 that is computed by GJS-EquivToOne), D′ emulates HYB2:k∗−1 for
V ∗ perfectly. On the other hand, when (c, ρ0, d1) ← EXPGJS

1 (n,G,G′, w, w′, r)
(i.e., when c is a commitment to 1, ρ0 is randomness that is computed by
GJS-ExplainAsZero, and d1 is a decommitment to 1 that is computed honestly),
D′ emulates HYB2:k∗ for V ∗ perfectly. Hence, from our assumption, D′ distin-
guishes EXPGJS

0 (n,G,G′, w, w′, r) and EXPGJS
1 (n,G,G′, w, w′, r) with advantage

1/q′2p(n), and therefore we reach a contradiction. ut

Claim 4. The output of HYB3(G, z) and that of HYB4(G, z) are computationally
indistinguishable.

Proof. In HYB3, the prover interacts with V ∗ in exactly the same way as S.
Hence, the claim follows. ut

Equation (5) follows from these claims. This concludes the proof of Lemma 9.
ut

This concludes the proof of Theorem 1. ut

6 Acknowledgments

The author would like to thank the anonymous reviewers for their helpful com-
ments.

References

1. Ananth, P., Goyal, V., Pandey, O.: Interactive proofs under continual memory
leakage. In: CRYPTO. pp. 164–182 (2014)

2. Anderson, R., Kuhn, M.: Tamper resistance: A cautionary note. In: WOEC. pp.
1–11 (1996)

3. Barak, B.: How to go beyond the black-box simulation barrier. In: FOCS. pp.
106–115 (2001)

4. Barak, B., Goldreich, O.: Universal arguments and their applications. SIAM J.
Comput. 38(5), 1661–1694 (2008)

5. Bitansky, N., Canetti, R., Halevi, S.: Leakage-tolerant interactive protocols. In:
TCC. pp. 266–284 (2012)

6. Bitansky, N., Dachman-Soled, D., Lin, H.: Leakage-tolerant computation with
input-independent preprocessing. In: CRYPTO. pp. 146–163 (2014)

7. Boyle, E., Garg, S., Jain, A., Kalai, Y.T., Sahai, A.: Secure computation against
adaptive auxiliary information. In: CRYPTO. pp. 316–334 (2013)

30 Susumu Kiyoshima

8. Boyle, E., Goldwasser, S., Jain, A., Kalai, Y.T.: Multiparty computation secure
against continual memory leakage. In: STOC. pp. 1235–1254 (2012)

9. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: STOC. pp. 494–503 (2002)

10. Damg̊ard, I., Pedersen, T.P., Pfitzmann, B.: Statistical secrecy and multibit com-
mitments. IEEE Transactions on Information Theory 44(3), 1143–1151 (1998)

11. Feige, U., Shamir, A.: Zero knowledge proofs of knowledge in two rounds. In:
CRYPTO. pp. 526–544 (1989)

12. Garg, S., Jain, A., Sahai, A.: Leakage-resilient zero knowledge. In: CRYPTO. pp.
297–315 (2011)

13. Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge proof
systems for NP. J. Cryptology 9(3), 167–190 (1996)

14. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

15. Haitner, I., Nguyen, M., Ong, S.J., Reingold, O., Vadhan, S.P.: Statistically hiding
commitments and statistical zero-knowledge arguments from any one-way function.
SIAM J. Comput. 39(3), 1153–1218 (2009)

16. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

17. Kiyoshima, S.: Constant-round leakage-resilient zero-knowledge from collision re-
sistance. Cryptology ePrint Archive, Report 2015/1235 (2015), http://eprint.

iacr.org/

18. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: CRYPTO. pp. 104–113 (1996)

19. Lindell, Y., Zarosim, H.: Adaptive zero-knowledge proofs and adaptively secure
oblivious transfer. J. Cryptology 24(4), 761–799 (2011)

20. Naor, M.: Bit commitment using pseudorandomness. J. Cryptology 4(2), 151–158
(1991)

21. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic
applications. In: STOC. pp. 33–43 (1989)

22. Ostrovsky, R., Persiano, G., Visconti, I.: Impossibility of black-box simulation
against leakage attacks. In: CRYPTO. pp. 130–149 (2015)

23. Pandey, O.: Achieving constant round leakage-resilient zero-knowledge. In: TCC.
pp. 146–166 (2014)

24. Pass, R., Rosen, A.: Concurrent non-malleable commitments. In: FOCS. pp. 563–
572 (2005)

25. Pass, R., Rosen, A.: New and improved constructions of non-malleable crypto-
graphic protocols. In: STOC. pp. 533–542 (2005)

26. Pass, R., Wee, H.: Black-box constructions of two-party protocols from one-way
functions. In: TCC. pp. 403–418 (2009)

27. Quisquater, J., Samyde, D.: Electromagnetic analysis (EMA): measures and
counter-measures for smart cards. In: E-smart. pp. 200–210 (2001)

28. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: FOCS.
pp. 162–167 (1986)

