
New Negative Results on Differing-Inputs
Obfuscation

Mihir Bellare1, Igors Stepanovs2, and Brent Waters3

1 Department of Computer Science and Engineering, University of California San
Diego, USA. https://cseweb.ucsd.edu/~mihir/

2 Department of Computer Science and Engineering, University of California San
Diego, USA. https://cseweb.ucsd.edu/~istepano/

3 Department of Computer Science, University of Texas at Austin, USA.
https://www.cs.ucsb.edu/~bwaters/

Abstract. We provide the following negative results for differing-inputs
obfuscation (diO): (1) If sub-exponentially secure one-way functions ex-
ist then sub-exponentially secure diO for TMs does not exist (2) If in
addition sub-exponentially secure iO exists then polynomially secure diO
for TMs does not exist.

1 Introduction

Differing-inputs obfuscation (diO) is a natural extension of indistinguishability
obfuscation (iO). It has been conjectured that candidate constructions of iO also
met diO. Based on this, diO has been exploited in applications. Garg, Gentry,
Halevi and Wichs (GGHW) [28] showed that if something they called “special
purpose” obfuscation exists, then diO does not. This has put diO in an ambigu-
ous and contentious position, some people arguing that GGHW is evidence diO
does not exist, others saying that perhaps it does and it is special-purpose ob-
fuscation that does not exist. This paper uses a new approach to give powerful
evidence that the first camp is right, meaning it is indeed diO that does not exist,
by showing this to be true under weaker and more standard assumptions than
special-purpose obfuscation. We show (1) If sub-exponentially secure one-way
functions exist then sub-exponentially secure diO for TMs does not exist (2) If
in addition sub-exponentially secure iO exists then polynomially secure diO for
TMs does not exist.

1.1 Background

The notion of program obfuscation that is most intuitive and appealing is that
an obfuscated program should be no more useful than an oracle for the pro-
gram itself. Formalized as VBB obfuscation (vbbO), it was shown impossible in
the sense that there is no obfuscator that will successfully VBB obfuscate all
programs [36, 7]. Further negative results about vbbO were given in [33, 17]. In
the face of this, Barak et al. [7] suggested other, weaker notions of obfuscation

2 Bellare, Stepanovs, Waters

that appeared not to succumb to their counter-examples and might therefore
be achievable. The most prominent were indistinguishability obfuscation (iO)
and its extension, differing-input obfuscation (diO). The first asks that obfus-
cations of functionally equivalent programs are indistinguishable. The second is
a natural computational relaxation: even if the programs are not functionally
equivalent, as long as it is hard, given the programs, to find an input on which
they differ, then the obfuscations of the programs are indistinguishable. The
underlying intuition is that if one can find a differing input for the programs,
one can clearly distinguish their obfuscations. In iO this is excluded information
theoretically, by saying there does not exist such an input, while in diO it is ex-
cluded computationally, by saying such an input might exist but is hard to find.
On the surface both might appear equally reasonable, since the vbbO negative
results do not apply to either. But this turns out not to be true.

These intriguing notions lay dormant for many years, for two reasons. First,
that one could not prove these notions unachievable did not mean they were
achievable. Second, they seemed quite weak; even if they were achievable, what
could one do with them? An answer to the first question came with candidate
constructions of iO [27, 6, 43, 30]. An answer to the second came when Sahai and
Waters showed how to use iO towards many ends [45]. Since then, applications
of iO and diO have ballooned.

In these applications, a crucial role is played by auxiliary information. The
modern definitions of iO and diO used in these applications [27, 45, 1, 20, 12] con-
sider a program sampler S that spits out a pair P0,P1 of programs together with
associated auxiliary information aux . The sampler is said to produce function-
ally equivalent programs if P0 and P1 agree on all inputs. The sampler is said to
be difference-secure if an adversary given P0,P1, aux cannot find an input x such
that P0(x) ̸= P1(x) except with small probability. The obfuscation game picks
a challenge bit b and gives you (the adversary) an obfuscation P of Pb under the
obfuscator Obf, together with aux . Your task (as the adversary) is to guess b.
Obf is called iO-secure if you have small advantage for all samplers producing
functionally equivalent programs, and diO-secure if you have small advantage
for all difference-secure samplers. Adversaries are always polynomial time, but
probabilities referred to as “small” may be sub-exponentially so or negligible.
Programs may be TMs or circuits. This leads to a collection of variant notions.

1.2 The GGHW result

Let Obf be an obfuscator. GGHW [28] provide a program sampler S for which
they show, under certain assumptions, that diO-security of Obf fails, which
means that (1) the sampler is difference secure under these assumptions, but
(2) there is a way to distinguish the obfuscations under Obf of the two programs
returned by the sampler given the auxiliary information. Their approach is to
have the sampler first generate a signing and verification key pair (sk, vk) for a
signature scheme meeting the standard notion of unforgeability [34]. The pro-
gram P1 takes a message m and candidate signature σ and accepts iff σ is a valid
signature on m under vk. The program P0 will take in the same inputs, but it

New Negative Results on Differing-Inputs Obfuscation 3

will always reject. Clearly the programs P0 and P1 differ exactly on the input
pairs (m,σ) where σ is a valid signature ofm under vk. Next, the sampler creates
a third program P2 that has hardwired the secret signing key sk and takes as
input a (smaller) program P. It hashes P using a CRHF to get a message m, and
uses sk to get a signature σ on m. It then runs the P on (m,σ) and outputs 1 if
P accepts on these inputs. Finally, S creates auxiliary information aux consisting
of an obfuscation P∗

2 of P2. This obfuscation is not under the given obfuscator
Obf, but under some other assumed “special purpose” obfuscator Obf∗ whose
role and properties will emerge in the following.

To serve as a counterexample it should both (1) be possible, using the aux-
iliary information P∗

2, to distinguish between obfuscations under Obf of P0 and
P1, and (2) be difficult, given P0,P1,P

∗
2, to find an input on which P0 and P1

differ. The first property follows trivially from the design. An adversary given the
auxiliary information P∗

2 and a challenge program P that is either an obfuscation
of P0 or P1 can distinguish these cases by simply feeding the program P as an
input to P∗

2. If P is an obfuscation of P1 then, when P∗
2 runs P on the message

and valid signature that P∗
2 creates, P will accept. But if P is an obfuscation of

P0, then P∗
2 will reject.

In contrast it is much more difficult to establish the second property, namely
that it is hard to find an input on which P0,P1 differ even in the presence of the
auxiliary information P∗

2. The difficulty stems from the latter. In the absence
of aux the property follows straightforwardly from the security of the signature
scheme, as a differing input is exactly a valid message-signature pair, and would
amount to a signature forgery. However, since the obfuscated differentiating pro-
gram P∗

2 has embedded in it the secret signing key sk it is not clear how to prove
that it is hard to find signatures in the presence of P∗

2.

Recall that P∗
2 was an obfuscation, under some un-specified obfuscator Obf∗,

of P2. GGHW [28] simply conjecture that there exists some obfuscator Obf∗ that
will hide the secret key sk sufficiently well that it is hard to find a differing input
for P0,P1, meaning to find a valid message-signature pair, even given P∗

2. While
they were unable to prove this conjecture under any standard obfuscation defini-
tions such as iO or even vbbO, they were able to partially justify their conjecture
with a heuristic analysis. Their analysis replaces the adversary’s access to the
obfuscated program P∗

2 with an oracle that performs the same functionality. In
this world the adversary no longer has direct access to an object containing sk
and GGHW are able to demonstrate differing inputs security of S by a fairly
straightforward reduction to the underlying security of the signature scheme.

The GGHW result certainly creates significant questions regarding the use
of diO. Arguably, the primary reason for using the diO security definition over
vbbO is that no impossibility results like those of [36, 7, 33, 17] are known for
diO. However, if the GGHW conjecture holds, then this is no longer true and
the perceived benefit of diO versus vbbO is significantly reduced. (The benefit
is not eliminated, since even if there exist functionalities that cannot be diO
obfuscated, it is still possible that there are functionalities that can be diO
obfuscated but not VBB obfuscated.) At the same time, the heuristic used to

4 Bellare, Stepanovs, Waters

justify the GGHW counterexample is itself much stronger than assuming diO —
namely their analysis relies on modeling the differentiating obfuscated program
as an oracle.

1.3 Our approach

We introduce a new approach to proving the impossibility of diO. In contrast to
the prior work, we analyze our sampler under concrete assumptions that replace
the GGHW conjecture. We now explain the intuition behind our approach as
well as the obstacles we had to overcome.

Let Obf be an obfuscator that we assume, towards a contradiction, is diO-
secure. At the highest level our approach is similar to GGHW. We build a pro-
gram sampler S that produces programs P0,P1 and auxiliary information P∗

2

consisting of an obfuscation of a program P2 under an obfuscator Obf∗. As in
GGHW, the sampler generates a signing and verification key pair (sk, vk) for an
underlying signature scheme DS, and program P0 always rejects. Likewise, P1

takes as input a candidate message-signature pair (m,σ) and checks its valid-
ity under the signature verification program DS.Ver with key vk. The auxiliary
information continues to be the obfuscation P∗

2, under an obfuscator Obf∗, of a
program P2, where P2 hardwires the secret signing key sk. P2 takes as input
a program P of a certain maximum length, and uses m = P as the message it
signs, and runs P on m and the signature, accepting if this accepts. The impor-
tant difference now however is that Obf∗ is not some new type of obfuscator as
in GGHW. Rather Obf∗ is assumed to be only an iO-secure obfuscator.

It continues to be easy, using the auxiliary information P∗
2, to distinguish

between obfuscations under Obf of P0 and P1. The main issue is to prove that
it is difficult, given P0,P1,P

∗
2, to find an input on which P0 and P1 differ. The

hurdle here continues to be the same, namely that the auxiliary information
program P∗

2 embeds the secret signing key sk. This precludes reducing to the
security of the signature scheme in an obvious way. To prove security we will
show that it is computationally difficult to generate a signature on any message.
We do this via a hybrid argument that steps through every possible message one
by one. Since our hybrid steps through the entire message space we base our
security on assumptions of sub-exponential hardness.

To execute our strategy we will replace the generic signature scheme of
GGHW with a special type of puncturable signature scheme that we call a con-
sistent puncturable signature scheme. Given a “master” secret key sk, it should
be possible to create a punctured version skm∗ of the key, for a given message
m∗, that can be used to sign any messagem ̸= m∗ but even given which it is hard
to produce a signature on m∗. So far this is a special type of policy-based [9],
functional [21] or delegatable [5] signatures, these themselves analogues of the
notions of puncturable, constrained and functional PRFs [19, 40, 21]. The ad-
ditional consistency requirement is that the signatures of m ̸= m∗ produced
under the master key and the punctured key should be the same. Note that only
deterministic puncturable signature schemes can be consistent, but the former
is not a sufficient condition. We show in Section 3 that such signature schemes

New Negative Results on Differing-Inputs Obfuscation 5

can be built from iO and one-way functions. While making a standard signature
scheme deterministic is trivial via the use of PRFs, our challenge is making the
punctured and master versions of the key produce consistent signatures.

Our hybrid now proceeds as follows. We step through each program (message)
P∗ and show that it is computationally difficult to produce a signature on P∗. We
do this by first replacing the obfuscation of P2 with an obfuscation of a program
P2,P∗ that works as follows. On all inputs P ̸= P∗ the program P2,P∗ behaves
as P2 with the exception that it uses a punctured version of the signing key
skP∗ . On input P∗ its output is hardwired to be whatever the output of P2(P

∗)
was. We observe that if indistinguishability obfuscation holds, then no poly-time
attacker can distinguish between obfuscations of programs P2 and P2,P∗ . This
follows since the two programs share the same output on every input. On every
P ̸= P∗ the master and punctured keys will produce the same signature that
they feed into P, and on input P∗ program P2,P∗ is hardwired to behave the
same as P2. Since it is hard to distinguish between obfuscations of these two
programs, it should be no easier to output a signature on message P∗ when
P2 is obfuscated to get the auxiliary information aux than it is when P2,P∗ is
obfuscated. However, in the latter case the security of the puncturable signature
scheme guarantees this is hard.

Note that since we assumed a diO-secure obfuscator Obf to start our proof
by contradiction, an iO-secure obfuscator, which we use both directly and to
build consistent punctured signatures, is provided for free and is not an extra
assumption. This means the only assumption we need is a sub-exponentially
hard one-way function. More precisely, this is the case for sub-exponential diO,
while for polynomial diO the iO assumption will be an extra one.

While the text above outlines our main approach, there are several important
factors that still must be taken into account. First, we notice that P1 should be
capable of verifying a signature on a message that is an obfuscation of P1 and
thus longer than P1 itself. For this reason we need to view P0 and P1 as Turning
Machines (TMs) that can process inputs longer than their own descriptions.

Next, our complexity leveraging argument requires that the advantage ϵ of
any PT attacker on the signature scheme multiplied by the message space be
negligible. To satisfy this using sub-exponential hardness assumptions we must
use a verification key vk that is larger than the programs P0,P1. However, this
creates a circularity problem under the obvious strategy of having P1 actually
contain vk to verify the messages! We circumvent this issue by the use of a
UOWHF [42], also called a target collision-resistant (TCR) hash function [10],
that hashes a separate verification program as follows. We construct a program
Pver that takes as input a candidate message-signature pair (m,σ) and uses an
embedded verification key vk to either accept or reject it. Now P1 takes P′

ver as
an additional input and uses it to check the candidate message-signature pairs,
rather than storing vk and performing the verification itself. P1 hardwires the
hash h of Pver under a TCR hash function, and rejects unless the hash h′ of P′

ver

matches its hardwired hash h. This ensures that only Pver can be used to verify
the signatures. We analyze security by adding a hybrid step at the beginning

6 Bellare, Stepanovs, Waters

using the UOWHF security. We emphasize that the argument using our UOWHF
is outside of the complexity leveraging part of our hybrid.

The above is a very high-level description, and the devil is in the details that
the body of the paper sorts out. The circularity issues, summarized via Fig. 6,
have to be dealt with very carefully. A critical element of dealing with them is
that different primitives are run with different values of the security parameter.
Thus, while the convention is that the security parameter in a proof remains
λ throughout, our constructions will feature n(λ) as the security parameter in
certain places, with n a polynomial that is carefully defined based on other
parameters. Another subtlety is that the success of this program depends on the
details of how sub-exponential security is defined. Specifically (cf. Section 2) we
use “uniform” rather than “pointwise” definitions in the language of [8]. The
latter showed them equivalent in the usual setting of negligible functions but
they are not known to be equivalent in the sub-exponential setting.

1.4 Discussion and related work

Sub-exponential security. Our assumptions and conclusions both involve sub-
exponential hardness and one might ask about the validity of such assumptions
and the value of such conclusions. Empirical evidence, at least, says that when
problems are hard, they are sub-exponentially hard. Natural problems do not ap-
pear to be polynomially but not sub-exponentially hard except in rare cases [3].
Indeed sub-exponential hardness is frequently assumed in cryptography, espe-
cially recently [35, 31, 24]. In particular it is unlikely that polynomially-secure
diO exists but sub-exponentially secure diO does not, so ruling out the latter is
significant in terms of evidence against diO. Similarly it is unlikely that polyno-
mially secure OWFs exist but sub-exponentially secure ones do not, so assuming
the latter is reasonable.

Bounded versus unbounded inputs. In this work we provide negative results about
the existence of differing-inputs obfuscators for TMs that can take arbitrarily
long inputs. Our results do not rule out the possibility of constructing diO for
TMs with a-priori bounded input-lengths.

Implications. Note that [1, 20] build diO for TMs with unbounded inputs from
circuit diO and SNARKs [15, 14]. This means that if SNARKs exist then our
negative results for TM diO extend to circuit diO. Also [38] build diO for TMs
with unbounded inputs from public-coin diO for NC1, fully homomorphic en-
cryption with decryption in NC1 and public-coin SNARKs. Our results would
imply that (if the assumptions we make hold) one of these three primitives does
not exist.

Constructions and applications of diO. Differing-inputs obfuscation has proven to
be a powerful tool using which we have built new primitives. In some cases it
has later been possible to reduce the assumption to iO or other diO variants,
but sometimes at the cost of weakening the conclusion and usually at the cost
of increased complexity and difficulty. All this motivates understanding whether
or not diO is achievable.

New Negative Results on Differing-Inputs Obfuscation 7

diO for circuits is used in [1, 20] to achieve adaptively-secure FE (Functional
Encryption) and extractable witness encryption. It was later shown in [23, 16, 41]
how to build TM iO from circuit iO but the conclusion was weaker. Adaptively-
secure FE from iO did emerge but the solutions were more complex than the
ones from diO [47, 2].

Boyle et al. [20] show that iO implies diO for samplers outputting circuits that
differ on only polynomially-many inputs. Our counter-examples and results do
not apply to this type of diO. Differing input obfuscation is used as a tool in [12],
via the result of [20], to give hardcore functions with polynomially-many output
bits from any injective one-way function and iO, and is used as an assumption
to extend this result to arbitrary one-way functions. It is used similarly as a tool
in [22].

Ishai et al. [38] define public-coin diO, by relaxing the notion of diO to
require that only public random coins can be used to build challenge programs
and the corresponding auxiliary information. Our negative results do not apply
to public-coin diO. Public-coin diO is a valuable notion but it doesnt take away
from the interest in proving impossibility of diO because diO precedes public-coin
diO and there are works that still rely on it, and there could be interesting new
applications from diO but not from public-coin diO. Furthermore, our techniques
might help understand the possibility of public-coin diO.

A variant of diO was also used as an assumption in a result in [29].

Consistent signature schemes. Some of the prior work focuses on constructing
digital signature schemes with properties that are similar to the ones we require
from consistent signature schemes. The known primitives include: functional
signatures [21], policy-based signatures [9] and operational signatures [4], the
latter subsuming the preliminary work on delegatable signatures [5]. However,
none of the proposed constructions of these primitives satisfy the consistency
requirement which requires that the master and punctured signing keys produce
the same signatures for all messages except for the punctured message, and which
is crucial for our impossibility result.

We get consistent puncturable signatures from OWFs and iO, which in our
context effectively means from OWFs since our proof assumes diO towards a
contradiction and thus gets iO for free. Our definition of consistent puncturable
signatures is novel, but our construction follows Sahai-Waters signatures [45].
Consistent puncturable signatures are also implied by splittable signatures [41],
which are built based on an injective PRG and iO. Injective PRGs are not
known to be implied by OWFs so the assumption is stronger than ours. However,
[18] build injective OWFs from OWFs and iO, and also say that, due to an
observation of Boyle at al. [20], the injective PRG of [41] can be replaced with
an injective OWF. By this route one can get consistent puncturable signatures
from OWFs and iO. However our construction is direct, substantially simpler and
self contained. Consistent puncturable signatures can also be constructed from
constrained verifiable PRFs [26, 25]. The latter are achievable from κ-Multilinear
DDH assumption. In our context, this would be an additional assumption since
it is not known to be implied by diO.

8 Bellare, Stepanovs, Waters

Game OWF
F (λ)

fk←$ F.Kg(1λ)

x←$ F.In(λ)

y ← F.Ev(1λ, fk, x)

x′←$ F(1λ, fk, y)
y′ ← F.Ev(1λ, fk, x′)

Return (y = y′)

Game TCRH
H (λ)

(x0, st)←$H1(1
λ)

hk←$ H.Kg(1λ)

x1←$H2(1
λ, st ,hk)

h0 ← H.Ev(1λ,hk, x0)

h1 ← H.Ev(1λ,hk, x1)

win0 ← (x0 ̸= x1)

win1 ← (h0 = h1)

Return (win0 ∧ win1)

Game PPRFG
G(λ)

b←$ {0, 1} ; gk←$ G.Kg(1λ)

b′←$ GCH(1λ) ; Return (b = b′)

CH(x∗)

gk∗←$ G.PKg(1λ, gk, x∗)

If b = 1 then r∗ ← G.Ev(1λ, gk, x∗)

else r∗←$ G.Out(λ)

Return (gk∗, r∗)

Fig. 1. Games defining one-wayness of function family F, target collision-resistance of
function family H and puncturable-PRF security of function family G.

2 Preliminaries

Notation. Let N = {0, 1, 2, . . .} be the set of non-negative integers. We denote
by λ ∈ N the security parameter and by 1λ its unary representation. If x ∈
{0, 1}∗ is a string then |x| denotes its length. If x ∈ {0, 1}∗ is a string and
ℓ ∈ N such that |x| ≤ ℓ then ⟨x⟩ℓ denotes the string of length ℓ that is built by
padding x with leading zeros. If X is a finite set, we let x←$ X denote picking
an element of X uniformly at random and assigning it to x. Algorithms may be
randomized unless otherwise indicated. Running time is worst case. “PT” stands
for “polynomial-time,” whether for randomized algorithms or deterministic ones.
If A is an algorithm, we let y ← A(x1, . . . ; r) denote running A with random
coins r on inputs x1, . . . and assigning the output to y. We let y←$ A(x1, . . .) be
the result of picking r at random and letting y ← A(x1, . . . ; r). We let [A(x1, . . .)]
denote the set of all possible outputs of A when invoked with inputs x1, We
say that f : N → R is negligible if for every positive polynomial p, there exists
λp ∈ N such that f(λ) < 1/p(λ) for all λ ≥ λp. We use the code based game
playing framework of [11]. (See Fig. 1 for an example.) By GA(λ) we denote the
event that the execution of game G with adversary A and security parameter λ
results in the game returning true.

Uniform and pointwise security definitions. There are two common ways to formal-
ize security definitions – by using different order of quantification. Let GAME
be a security game, and let Advgame

A (λ) be the advantage of a PT adversary A
winning in this game with security parameter λ. Consider the following two al-
ternative definitions of sub-exponential security. A uniform definition requires
that there is a constant 0 < ϵ < 1 such that for every PT adversary A there
exists λA ∈ N such that Advgame

A (λ) ≤ 2−λϵ

for all λ ≥ λA. A pointwise definition
requires that for every PT adversary A there exist 0 < ϵ < 1 and λA ∈ N such
that Advgame

A (λ) ≤ 2−λϵ

for all λ ≥ λA. These definitions differ in the order of
quantification between ϵ and A. In this work, we use uniform security defini-
tions. For the case of polynomial security, Bellare [8] proved that uniform and

New Negative Results on Differing-Inputs Obfuscation 9

pointwise definitions are equivalent. It is not known whether the equivalence also
holds for the above definitions of sub-exponential security.

Circuits and Turing Machines. We say that P is a program if it is either a circuit
or a Turing Machine (TM), and we denote the size of its binary representation
by |P|. We assume that any program P takes a single input string x; if P is
defined to take multiple inputs x1, . . . then running P on an input x is implicitly
assumed to parse (x1, . . .)← x and run P(x1, . . .).

We say that circuits C0,C1 are functionally equivalent, written C0 ≡ C1,
if they have the same number of inputs ℓ ∈ N and if C0(x) = C1(x) holds
for all x ∈ {0, 1}ℓ. We say that TMs M0,M1 are functionally equivalent, and
denote it by M0 ≡ M1, if both M0(x) and M1(x) halt on all x ∈ {0, 1}∗ and if
M0(x) = M1(x) for all x ∈ {0, 1}∗.

If M is a TM and t ∈ N then y ← UTMt
M(x1, . . .) denotes running M on

inputs x1, . . . and assigning the output to y; if M(x1, . . .) does not halt within t
steps, then UTMt

M(x1, . . .) returns 0. If M is a TM and x ∈ {0, 1}∗ is a string
such that M halts on input x, we use time(M, x) to denote the number of steps
that are required for it to halt.

Let P be any circuit or any TM that halts on all inputs. For any s ∈ N such
that |P| ≤ s let Pads(P) denote P padded to have size s, meaning that Pads(P)
and P are of the same type (i.e. both are circuits or TMs) and Pads(P) ≡ P. We
assume that P can be padded to any size larger or equal to |P|.

Function families. A family of functions F specifies PT algorithms F.Kg and F.Ev,
where F.Ev is deterministic. Assocated to F is a collection if input sets F.In
and a collection of output sets F.Out, defining all valid inputs and outputs
for each of security parameters. Key generation algorithm F.Kg takes 1λ to re-
turn a key fk. Evaluation algorithm F.Ev takes 1λ, fk and an input x ∈ F.In(λ)
to return F.Ev(1λ, fk, x) ∈ F.Out(λ).We say that F is injective if the function
F.Ev(1λ, fk, ·): F.In(λ)→ F.Out(λ) is injective for all λ ∈ N and fk ∈ [F.Kg(1λ)].

Puncturable function families. A puncturable function family G specifies (beyond
the usual algorithms) additional PT algorithms G.PKg and G.PEv, where G.PEv
is deterministic. Punctured key generation algorithm G.PKg takes 1λ, a key
gk ∈ [G.Kg(1λ)] and a target input x∗ ∈ G.In(λ) to return a “punctured” key gk∗.
Punctured evaluation algorithm G.PEv takes 1λ, gk∗ and an input x ∈ G.In(λ)
to return G.PEv(1λ, gk∗, x) ∈ G.Out(λ). The correctness condition requires that
G.PEv(1λ, gk∗, x) = G.Ev(1λ, gk, x) for all λ ∈ N, gk ∈ [G.Kg(1λ)], x∗ ∈ G.In(λ),
gk∗ ∈ [G.PKg(1λ, gk, x∗)] and x ∈ G.In(λ) \ {x∗}.

One-way functions. Consider game OW of Fig. 1 associated to a function family
F and an adversary F , where F.In(λ) is required to be finite for all λ ∈ N. For
λ ∈ N let AdvowF,F (λ) = Pr[OWF

F (λ)]. Let δ : N→ R be any function. We say that
F is δ-OW-secure if for every PT adversary F there exists λδ,F ∈ N such that
AdvowF,F (λ) ≤ δ(λ) for all λ ≥ λδ,F . We say that F is sub-exponentially OW-secure

if it is 2−(·)ϵ-OW-secure for some 0 < ϵ < 1.

10 Bellare, Stepanovs, Waters

Target collision-resistant functions. Consider game TCR of Fig. 1 associated to a

function family H and an adversary H. For λ ∈ N let AdvtcrH,H(λ) = Pr[TCRH
H (λ)].

Let δ : N → R be any function. We say that H is δ-TCR-secure if for every PT
adversary H there exists λδ,H ∈ N such that AdvtcrH,H(λ) ≤ δ(λ) for all λ ≥
λδ,H. We say that H is sub-exponentially TCR-secure if it is 2−(·)ϵ -TCR-secure
for some 0 < ϵ < 1. Target collision-resistant hash functions were introduced
by Naor and Yung [42] under the name of Universal One-Way Hash Functions
(UOWHF). [10] redefined the corresponding security notion under the name of
target collision-resistance.

TCR-secure function families can be built from one-way functions, by com-
bining the following results. First, [44, 37] (see also [39]) proposed construc-
tions of TCR-secure compression function families with fixed input and output
lengths. More formally, they show how to build a function family H′ such that
H′.In(·) = {0, 1}pin(·) and H′.Out(·) = {0, 1}pout(·), where pin, pout are some poly-
nomials such that pin(λ) ≥ pout(λ) for all λ ∈ N. Next, [10, 46] showed how to
use any TCR-secure compression function H′ with fixed input length in order
to build another TCR-secure function family H for arbitrary, bounded variable-
length inputs, meaning that H.In(λ) =

∪
i≤p(λ){0, 1}i and H.Out(λ) = H′.Out(λ)

for some function p : N→ N all λ ∈ N.

Puncturable PRFs. Consider game PPRF of Fig. 1 associated to a puncturable
function family G and an adversary G, where G.Out(λ) is required to be finite
for all λ ∈ N and G is required to make exactly one oracle query to CH. For
λ ∈ N let AdvpprfG,G(λ) = 2Pr[PPRFG

G(λ)] − 1. Let δ : N → R be any function.
We say that G is a δ-PPRF-secure if for every PT adversary G there exists
λδ,G ∈ N such that AdvpprfG,G(λ) ≤ δ(λ) for all λ ≥ λδ,G . We say that G is sub-

exponentially PPRF-secure if it is 2−(·)ϵ -PPRF-secure for some 0 < ϵ < 1.
Puncturable PRFs were concurrently and independently introduced in [19, 40,
21]. They can be built by extending the standard PRF construction of Goldreich,
Goldwasser and Micali [32].

Digital signature schemes. A digital signature scheme DS defines PT algorithms
DS.Kg, DS.Sig, DS.Ver, where DS.Ver is deterministic. Associated to DS is a
collection of input sets DS.In and a collection of output sets DS.Out, defining all
valid messages and signatures for each of security parameters. Key generation
algorithm DS.Kg takes 1λ to return a signing key sk and a verification key vk.
Signing algorithm DS.Sig takes 1λ, sk and a message m ∈ DS.In(λ) to return
a signature σ ∈ DS.Out(λ). Verification algorithm DS.Ver takes 1λ, vk,m, σ to
return a decision d ∈ {1, 0} regarding whether σ is a valid signature of m under
vk, where 1 is returned if σ is a valid and 0 otherwise. The correctness condition
requires that DS.Ver(1λ, vk,m, σ) = 1 for all λ ∈ N, (sk, vk) ∈ [DS.Kg(1λ)],
m ∈ DS.In(λ) and σ ∈ [DS.Sig(1λ, sk,m)]. We say that a digital signature scheme
DS is deterministic if its signing algorithm DS.Sig is deterministic.

Obfuscators. An obfuscator is a PT algorithm Obf that on input 1λ and a program
P returns a program P of the same type as P such that P ≡ P. We say that
Obf is a circuit obfuscator if it obfuscates circuits, and we say that Obf is a

New Negative Results on Differing-Inputs Obfuscation 11

Game DIFFD
S (λ)

(P0,P1, aux)←$ S(1λ)

x←$D(1λ,P0,P1, aux)

Return (P0(x) ̸= P1(x))

Game IOO
Obf,S(λ)

b←$ {0, 1} ; (P0,P1, aux)←$ S(1λ)

P←$ Obf(1λ,Pb)

b′←$O(1λ,P, aux); Return (b = b′)

Fig. 2. Games defining difference-security of program sampler S and iO-security of
program obfuscator Obf relative to program sampler S.

TM obfuscator if it obfuscates TMs. Note that according to our definition of
functionally equivalent programs, obfuscation is not defined for TMs that do
not halt on some inputs. The polynomial slowdown condition requires that for
every TM obfuscator Obf there is a polynomial p : N × N → N such that for
every TM M that halts on all inputs and for every input x ∈ {0, 1}∗, we have
time(M, x) ≤ p(λ, time(M, x)) for all λ ∈ N and M ∈ [Obf(1λ,M)]. An analogous
slowdown condition trivially holds for any PT circuit obfuscator.

In this work, we discuss indistinguishabilty obfuscation (iO) and differing-
inputs obfuscation (diO). The study of these obfuscation notions was initiated
in [7]. Later [27, 45] showed how to build and use the former, whereas [20, 1]
provided results on the latter. We extend the definitional framework of [12] that
uses classes of program samplers to capture different variants of security notions
for iO and diO. Specifically, our definitions allow for a unified treatment of
polynomial and sub-exponential security of both circuit and TM obfuscation.

Program samplers. A circuit sampler is a PT algorithm Scirc that on input 1λ

returns a triple (C0,C1, aux), where C0,C1 are circuits of the same size, number
of inputs and number of outputs, and aux is a string. A TM sampler is a PT
algorithm Stm that on input 1λ returns a triple (M0,M1, aux), where M0,M1 are
TMs of the same size, and aux is a string. We require that M0(x) and M1(x)
halt for all λ ∈ N, (M0,M1, aux) ∈ [Stm(1λ)] and x ∈ {0, 1}∗. We say that S is a
program sampler if it is either a circuit sampler or a TM sampler.

Classes of program samplers. We say that a program sampler S produces func-

tionally equivalent programs if Pr[P0 ≡ P1 : (P0,P1, aux)←$ S(1λ)] = 1 for all
λ ∈ N. Let Scirc

eq be the class of all circuit samplers that produce functionally
equivalent circuits, and let Stm

eq be the class of all TM samplers that produce
functionally equivalent TMs. Consider game DIFF of Fig. 2 associated to a pro-
gram sampler S and an adversary D. For λ ∈ N let AdvdiffS,D(λ) = Pr[DIFFD

S (λ)].
Let δ : N → R be any function. We say that S is δ-DIFF-secure if for every PT
adversary D there exists λδ,D ∈ N such that AdvdiffS,D(λ) ≤ δ(λ) for all λ ≥ λδ,D.

We say that S is sub-exponentially DIFF-secure if it is 2−(·)ϵ-DIFF-secure for
some 0 < ϵ < 1. Let Scirc

δ-diff be the class of all δ-DIFF-secure circuit samplers, and
let Stm

δ-diff be the class of all δ-DIFF-secure TM samplers. Informally, difference-
security of a program sampler S means that given its output (P0,P1, aux), it is
hard to find an input on which the programs P0 and P1 differ.

12 Bellare, Stepanovs, Waters

Indistinguishability obfuscation and differing-inputs obfuscation. Consider game IO
of Fig. 2 associated to an obfuscator Obf, a program sampler S and an adversary
O. For λ ∈ N let AdvioObf,S,O(λ) = 2Pr[IOO

Obf,S(λ)] − 1. Let δ : N → R be any
function. Let S be a class of program samplers. We say that Obf is δ-S -secure
if for every program sampler S ∈ S and for every PT adversary O there exists
λδ,S,O ∈ N such that AdvioObf,S,O(λ) ≤ δ(λ) for all λ ≥ λδ,S,O. We say that Obf is

sub-exponentially S -secure if it is 2−(·)ϵ -S-secure for some 0 < ϵ < 1.
We say that Obf is a sub-exponentially secure indistinguishability obfuscator

for TMs (resp. circuits) if there exists 0 < ϵ < 1 such that Obf is 2−(·)ϵ–Stm
eq -

secure (resp. 2−(·)ϵ–Scirc
eq -secure). We say that Obf is a differing-inputs obfuscator

for TMs (resp. circuits) if for every negligible function γ : N → R there exists a
negligible function ν : N → R such that Obf is ν-Stm

γ-diff -secure (resp. ν-Scirc
γ-diff -

secure). Note that ν-Stm
γ-diff -security may be unachievable if there exists an infinite

number of security parameters λ ∈ N such that γ(λ) > ν(λ). We say that Obf
is a sub-exponentially secure differing-inputs obfuscator for TMs (resp. circuits)
if for every 0 < ϵ0 < 1 and γ = 2−(·)ϵ0 there exists 0 < ϵ1 < 1 such that Obf is
2−(·)ϵ1 -Stm

γ-diff -secure (resp. 2−(·)ϵ1 -Scirc
γ-diff -secure).

Note that according to our definitions, a sub-exponentially secure differing-
inputs obfuscator is not necessarily a polynomially-secure differing-inputs obfus-
cator. Namely, the former guarantees no security with respect to δ-DIFF-secure
program samplers when δ is negligible but not sub-exponentially small. This
observation can be used to strengthen our definition of sub-exponentially secure
diO. We chose to use the weaker definition, which is simpler to define and which
makes our impossibility results stronger.

3 Consistent puncturable digital signature schemes

We start by defining consistent puncturable digital signature schemes that will
be used for our impossibility results in Section 4. Our construction follows Sahai-
Waters signatures [45], and we prove its security assuming OWF and iO.

Informally, a puncturable digital signature scheme allows to ‘puncture’ its
signing key sk at an arbitrary message m∗. The resulting punctured secret key
sk∗, punctured at m∗, allows to produce signatures for all messages except for
m∗. The puncturability property is similar to the one of puncturable PRFs. We
say that a puncturable digital signature scheme is consistent if its secret signing
key sk and every possible punctured signing key sk∗, that can be derived from
sk, deterministically produce the same signatures for all messages except for the
punctured message.

We now define a security notion, informally, requiring that no PT adversary
should be able to forge a valid signature for the punctured message. The natural
formalization of this security notion requires selective unforgeability, meaning
that an adversary has to choose a message m∗ at which the original signing key
sk should be punctured. Having received the corresponding pair of punctured
signing key sk∗ and verification key vk, the goal of the adversary is to produce
a valid signature for m∗ with respect to the verification key.

New Negative Results on Differing-Inputs Obfuscation 13

Game PSUFCMAU
DS(λ)

(m∗, st)←$ U1(1λ) ; (sk, vk)←$ DS.Kg(1λ)

sk∗←$ DS.PKg(1λ, sk,m∗) ; σ∗←$ U2(1λ, st , vk, sk∗)

d← DS.Ver(1λ, vk,m∗, σ∗) ; Return (d = 1)

Fig. 3. Game defining selective unforgeability of puncturable digital signature scheme
DS under chosen message attack.

Puncturable digital signature schemes. A puncturable digital signature scheme DS
specifies (beyond the algorithms associated to digital signatures schemes) addi-
tional PT algorithms DS.PKg, DS.PSig, where DS.PSig is deterministic. Punc-
tured key generation algorithm DS.PKg takes 1λ, a signing key sk ∈ [DS.Kg(1λ)]
and a message m∗ ∈ DS.In(λ) to return a “punctured” signing key sk∗. Punc-
tured signing algorithm DS.PSig takes 1λ, sk∗ and a message m ∈ DS.In(λ)
to return a signature σ ∈ DS.Out(λ). We say that puncturable digital signa-
ture scheme DS is consistent if DS.Sig(1λ, sk,m) = DS.PSig(1λ, sk∗,m) for all
λ ∈ N, (sk, vk) ∈ [DS.Kg(1λ)], m∗ ∈ DS.In(λ), sk∗ ∈ [DS.PKg(1λ, sk,m∗)] and
m ∈ DS.In(λ) \ {m∗}. Note that DS can be consistent only if it is determinis-
tic. More precisely, both DS.Sig and DS.PSig should be deterministic. However,
determinism is a necessary but not a sufficient condition.

Punctured selective unforgeability under chosen message attack. Consider game
PSUFCMA of Fig. 3 associated to a puncturable digital signature scheme DS
and an adversary U . For λ ∈ N let Advpsufcma

DS,U (λ) = Pr[PSUFCMAU
DS(λ)]. Let

δ : N → R be any function. We say that DS is δ-PSUFCMA-secure if for ev-
ery PT adversary U there exists λδ,U ∈ N such that Advpsufcma

DS,U (λ) ≤ δ(λ) for
all λ ≥ λδ,U . We say that DS is sub-exponentially PSUFCMA-secure if it is
2−(·)ϵ-PSUFCMA-secure for some 0 < ϵ < 1.

Our construction. We build a consistent puncturable digital signature scheme DS
from a PPRF G, an indistinguishability obfuscator Obf and a OWF F. Our main
observation is that a PPRF key gk can be used as a secret key for DS. In order
to obtain a punctured key for DS, we puncture gk accordingly. The correctness
condition of puncturable PRFs guarantees that DS is consistent. We build a
verification key by obfuscating a circuit that embeds the PPRF key gk and a
OWF key fk. The circuit takes a message-signature pair (m,σ) and returns 1 if
F.Ev(1λ, fk, σ) = F.Ev(1λ, fk, G.Ev(1λ, gk,m)); it returns 0 otherwise.

Puncturable digital signature scheme PUNC-DS. Let s : N → N be a polynomial.
Let G be a puncturable function family. Let F be a function family such that
F.In = G.Out. Let Obf be a circuit obfuscator. We build a consistent puncturable
digital signature scheme DS = PUNC-DS[G,F,Obf, s] as follows. Let DS.In(λ) =
G.In(λ) and DS.Out(λ) = G.Out(λ) for all λ ∈ N, and let Fig. 4 define the
puncturable digital signature scheme DS. We say that DS is well-defined if s(λ) ≥
|C1λ,gk,fk | for all λ ∈ N, gk ∈ [G.Kg(1λ)] and fk ∈ [F.Kg(1λ)].

14 Bellare, Stepanovs, Waters

Algorithm DS.Kg(1λ)

gk←$ G.Kg(1λ) ; fk←$ F.Kg(1λ)
C←$ Obf(1λ,Pads(λ)(C1λ,gk,fk))

Return (gk,C)

Circuit C1λ,gk,fk(m,σ)

σ′ ← G.Ev(1λ, gk,m)

y′ ← F.Ev(1λ, fk, σ′)

If (y′ = F.Ev(1λ, fk, σ)) then return 1
Else return 0

Algorithm DS.PKg(1λ, gk,m∗)

Return G.PKg(1λ, gk,m∗)

Algorithm DS.Ver(1λ,C,m, σ)

Return C(m,σ)

Algorithm DS.Sig(1λ, gk,m)

Return G.Ev(1λ, gk,m)

Algorithm DS.PSig(1λ, gk∗,m)

Return G.PEv(1λ, gk∗,m)

Fig. 4. Puncturable digital signature scheme DS = PUNC-DS[G,F,Obf, s].

The following says that a PSUFCMA-secure, consistent punctured digital
signature scheme can be built assuming OWF and iO.

Theorem 1. Let G be a sub-exponentially PPRF-secure function family such
that G.In(λ),G.Out(λ) ⊆

∪
i≤p0(λ)

{0, 1}i for some polynomial p0 and all λ ∈ N.
Let F be a sub-exponentially OW-secure function family such that F.In = G.Out
and F.Out(λ) ⊆

∪
i≤p1(λ)

{0, 1}i for some polynomial p1 and all λ ∈ N. Let Obf
be a sub-exponentially Scirc

eq -secure circuit obfuscator. Then there is a polynomial
s : N→ N such that the following is true. Let DS = PUNC-DS[G,F,Obf, s]. Then
(1) DS is well-defined, and (2) DS is sub-exponentially PSUFCMA-secure.

In order to prove that DS is PSUFCMA-secure, we show that an adversary
can not find the value of G.Ev(1λ, gk,m∗) for a challenge message m∗, even
given the obfuscated verification-key circuit that contains gk. In the proof, we
puncture gk at m∗ to get a punctured key gk∗, and construct a functionally
equivalent verification-key circuit that embeds gk∗ along with y∗ = F.Ev(1λ, fk,
G.Ev(1λ, gk,m∗)). The new verification key accepts σ as a valid signature for
m∗ if and only if y∗ = F.Ev(1λ, fk, σ), whereas the verification of signatures for
all other messages m ̸= m∗ remains the same. First, we use the iO-security of
Obf to switch the verification circuits. Then we use the PPRF-security of G,
followed by the OWF-security of F to show that no adversary can find the value
of G.Ev(1λ, gk,m∗) from gk∗ and y∗. The proof is given in [13].

4 Impossibility of differing-inputs obfuscation for TMs

In this section we show that differing-inputs obfuscation for Turing Machines is
impossible. In order to disprove sub-exponentially secure diO for TMs, we assume
only the existence of sub-exponentially secure one-way functions. Furthermore,
we show that polynomially secure diO for TMs is also impossible, additionally
assuming sub-exponentially secure iO.

We construct a sub-exponentially difference-secure TM sampler, meaning
that given a pair of TMs produced by this sampler it is hard to find an input on

New Negative Results on Differing-Inputs Obfuscation 15

which these TMs produce different outputs. The proof of difference-security is the
core part of our work. It requires to carefully specify how to choose parameters for
our sampler in a way that does not introduce any circular dependencies. Besides
proving difference-security, we also show that there exists an adversary that
can distinguish between obfuscations of TMs that are produced by the sampler
regardless of the used obfuscator. Together these claims imply the impossibility
of diO for TMs.

The blueprint for impossibility results. The first attack on differing-inputs obfus-
cation was presented by Garg, Gentry, Halevi and Wichs (GGHW) [28]. They
introduced a novel special-purpose obfuscation assumption and showed that it
contradicts diO. Our impossibility result follows the high-level idea from their
work, but we achieve it using concrete assumptions. We now explain the core
ideas of our impossibility result, which closely follow those of GGHW.

We construct a TM sampler Stm that returns TMs M0,M1 along with an
auxiliary information string aux . The sampler generates a key pair (sk, vk) for
a digital signature scheme DS, and its output depends on these keys. TM M0

returns 0 on every input. TM M1 returns 1 if and only if it gets a valid message-
signature pair as input, corresponding to the verification key vk; it returns 0
otherwise. The auxiliary information string aux is an iO-obfuscation of a TM
Maux. The latter embeds the signing key sk and takes a TM M as input, which
for our purpose will normally be a diO-obfuscation of M0 or M1. Maux returns
the result of running M on a message-signature pair that is produced using its
embedded signing key sk.

In order to determine whether a TM M is an obfuscation of M0 or M1, one
can run Maux with M as input. According to the construction of Maux, it will
return b ∈ {0, 1} if and only if M is an obfuscation of Mb. To prove difference-
security of Stm, we will show that it is hard to find a valid message-signature pair
given (M0,M1, aux). The main technical challenge of the proof is to show that
aux (the obfuscation of Maux) properly hides the embedded signing key sk, which
does not naturally follow from the security of indistinguishability obfuscation.

Turing Machine sampler TM-SAMP. Let s0, ℓ, n, t0, t1, s1 : N → N be polynomi-

als. Let Obftmeq ,Obf
tm
diff be TM obfuscators. Let H be a function family such that

H.In(λ) = {0, 1}∗ and H.Out(λ) ⊆
∪

i≤p0(λ)
{0, 1}i for some polynomial p0 and all

λ ∈ N. Let DS be a deterministic digital signature scheme such that DS.In(λ) =
{0, 1}ℓ(λ) and DS.Out(λ) ⊆

∪
i≤p1(λ)

{0, 1}i for some polynomial p1 and all λ ∈ N.
We build a TM sampler Stm = TM-SAMP[Obftmdiff ,H,DS,Obf

tm
eq , s0, ℓ, n, t0, t1, s1]

as defined in Fig. 5. We say that Stm is well-defined if s0(λ) ≥ |M0|, s0(λ) ≥
|M1

1λ,hk,h|, ℓ(n(λ)) ≥ ℓ(λ), t0(λ) ≥ time(Mver
1λ,vk, (m,σ)), t1(λ) ≥ time(M,

(Mver
1λ,vk, 1

t0(λ),M, σ)) and s1(λ) ≥ |Maux
1λ,sk,vk| for all λ ∈ N, hk ∈ [H.Kg(1λ)],

h ∈ H.Out(λ), M ∈ {M0,M1
1λ,hk,h}, M ∈ [Obftmdiff(1

λ,Pads0(λ)(M))], (sk, vk) ∈
[DS.Kg(1n(λ))], m ∈ {0, 1}ℓ(λ) and σ ∈ DS.Out(n(λ)).

Core design ideas behind TM-SAMP. Note that TM Maux
1λ,sk,vk takes as input an

obfuscated TM M and computes the signature σ for message ⟨M⟩ℓ(n(λ)), where

16 Bellare, Stepanovs, Waters

TM Sampler Stm(1λ)

(sk, vk)←$ DS.Kg(1n(λ))

hk←$ H.Kg(1λ)
h← H.Ev(1λ, hk,Mver

1λ,vk)

M0 ← Pads0(λ)(M
0)

M1 ← Pads0(λ)(M
1
1λ,hk,h)

Maux ← Pads1(λ)(M
aux
1λ,sk,vk)

aux ←$ Obftmeq(1
n(λ),Maux)

Return (M0,M1, aux)

TM Mver
1λ,vk(m,σ)

If (|m| ̸= ℓ(λ)) then return 0

Return DS.Ver(1n(λ), vk, ⟨m⟩ℓ(n(λ)), σ)

TM M0(M, 1t,m, σ)

Return 0

TM M1
1λ,hk,h(M, 1t,m, σ)

h′ ← H.Ev(1λ,hk,M)
If (h′ ̸= h) then return 0
Return UTMt

M(m,σ)

TM Maux
1λ,sk,vk(M)

If (|M| ̸= ℓ(λ)) then return 0

σ ← DS.Sig(1n(λ), sk, ⟨M⟩ℓ(n(λ)))

d← UTM
t1(λ)

M
(Mver

1λ,vk, 1
t0(λ),M, σ)

Return d

Fig. 5. TM sampler Stm = TM-SAMP[Obftmdiff ,H,DS,Obftmeq, s0, ℓ, n, t0, t1, s1].

the latter denotes M padded to size ℓ(n(λ)). It then uses a Universal Turing
Machine UTM to simulate M on input x for the duration of t1(λ) steps, where
x = (Mver

1λ,vk, 1
t0(λ),M, σ). The idea of computing a signature on a message that

depends on M was already proposed in GGHW [28], with the goal of avoding
a trivial attack against the difference-security of the sampler. Specifically, if a
fixed message-signature pair (mch, σch) was used for all inputs of Maux

1λ,sk,vk, then
a difference-security adversary could construct a sequence of TMs that each
reveals a single bit of (mch, σch) when used as an input M to Maux

1λ,sk,vk. This
would allow adversary to recover the message-signature pair bit-by-bit.

Turing Machine M1
1λ,hk,h takes an input x = (M, 1t,m, σ), where M is a TM,

1t is the unary representation of some integer t ∈ N, and (m,σ) is a message-
signature pair. We use a target collision-resistant function family H in order
to ensure that M1

1λ,hk,h can return 1 only if M = Mver
1λ,vk. This is achieved by

embeding a key hk for H and the value h = H.Ev(1λ,hk,Mver
1λ,vk) into M1

1λ,hk,h,

and by returning 0 whenever h ̸= H.Ev(1λ,hk,M). If M = Mver
1λ,vk is satisfied,

then M1
1λ,hk,h uses a Universal Turing Machine UTM to simulate M on input

(m,σ) for the duration of t steps. TM Mver
1λ,vk is designed to return 1 if and

only if its input x = (m,σ) is a valid message-signature pair with respect to a
verification key vk for the digital signature scheme DS. Our impossibility results
require the choice of DS to depend on the construction of M1

1λ,hk,h, so embedding
vk directly into the latter would have introded a circular dependency between
the two. Instead we have to resort to the above approach of embedding vk into
a separate TM.

According to our definitions, two TMs can be functionally equivalent only if
both of them halt on all inputs. The notion of functional equivalence is further
used for the definitions of program samplers and obfuscation. This means that
whenever a TM needs to simulate the code of another TM, it is required to

New Negative Results on Differing-Inputs Obfuscation 17

Fig. 6. Parameter dependencies in TM-SAMP for the proof of Theorem 2.

use a Universal Turing Machine UTM and specify the number of steps for the
simulation. Otherwise, the simulated TMs would not be guaranteed to halt.

Parameters of TM-SAMP. Fig. 6 shows the dependencies between all schemes
and parameters that will be used to instantiate the construction of TM-SAMP
in Theorem 2. Let us introduce the notation that is used in this picture. For any
two entities A and B, an arrow from A to B means that the construction, or the
choice, of B depends on A. The relations are transitive, meaning that we do not
draw a direct arrow from A to B in the case if B is already reachable from A.
TM Maux-punc will be used only for the proof of security and is defined in Fig. 7.

The construction of TM-SAMP is parameterized by polynomials s0, s1, t0, t1, ℓ
and n. Polynomials s0, s1 denote the size to which some of our TMs must be
padded prior to obfuscating them. This stems from our definition of program
samplers that are required to return programs of the same size. Polynomials
t0, t1 are used to indicate the number of steps that must be done when simulating
various TMs using a Universal Turing Machine UTM. Our definition of a well-
defined instantiation of TM-SAMP specifies lower bounds for t0, t1 that ensure
the correctness of the attack that we will design against the sub-exponential
(d)iO-security of Obftmdiff with respect to Stm. Polynomial ℓ will be defined to
upper-bound the size of any obfuscation M of programs M0 and M1

1λ,hk,h, when

obfuscator Obftmdiff is used. Note that Maux
1λ,sk,vk rejects all inputs M of size different

than ℓ(λ); our attack will pad all obfuscations of M0 and M1
1λ,hk,h to size ℓ(λ),

using the padding operator Padℓ(λ)(·) that is assumed to produce functionally
equivalent TMs as per Section 2. Polynomial n is used to set security parameters
for schemes DS and Obftmeq . Specifically, if the TM sampler Stm is instantiated
with a security parameter λ ∈ N, then its construction uses these two schemes,
each with the security parameter n(λ).

In order for our proof of difference-security to work, if a 2−(·)ϵ-security is
assumed for either of DS or Obftmeq , then the choice of polynomial n will depend
on ϵ. This leads to an inconvenient dependency: DS uses n(λ) as its security

18 Bellare, Stepanovs, Waters

parameter, but the choice of polynomial n depends on the choice of DS. Ide-
ally, we would have liked to choose a digital signature scheme DS such that
DS.Out(n(λ)) = {0, 1}ℓ(λ), because DS is used to sign messages that are TMs
of size ℓ(λ). However, since we do not know n ahead of choosing DS, we require
that for all λ ∈ N we have DS.Out(λ) = {0, 1}ℓ(λ) and ℓ(n(λ)) ≥ ℓ(λ), result-
ing in DS.Out(n(λ)) = {0, 1}ℓ(n(λ)). We then use an injective string padding to
map TMs (i.e. their string representations) of length ℓ(λ) into strings of length
ℓ(n(λ)). The injectivity of padding is necessary for the proof of difference-security
of Stm. In order to ensure that the requirement ℓ(n(λ)) ≥ ℓ(λ) is satisfied, we
will choose polynomials ℓ, n such that ℓ(λ+1) ≥ ℓ(λ) and n(λ) ≥ λ for all λ ∈ N.

Limitations and extensions. Our definition of TM samplers in Section 2 requires
them to return TMs that halt on all inputs. One could argue that this definition
is still insufficient for the purpose of obfuscation. Namely, a sampler can pro-
duce TMs that have significantly different running times, and it might not be
reasonable to expect an obfuscator to properly hide the difference in the running
times. We note that this does not hinder our results because we can artificially
alter our TMs M0 and M1

1λ,hk,h to have the same running times, by adding void

instructions to the definition of M0.
The construction of TM-SAMP uses a TM obfuscator Obftmeq that in our theo-

rem statements will be assumed to be sub-exponentially Stm
eq -secure. It is used to

produce auxiliary information by obfuscating TMs Maux
1λ,sk,vk and Maux-punc

1λ,sk∗,vk,m′,b
.

We use a TM obfuscator for readability, but we note that a sub-exponentially
Scirc
eq -secure circuit obfuscator could be used instead. There are no circular de-

pendencies preventing us from redefining these two TMs as circuits.
According to Fig. 6, the size of Maux depends on the maximum size of TMs

M0 and M1
1λ,hk,h, and in particular it might be larger than these TMs. This

means that our impossibility result might not hold if we restrict our attention to
TM samplers whose auxiliary information strings aux are required to be shorter
than the size of the corresponding TMs M0 and M1. GGHW [28] circumvent
this limitation in their impossibility result by using a CRHF to compute and
then sign a hash of the TM that is passed inside their auxiliary-information
program, rather than signing the TM itself. Our proof techniques do not seem
to be compatible with such approach.

Impossibility results. We now formally state our results. Theorem 2 shows how
to choose parameters for TM-SAMP such that the resulting TM sampler is si-
multaneously well-defined and difference-secure. Theorem 3 shows that any well-
defined instantiation of TM-SAMP produces TMs that can not be securely ob-
fuscated.

Theorem 2. Let Obftmdiff be a TM obfuscator. Let H be a sub-exponentially
TCR-secure function family such that H.In(λ) = {0, 1}∗ and H.Out(λ) ⊆∪

i≤p0(λ)
{0, 1}i for some polynomial p0 and all λ ∈ N. Then there are polynomi-

als s0, ℓ : N → N such that the following is true. Let DS be a sub-exponentially
PSUFCMA-secure, consistent puncturable digital signature scheme such that
DS.In(λ) = {0, 1}ℓ(λ) and DS.Out(λ) ⊆

∪
i≤p1(λ)

{0, 1}i for some polynomial p1

New Negative Results on Differing-Inputs Obfuscation 19

and all λ ∈ N. Let Obftmeq be a sub-exponentially Stm
eq -secure TM obfuscator.

Then there are polynomials n, t0, t1, s1 : N → N such that the following is true.
Let Stm = TM-SAMP [Obftmdiff , H, DS, Obf

tm
eq , s0, ℓ, n, t0, t1, s1]. Then (1) Stm is

well-defined, and (2) Stm is sub-exponentially DIFF-secure.

We defer the proof of Theorem 2 until after we show how to use this theorem
to state and prove our main claims regarding the impossibility of differing-inputs
obfuscation for TMs.

Theorem 3. Let s0, ℓ, n, t0, t1, s1 : N → N be polynomials. Let Obftmeq ,Obf
tm
diff

be TM obfuscators. Let H be a function family with H.In(λ) = {0, 1}∗ and
H.Out(λ) ⊆

∪
i≤p0(λ)

{0, 1}i for some polynomial p0 and all λ ∈ N. Let DS be

a deterministic digital signature scheme such that DS.In(λ) = {0, 1}ℓ(λ) and
DS.Out(λ) ⊆

∪
i≤p1(λ)

{0, 1}i for some polynomial p1 and all λ ∈ N. Let Stm =

TM-SAMP [Obftmdiff ,H,DS,Obf
tm
eq , s0, ℓ, n, t0, t1, s1]. Assume that Stm is well-

defined. Then there exists a PT adversary O such that AdvioObftmdiff ,S
tm,O(λ) = 1.

Proof (Theorem 3). We build a PT adversary O against the (d)iO-security of
Obftmdiff relative to Stm as follows:

Adversary O(1λ,M, aux)

Maux ← aux ; b′ ← Maux(Padℓ(λ)(M)) ; Return b′

Adversary O takes 1λ,M, aux as input, where M is an obfuscation of either
TM M0 or TM M1

1λ,hk,h that was produced by the obfuscator Obftmdiff in game

IOO
Obftmdiff ,S

tm(λ), and aux is an auxiliary information string. The goal of O is to

guess which of M0 and M1
1λ,hk,h was obfuscated. It should return 0 if M is an

obfuscation of M0, and it should return 1 otherwise.
Adversary O parses auxiliary information string aux into a TM Maux. The

latter is an obfuscation of TM Maux
1λ,sk,vk, which was computed in Stm using

obfuscator Obftmeq . Next, O pads M to construct a functionally equivalent TM

of size ℓ(λ) and passes it as input to Maux. According to the construction of
Maux

1λ,sk,vk, the latter returns 1 if and only if M is an obfuscation of TM M1
1λ,hk,h.

Adversary O returns the same value to win the game. This concludes the proof
of Theorem 3.

Next, Theorem 4 shows the impossibility of a polynomially secure diO, and
Theorem 5 shows the impossibility of a sub-exponentially secure diO.

Theorem 4. Let Obf be a Turing Machine obfuscator. Assume the existence
of sub-exponentially secure one-way functions and sub-exponentially secure in-
distinguishability obfuscation for Turing Machines. Then Obf is not a differing-
inputs obfuscator.

We now prove Theorem 4. Let Obftmeq be a sub-exponentially Stm
eq -secure TM

obfuscator. Theorem 1 shows how to build a sub-exponentially PSUFCMA-
secure, consistent puncturable digital signature scheme DS assuming only sub-
exponentially secure OWF and sub-exponentially secure iO. For a moment, as-
sume that we can build a TCR-secure function family H with H.In(λ) = {0, 1}∗

20 Bellare, Stepanovs, Waters

for all λ ∈ N just from sub-exponentially secure OWFs (which is not known to be
true, and we address this below). Then according to Theorem 2, we can build a
TM sampler Stm that is (1) well-defined and (2) sub-exponentially DIFF-secure.
But Theorem 3 shows that there exists an efficient adversary that breaks the
IO-security of Obf with respect to Stm. Therefore, Obf is not a differing-inputs
obfuscator.

In order to build a TCR-secure function family H from a sub-exponentially
secure OWF, the statements of Theorem 2 and Theorem 3 can be relaxed to

require H.In(λ) = {0, 1}2λ for all λ ∈ N. This change will still ensure the cor-
rectness of Stm, which requires that H can process inputs of length |Mver

1λ,vk|. The
size of Mver

1λ,vk in our construction is bounded polynomially in the security pa-
rameter. But the reason we have to use a hash function that can process inputs
of arbitrary, super-polynomially bounded lengths is because the size of Mver

1λ,vk

is not known prior to fixing H (as shown in Fig. 6).
As noted in Section 2, Shoup [46] shows how to build a TCR-secure function

family H for arbitrary, bounded variable-length inputs from any TCR-secure
compression function family with fixed input size. The latter is shown to be
achievable from OWFs by Rompel [44]. We note that the key size of Shoup’s
construction grows logarithmically with the maximum input length of the con-
structed function family, which is still polynomiallly bounded in the case of
H that was proposed above. Furthermore, the super-polynomial bound on the
message lengths does not introduce any difficulties for the security reduction of
Shoup’s construction. This is because the loss of security during the reduction
depends on the length of the messages that are chosen by a PT adversary, rather
than by the (super-polynomial) bound on the messages supported by the scheme.

This concludes the proof of Theorem 4. Note that we ruled out the existence
of polynomially-secure differing-inputs obfuscation even with respect to sub-
exponentially secure TM samplers, which is a stronger version of difference-
security than the one required by our definition of polynomially-secure differing-
inputs obfuscation.

Theorem 5. Let Obf be a Turing Machine obfuscator. Assume the existence of
sub-exponentially secure one-way functions. Then Obf is not a sub-exponentially
secure differing-inputs obfuscator.

To prove Theorem 5, assume for a contradiction that Obf is a sub-exponentially
secure differing-inputs obfuscator. According to our definitions, it implies the
existence of sub-exponentially secure indistinguishability obfuscation. The rest
of the proof is identical to the proof of Theorem 4. It results in constructing
a sub-exponentially difference-secure TM sampler Stm that can not be securely
obfuscated by Obf. Thus, we get a contradiction.

Finally, we now prove Theorem 2.

Proof (Theorem 2). We start by proving part (1) of the theorem. Specifically,
we choose polynomials s0, ℓ, n, t0, t1, s1 : N→ N such that Stm is well-defined.

We now specify polynomials s0, ℓ : N → N. For any λ ∈ N let s0(λ) be a
polynomial upper bound on max(|M0|, |M1

1λ,hk,h|) where the maximum is over

New Negative Results on Differing-Inputs Obfuscation 21

all hk ∈ [H.Kg(1λ)] and h ∈ H.Out(λ). For any λ ∈ N let ℓ(λ) be a polyno-
mial upper bound on max(|M|) such that ℓ(λ) ≤ ℓ(λ + 1), where the max-
imum is over all hk ∈ [H.Kg(1λ)], h ∈ H.Out(λ), M ∈ {M0,M1

1λ,hk,h} and

M ∈ [Obftmdiff(1
λ,Pads0(λ)(M))]. Note that the requirement that ℓ(λ) ≤ ℓ(λ+1) for

all λ ∈ N is trivially achievable by removing all terms with negative coefficients
from the polynomial.

We now specify a constant 0 < ϵ < 1 for which we will prove that Stm is
2−(·)ϵ-DIFF-secure. Let 0 < ϵtcr < 1 be a constant such that H is 2−(·)ϵtcr -TCR-
secure. Let 0 < ϵpsuf < 1 be a constant such that DS is 2−(·)ϵpsuf -PSUFCMA-
secure. Let 0 < ϵio < 1 be a constant such that Obftmeq is 2−(·)ϵio -Stm

eq -secure. Let

ϵ = min(12ϵtcr, ϵpsuf , ϵio).

We now specify polynomial n : N→ N. For any λ ∈ N let n(λ) = (2λ+ℓ(λ)+
3)⌈1/ϵ⌉. Note that for any λ ∈ N we have n(λ) ≥ λ, and earlier we required that
ℓ(λ + 1) ≥ ℓ(λ) for all λ ∈ N. It follows that ℓ(n(λ)) ≥ ℓ(λ) for all λ ∈ N, as
required for Stm to be well-defined. Let Invn be a deterministic, PT algorithm
that takes 1λ

′
to return the smallest λ ∈ N such that n(λ) ≥ λ′. We note that n

is injective, implying that Invn(1
n(λ)) = λ for all λ ∈ N.

We now specify polynomials t0, t1, s1 : N → N. For any λ ∈ N let t0(λ)
be a polynomial upper bound on the maximum running time of Mver

1λ,vk(m,σ)

where the maximum is over all (sk, vk) ∈ [DS.Kg(1n(λ))], m ∈ {0, 1}ℓ(λ) and σ ∈
DS.Out(n(λ)). For any λ ∈ N let t1(λ) be a polynomial upper bound on the maxi-
mum running time of M(Mver

1λ,vk, 1
t0(λ),M, σ) where the maximum is over all hk ∈

[H.Kg(1λ)], h ∈ H.Out(λ), M ∈ {M0,M1
1λ,hk,h}, M ∈ [Obftmdiff(1

λ,Pads0(λ)(M))],

(sk, vk) ∈ [DS.Kg(1n(λ))] and σ ∈ DS.Out(n(λ)). For any λ ∈ N let s1(λ)
be a polynomial upper bound on max(|Maux

1λ,sk,vk|, |M
aux-punc
1λ,sk∗,vk,m′,b

|) where the

TM Maux-punc
1λ,sk∗,vk,m′,b

is defined in Fig. 7 and where the maximum is over all

(sk, vk) ∈ [DS.Kg(1n(λ))], m′ ∈ {0, 1}ℓ(λ), sk∗ ∈ [DS.PKg(1n(λ), sk, ⟨m′⟩ℓ(n(λ)))]
and b ∈ {0, 1}.

We proceed to prove part (2) of Theorem 2, namely that Stm is 2−(·)ϵ -DIFF-
secure. The main challenge of the proof is to show that the signing key sk of DS
can not be extracted from an obfuscation of TM Maux

1λ,sk,vk, meaning that the

Stm
eq -secure obfuscator Obf

tm
eq is sufficient to hide sk. In our proof this is implicit.

The core idea of the proof is to consider the exponential number of messages
from DS.In(n(λ)) and for each of them we argue that a PT adversary is unlikely
to produce a signature for this message. This implies that it is hard to find an
input on which TMs M0 and M1

1λ,hk,h return different outputs.

Let D be a PT adversary. Consider the games and associated TMs of Fig. 7.
Lines not annotated with comments are common to all games. Game G0(λ) is
equivalent to DIFFD

Stm(λ), so for all λ ∈ N we have

AdvdiffStm,D(λ) = Pr[G0(λ)]. (1)

Let us discuss the transitions between hybrid games that will be used in
our proof. Let λ ∈ N. In order to transition from game G0(λ) to game G1,0(λ)

we claim that if adversary D wins in game DIFFD
Stm(λ) then it must return a

22 Bellare, Stepanovs, Waters

Games G0(λ)–G1,2ℓ(λ)(λ)

(sk, vk)←$ DS.Kg(1n(λ))

hk←$ H.Kg(1λ)
h← H.Ev(1λ,hk,Mver

1λ,vk)

M0 ← Pads0(λ)(M
0)

M1 ← Pads0(λ)(M
1
1λ,hk,h)

Maux ← Pads1(λ)(M
aux
1λ,sk,vk)

aux ←$ Obftmeq(1
n(λ),Maux)

x←$D(1λ,M0,M1, aux)
(M, 1t,m, σ)← x
d0 ← (M0(x) ̸= M1(x))
d1 ← (M = Mver

1λ,vk)

res ← d0 // G0

res ← (d0 ∧ d1 ∧m ≥ 0) // G1,0

. . .

res ← (d0 ∧ d1 ∧m ≥ 2ℓ(λ)) // G1,2ℓ(λ)

Return res

Games G1,i(λ)–G1,i+1(λ)

(sk, vk)←$ DS.Kg(1n(λ))

hk←$ H.Kg(1λ)
h← H.Ev(1λ,hk,Mver

1λ,vk)

M0 ← Pads0(λ)(M
0)

M1 ← Pads0(λ)(M
1
1λ,hk,h)

m′ ← ⟨i⟩ℓ(λ) ; b← Maux
1λ,sk,vk(m

′)

m∗ ← ⟨m′⟩ℓ(n(λ))

sk∗←$ DS.PKg(1n(λ), sk,m∗)
Mtmp ← Maux

1λ,sk,vk ; z ← i // G1,i

Mtmp ← Maux-punc

1λ,sk∗,vk,m′,b
; z ← i // G1,i,A

Mtmp ← Maux-punc

1λ,sk∗,vk,m′,b
; z ← i+ 1 // G1,i,B

Mtmp ← Maux
1λ,sk,vk ; z ← i+ 1 // G1,i+1

aux ←$ Obftmeq(1
n(λ),Pads1(λ)(Mtmp))

x←$D(1λ,M0,M1, aux)
(M, 1t,m, σ)← x
d0 ← (M0(x) ̸= M1(x))
d1 ← (M = Mver

1λ,vk)

Return (d0 ∧ d1 ∧m ≥ z)

TM M0(M, 1t,m, σ)

Return 0

TM M1
1λ,hk,h(M, 1t,m, σ)

h′ ← H.Ev(1λ,hk,M)
If (h′ ̸= h) then return 0
Return UTMt

M(m,σ)

TM Maux
1λ,sk,vk(M)

If (|M| ̸= ℓ(λ)) then return 0

σ ← DS.Sig(1n(λ), sk, ⟨M⟩ℓ(n(λ)))

Return UTM
t1(λ)

M
(Mver

1λ,vk, 1
t0(λ),M, σ)

TM Mver
1λ,vk(m,σ)

If (|m| ≠ ℓ(λ)) then return 0

d← DS.Ver(1n(λ), vk, ⟨m⟩ℓ(n(λ)), σ)
Return d

TM Maux-punc

1λ,sk∗,vk,m′,b
(M)

If (|M| ̸= ℓ(λ)) then return 0

If (M = m′) then return b

σ ← DS.PSig(1n(λ), sk∗, ⟨M⟩ℓ(n(λ)))

d← UTM
t1(λ)

M
(Mver

1λ,vk, 1
t0(λ),M, σ)

Return d

Fig. 7. Games for proof of Theorem 2.

differing-input x = (M, 1t,m, σ) such that M = Mver
1λ,vk. Otherwise, one could use

this adversary to break the TCR-security of H. Next, we consider an exponential
number of games, going from game G1,0(λ) to game G1,2ℓ(λ)(λ). Each game
corresponds to a unique value of message m that can be taken as input by TM
Mver

1λ,vk. For any i ∈ {0, 1, . . . , 2ℓ(λ)}, adversaryD wins in game G1,i(λ) if and only

if it returns x = (M, 1t,m, σ) such that M = Mver
1λ,vk, m ≥ i and M0(x) ̸= M1(x).

According to this definition, it is impossible to win game G1,2ℓ(λ)(λ) because
TM Mver

1λ,vk rejects whenever it takes a message m as input such that |m| ̸= ℓ(λ)

(whereas the length of m in this game is required to be at least ℓ(λ) + 1). We

New Negative Results on Differing-Inputs Obfuscation 23

now need to show that for each i ∈ {0, 1, . . . , 2ℓ(λ) − 1} the success probabilities
of adversary D in games G1,i(λ) and G1,i+1(λ) are sub-exponentially close.

Let i ∈ {0, 1, . . . , 2ℓ(λ) − 1}. We split the transition from game G1,i(λ) to
game G1,i+1(λ) into three steps. Specifically, we consider a sequence of games
G1,i(λ), G1,i,A(λ), G1,i,B(λ) and G1,i+1(λ). Games G1,i,A(λ) and G1,i,B(λ) gen-
erate aux as an obfuscation of TM Maux-punc

1λ,sk∗,vk,m′,b
instead of an obfuscation of

TM Maux
1λ,sk,vk, where m′ = i and the used obfuscator is Obftmeq . As opposed to

TM Maux
1λ,sk,vk, note that TM Maux-punc

1λ,sk∗,vk,m′,b
contains a punctured signing key

sk∗ for DS that is punctured at message m∗ = ⟨m′⟩ℓ(n(λ)). Both TMs are defined

to produce the same outputs on all inputs such that M ̸= m′, which is achieved
because the punctured digital signature scheme DS is assumed to be consistent.
(Recall that the latter requires that sk and sk∗ return the same signatures for all
messages except m∗.) Furthermore, TM Maux-punc

1λ,sk∗,vk,m′,b
is hardwired to return

b = Maux
1λ,sk,vk(m

′) on input M = m′, meaning that the TMs are functionally
equivalent. We use it to claim that the success probabilities of adversary D in
games G1,i(λ) and G1,i,A(λ)— and in games G1,i,B(λ) and G1,i+1(λ) —are sub-
exponentially close. Namely, if D can distinguish between any pair of these games
with a better than sub-exponentially small probability, then one can use D to
break the iO-security of obfuscator Obftmeq .

It remains to discuss the transition from game G1,i,A(λ) to game G1,i,B(λ).
The difference between these games is that the former requires m ≥ i as a
part of its winning condition, whereas the later requires m ≥ i + 1. Both of
these games set aux to be an obfuscation of TM Maux-punc

1λ,sk∗,vk,m′,b
, where sk∗ is

punctured at m∗ = ⟨m′⟩ℓ(n(λ)) and m′ = i. Note that adversary D can only
have a different success probability in both games if it is capable of forging a
signature on message m∗ given any information it might be able to extract from
TM Maux-punc

1λ,sk∗,vk,m′,b
. However, Maux-punc

1λ,sk∗,vk,m′,b
does not contain any information

that could help to forge the signature for message m∗ (only bit b depends on
the challenge signature, but D can attempt to guess it). Therefore, we can use
the PSUFCMA-security of DS to bound the difference in adversary’s success
probability when transitioning between games G1,i,A(λ) and G1,i,B(λ).

Below we will prove the following claims:
Claim 1. There exists a PT adversary H against the TCR-security of H such that

for all λ ∈ N we have

Pr[G0(λ)]− Pr[G1,0(λ)] ≤ AdvtcrH,H(λ). (2)

Claim 2. There exist TM samplers Stm0 , Stm1 and a PT adversary O against the

iO-security of Obftmeq relative to Stm0 and Stm1 , such that for all λ ∈ N we have

2ℓ(λ)−1∑
i=0

(Pr[G1,i(λ)]− Pr[G1,i,A(λ)]) ≤ 2ℓ(λ) · AdvioObftmeq,S
tm
0 ,O(n(λ)), (3)

2ℓ(λ)−1∑
i=0

(Pr[G1,i,B(λ)]− Pr[G1,i+1(λ)]) ≤ 2ℓ(λ) · AdvioObftmeq,S
tm
1 ,O(n(λ)). (4)

24 Bellare, Stepanovs, Waters

Claim 3. There exists a PT adversary U against the PSUFCMA-security of DS

such that for all λ ∈ N we have
2ℓ(λ)−1∑

i=0

(Pr[G1,i,A(λ)]− Pr[G1,i,B(λ)]) ≤ 2ℓ(λ)+1 · Advpsufcma
DS,U (n(λ)). (5)

Finally, we claim that no adversary can win against G1,2ℓ(λ)(λ). Let x =
(M, 1t,m, σ) be the output of adversary D in game G1,2ℓ(λ)(λ). Adversary D
wins the game if the following three conditions are simultaneously true: M0(x) ̸=
M1

1λ,hk,h(x), M = Mver
1λ,vk and |m| > ℓ(λ). The first condition requires M1

1λ,hk,h(x)

to return 1. The second condition means that M1
1λ,hk,h(x) will return the output

of Mver
1λ,vk(m,σ). However, according to the third condition, the latter returns 0.

Therefore, for any λ ∈ N we have

Pr[G1,2ℓ(λ)(λ)] = 0. (6)

We now show that there exists λD ∈ N such that for all λ ≥ λD we have
AdvdiffStm,D(λ) ≤ 2−λϵ

. By definition, this means that Stm is 2−(·)ϵ-DIFF-secure.

AdvdiffStm,D(λ) = (Pr[G0(λ)]− Pr[G1,0(λ)])

+
2ℓ(λ)−1∑

i=0

(Pr[G1,i(λ)]− Pr[G1,i+1(λ)]) + Pr[G1,2ℓ(λ)(λ)] (7)

≤ AdvtcrH,H(λ) + 2ℓ(λ) · AdvioObftmeq,S
tm
0 ,O(n(λ))

+ 2ℓ(λ)+1 · Advpsufcma
DS,U (n(λ)) + 2ℓ(λ) · AdvioObftmeq,S

tm
1 ,O(n(λ)) (8)

≤ 2−λϵtcr
+ 2ℓ(λ) ·

(
2−n(λ)ϵio + 2 · 2−n(λ)ϵpsuf + 2−n(λ)ϵio

)
(9)

≤ 2−λϵtcr
+ 2ℓ(λ)+1 ·

(
2−n(λ)ϵio + 2−n(λ)ϵpsuf + 2−n(λ)ϵio

)
(10)

≤ 2−λ2ϵ

+ 2ℓ(λ)+1 · 3 · 2−n(λ)ϵ (11)

= 2−λ2ϵ

+ 2ℓ(λ)+1+log2 3−(2λ+ℓ(λ)+3)⌈1/ϵ⌉·ϵ (12)

≤ 2−λ2ϵ

+ 2−(2λ)ϵ (13)

≤ 2−(2λ)ϵ + 2−(2λ)ϵ = 21−(2λ)ϵ (14)

≤ 2−λϵ

. (15)

Let λH ∈ N such that AdvtcrH,H(λ) ≤ 2−λϵtcr
for all λ ≥ λH. Let λU ∈ N such

that Advpsufcma
DS,U (λ) ≤ 2−λϵpsuf

for all λ ≥ λU . For b ∈ {0, 1} let λStm
b ,O ∈ N be such

that AdvioObftmeq,S
tm
b ,O(λ) ≤ 2−λϵio for all λ ≥ λStm

b ,O.

Equation (7) follows from Equation (1) for all λ ∈ N. Equation (8) follows
from equations (2)–(6) for all λ ∈ N. Equation (9) holds for all λ ∈ N such that

New Negative Results on Differing-Inputs Obfuscation 25

λ ≥ λH and n(λ) ≥ max(λStm
0 ,O, λU , λStm

1 ,O). Equation (10) holds for all λ ∈ N.
Equation (11) is obtained by expanding ϵ according to its definition, namely by
using the following relations: 2ϵ ≤ ϵtcr, ϵ ≤ ϵpsuf and ϵ ≤ ϵio. Equation (12) is
obtained by expanding n(λ) according to its definition. Equation (13) holds for
all λ ∈ N, because for any polynomial ℓ : N→ N, any constant 0 < ϵ < 1 and all
λ ∈ N we have

ℓ(λ) + 1 + log2 3− (2λ+ ℓ(λ) + 3)⌈1/ϵ⌉·ϵ

≤ ℓ(λ) + 1 + log2 3− (2λ+ ℓ(λ) + 3)

<− 2λ ≤ −(2λ)ϵ.

Equation (14) holds for all λ ∈ N such that λ2ϵ ≥ (2λ)ϵ, requiring that λ ≥ 2.
Equation (15) holds for all λ ∈ N such that 1 − 2ϵλϵ ≤ −λϵ, requiring that

λ ≥
(

1
2ϵ−1

)1/ϵ

. Therefore, it suffices to set

λD = max
(
λH, Invn(1

λStm0 ,O), Invn(1
λU), Invn(1

λStm1 ,O), 2,
⌈
(2ϵ − 1)

−1/ϵ
⌉)

.

This completes the proof. We now prove Claims 1-3.

Proof of Claim 1. We build a PT adversary H against the TCR-security of H
such that for all λ ∈ N we have Pr[G0(λ)]− Pr[G1,0(λ)] ≤ AdvtcrH,H(λ).

Adversary H1(1
λ)

(sk, vk)←$ DS.Kg(1n(λ))
st ← (sk, vk)
Return (Mver

1λ,vk, st)

Adversary H2(1
λ, st , hk)

(sk, vk)← st ; h← H.Ev(1λ, hk,Mver
1λ,vk)

M0 ← Pads0(λ)(M
0) ; M1 ← Pads0(λ)(M

1
1λ,hk,h)

aux ←$ Obftmeq (1
n(λ),Pads1(λ)(M

aux
1λ,sk,vk))

(M, 1t,m, σ)←$D(1λ,M0,M1, aux) ; Return M

Let x = (M, 1t,m, σ) be an output of adversary D in games G0(λ) and G1,0(λ)
(note that the input distribution of D is the same in both games). If these games
produce different outcomes for the same x, it means that M0(x) ̸= M1

1λ,hk,h(x)

and M ̸= Mver
1λ,vk. According to the construction of M0 and M1

1λ,hk,h it follows

that H.Ev(1λ,hk,Mver
1λ,vk) = H.Ev(1λ, hk,M). Whenever this happens, adversary

H wins in game TCRH
H (λ) by returning x0 = Mver

1λ,vk and x1 = M. This proves
the claim.

Proof of Claim 2. We build TM samplers Stm0 , Stm1 and a PT adversary O against
the iO-security of Obftmeq relative to Stm0 and Stm1 , such that for all λ ∈ N
we have

∑2ℓ(λ)−1
i=0 (Pr[G1,i(λ)]− Pr[G1,i,A(λ)]) ≤ 2ℓ(λ) · AdvioObftmeq,S

tm
0 ,O(n(λ)) and∑2ℓ(λ)−1

i=0 (Pr[G1,i,B(λ)]− Pr[G1,i+1(λ)]) ≤ 2ℓ(λ) · AdvioObftmeq,S
tm
1 ,O(n(λ)).

Below, on the left we (simultaneously) define the TM samplers Stm0 and Stm1
that differ at the commented lines and have the uncommented lines in common.
On the right, we define the PT adversary O.

26 Bellare, Stepanovs, Waters

TM Samplers Stm0 (1λ
′
), Stm1 (1λ

′
)

λ← Invn(1
λ′
) ; i←$ {0, 1}ℓ(λ)

(sk, vk)←$ DS.Kg(1n(λ))
hk←$ H.Kg(1λ) ; h← H.Ev(1λ, hk,Mver

1λ,vk)

M̃0 ← Pads0(λ)(M
0) ; M̃1 ← Pads0(λ)(M

1
1λ,hk,h)

m′ ← ⟨i⟩ℓ(λ) ; b← Maux
1λ,sk,vk(m

′)

m∗ ← ⟨m′⟩ℓ(n(λ)) ; sk∗←$ DS.PKg(1n(λ), sk,m∗)
Maux ← Pads1(λ)(M

aux
1λ,sk,vk)

Maux-punc ← Pads1(λ)(M
aux-punc
1λ,sk∗,vk,m′,b

)

M1 ← Maux ; M0 ← Maux-punc ; z ← i // Stm0
M0 ← Maux ; M1 ← Maux-punc ; z ← i+ 1 // Stm1
aux ← (M̃0, M̃1, vk, z) ; return (M0,M1, aux)

Adversary O(1λ′
,M, aux)

λ← Invn(1
λ′
)

˜aux ← M

(M̃0, M̃1, vk, z)← aux

x←$D(1λ, M̃0, M̃1, ˜aux)
(M, 1t,m, σ)← x

d0 ← (M̃0(x) ̸= M̃1(x))
d1 ← (M = Mver

1λ,vk)

If (d0 ∧ d1 ∧m ≥ z)
Then return 1
Else return 0

We now show that Stm0 , Stm1 ∈ Stm
eq , meaning that these samplers produce func-

tionally equivalent TMs. Both samplers return TMs Maux
1λ,sk,vk and Maux-punc

1λ,sk∗,vk,m′,b

that are padded to size s1(λ). First, observe that M
aux
1λ,sk,vk contains a signing key

sk for DS, whereas Maux-punc
1λ,sk∗,vk,m′,b

contains the corresponding punctured signing

key sk∗, punctured atm∗ = ⟨m′⟩ℓ(n(λ)), and a bit b that is equal to Maux
1λ,sk,vk(m

′).
According to the definition of a consistent puncturable digital signature scheme,
keys sk and sk∗ produce the same signatures for all m ∈ DS.In(n(λ)) \ {m∗}.
Note that both Maux

1λ,sk,vk and Maux-punc
1λ,sk∗,vk,m′,b

compute a signature for an ℓ(n(λ))-

bit string ⟨M⟩ℓ(n(λ)) that is built from the ℓ(λ)-bit input string M by padding
it with leading zeros, which is an injective padding. Since m∗ can only be built
by padding m′, these TMs are equivalent for all inputs in M ∈ {0, 1}ℓ(λ) \ {m′}.
Furthermore, notice that Maux-punc

1λ,sk∗,vk,m′,b
returns b = Maux

1λ,sk,vk(m
′) on input m′,

so these TMs are equivalent for all inputs.
Let λ ∈ N. For any b ∈ {0, 1} consider game IOO

Obftmeq,S
tm
b
(n(λ)). Let ib denote

the value of i sampled by TM sampler Stmb . For any i ∈ {0, 1, . . . , 2ℓ(λ) − 1} we
have Pr[ib = i] = 2−ℓ(λ), and hence

AdvioObftmeq,S
tm
b ,O(n(λ)) = 2 · Pr[IOO

Obftmeq,S
tm
b
(n(λ))]− 1

= 2 ·
2ℓ(λ)−1∑

i=0

(
Pr[ib = i] · Pr[IOO

Obftmeq,S
tm
b
(n(λ)) | ib = i]

)
− 1

= 2 · 2−ℓ(λ) ·
2ℓ(λ)−1∑

i=0

Pr[IOO
Obftmeq,S

tm
b
(n(λ)) | ib = i]− 1. (16)

Finally, observe that for any i ∈ {0, 1, . . . , 2ℓ(λ) − 1} we have the following by
construction:

2 · Pr[IOO
Obftmeq,S

tm
0
(n(λ)) | i0 = i]− 1 = Pr[G1,i(λ)]− Pr[G1,i,A(λ)],

2 · Pr[IOO
Obftmeq,S

tm
1
(n(λ)) | i1 = i]− 1 = Pr[G1,i,B(λ)]− Pr[G1,i+1(λ)].

New Negative Results on Differing-Inputs Obfuscation 27

Claim 2 follows from Equation (16) together with the two equations above.

Proof of Claim 3. We build a PT adversary U against the PSUFCMA-security of

DS such that for all λ ∈ N we have
∑2ℓ(λ)−1

i=0 (Pr[G1,i,A(λ)]− Pr[G1,i,B(λ)]) ≤
2ℓ(λ)+1 · Advpsufcma

DS,U (n(λ)).

Adversary U1(1λ
′
)

λ← Invn(1
λ′
)

m′←$ {0, 1}ℓ(λ)
m∗ ← ⟨m′⟩ℓ(n(λ))
st ← m′

Return (m∗, st)

Adversary U2(1λ
′
, st , vk, sk∗)

λ← Invn(1
λ′
) ; m′ ← st ; b←$ {0, 1}

hk←$ H.Kg(1λ) ; h← H.Ev(1λ,hk,Mver
1λ,vk)

M0 ← Pads0(λ)(M
0) ; M1 ← Pads0(λ)(M

1
1λ,hk,h)

aux ←$ Obftmeq (1
n(λ),Pads1(λ)(M

aux-punc
1λ,sk∗,vk,m′,b

))

x←$D(1λ,M0,M1, aux) ; (M, 1t,m, σ)← x
d0 ← (M0(x) ̸= M1(x)) ; d1 ← (M = Mver

1λ,vk)

If (d0 ∧ d1 ∧m = m′) then return σ else return ⊥

Let λ ∈ N. Consider the value of m′ sampled by U1 in game PSUFCMAU
DS(n(λ)).

For any i ∈ {0, 1, . . . , 2ℓ(λ) − 1} it holds that Pr[m′ = i] = 2−ℓ(λ). Hence,

Advpsufcma
DS,U (n(λ)) =

2ℓ(λ)−1∑
i=0

(
Pr[m′ = i] · Pr[PSUFCMAU

DS(n(λ)) |m′ = i]
)

= 2−ℓ(λ) ·
2ℓ(λ)−1∑

i=0

Pr[PSUFCMAU
DS(n(λ)) |m′ = i]. (17)

Now observe that for any i ∈ {0, 1, . . . , 2ℓ(λ) − 1} we also have

Pr[PSUFCMAU
DS(n(λ)) |m′ = i] ≥ 1

2
· (Pr[G1,i,A(λ)]− Pr[G1,i,B(λ)]) . (18)

Let x = (M, 1t,m, σ) be an output of adversary D in games G1,i,A(λ) and
G1,i,B(λ) (note that the input distribution of D is the same in both games). If
these games produce different outcomes for the same x, it means that M0(x) ̸=
M1

1λ,hk,h(x), M = Mver
1λ,vk and m = i. According to the construction of M0 and

M1
1λ,hk,h it follows that (⟨m⟩ℓ(n(λ)), σ) is a valid message-signature pair for the

digital signature scheme DS with verification key vk.
Whenever the above happens, adversary U wins in game PSUFCMAU

DS(n(λ))
by forging a valid signature σ for message m∗, given that the following two
conditions are satisfied. First, it is only true if adversary U sampled m′ = i.
Second, in order to build TM Maux-punc

1λ,sk∗,vk,m′,b
, adversary U has to compute b =

Maux
1λ,sk,vk(m

′). Since U does not know sk, instead it has to guess the value of

b ∈ {0, 1}. Hence, U can perfectly simulate the games with probability 1
2 .

Claim 3 follows from Equation (17) and Equation (18).

Acknowledgments

Bellare and Stepanovs were supported in part by NSF grants CNS-1526801
and CNS-1228890, ERC Project ERCC FP7/615074 and a gift from Microsoft.

28 Bellare, Stepanovs, Waters

Waters was supported in part by NSF grants CNS-1228599 and CNS-1414082,
DARPA SafeWare, a Google Faculty Research award, the Alfred P. Sloan Fel-
lowship, a Microsoft Faculty Fellowship and a Packard Foundation Fellowship.
We thank the Eurocrypt 2016 reviewers for their comments.

References

1. P. Ananth, D. Boneh, S. Garg, A. Sahai, and M. Zhandry. Differing-inputs ob-
fuscation and applications. Cryptology ePrint Archive, Report 2013/689, 2013.
http://eprint.iacr.org/2013/689.

2. P. Ananth, Z. Brakerski, G. Segev, and V. Vaikuntanathan. From selective to
adaptive security in functional encryption. In R. Gennaro and M. J. B. Robshaw,
editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 657–677. Springer,
Heidelberg, Aug. 2015.

3. B. Applebaum, B. Barak, and A. Wigderson. Public-key cryptography from dif-
ferent assumptions. In L. J. Schulman, editor, 42nd ACM STOC, pages 171–180.
ACM Press, June 2010.

4. M. Backes, O. Dagdelen, M. Fischlin, S. Gajek, S. Meiser, and D. Schröder. Op-
erational signature schemes. Cryptology ePrint Archive, Report 2014/820, 2014.
http://eprint.iacr.org/2014/820.

5. M. Backes, S. Meiser, and D. Schröder. Delegatable functional signatures. Cryptol-
ogy ePrint Archive, Report 2013/408, 2013. http://eprint.iacr.org/2013/408.

6. B. Barak, S. Garg, Y. T. Kalai, O. Paneth, and A. Sahai. Protecting obfusca-
tion against algebraic attacks. In P. Q. Nguyen and E. Oswald, editors, EURO-
CRYPT 2014, volume 8441 of LNCS, pages 221–238. Springer, Heidelberg, May
2014.

7. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and
K. Yang. On the (im)possibility of obfuscating programs. In J. Kilian, editor,
CRYPTO 2001, volume 2139 of LNCS, pages 1–18. Springer, Heidelberg, Aug.
2001.

8. M. Bellare. A note on negligible functions. Journal of Cryptology, 15(4):271–284,
2002.

9. M. Bellare and G. Fuchsbauer. Policy-based signatures. In H. Krawczyk, editor,
PKC 2014, volume 8383 of LNCS, pages 520–537. Springer, Heidelberg, Mar. 2014.

10. M. Bellare and P. Rogaway. Collision-resistant hashing: Towards making UOWHFs
practical. In B. S. Kaliski Jr., editor, CRYPTO’97, volume 1294 of LNCS, pages
470–484. Springer, Heidelberg, Aug. 1997.

11. M. Bellare and P. Rogaway. The security of triple encryption and a framework
for code-based game-playing proofs. In S. Vaudenay, editor, EUROCRYPT 2006,
volume 4004 of LNCS, pages 409–426. Springer, Heidelberg, May / June 2006.

12. M. Bellare, I. Stepanovs, and S. Tessaro. Poly-many hardcore bits for any one-
way function and a framework for differing-inputs obfuscation. In P. Sarkar and
T. Iwata, editors, ASIACRYPT 2014, Part II, volume 8874 of LNCS, pages 102–
121. Springer, Heidelberg, Dec. 2014.

13. M. Bellare, I. Stepanovs, and B. Waters. New negative results on differing-inputs
obfuscation. Cryptology ePrint Archive, Report 2016/162, 2016. http://eprint.
iacr.org/2016/162.

14. N. Bitansky, R. Canetti, A. Chiesa, S. Goldwasser, H. Lin, A. Rubinstein, and
E. Tromer. The hunting of the SNARK. Cryptology ePrint Archive, Report
2014/580, 2014. http://eprint.iacr.org/2014/580.

New Negative Results on Differing-Inputs Obfuscation 29

15. N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. From extractable collision
resistance to succinct non-interactive arguments of knowledge, and back again. In
S. Goldwasser, editor, ITCS 2012, pages 326–349. ACM, Jan. 2012.

16. N. Bitansky, S. Garg, H. Lin, R. Pass, and S. Telang. Succinct randomized en-
codings and their applications. In R. A. Servedio and R. Rubinfeld, editors, 47th
ACM STOC, pages 439–448. ACM Press, June 2015.

17. N. Bitansky and O. Paneth. On the impossibility of approximate obfuscation
and applications to resettable cryptography. In D. Boneh, T. Roughgarden, and
J. Feigenbaum, editors, 45th ACM STOC, pages 241–250. ACM Press, June 2013.

18. N. Bitansky, O. Paneth, and D. Wichs. Perfect structure on the edge of chaos -
trapdoor permutations from indistinguishability obfuscation. In E. Kushilevitz and
T. Malkin, editors, TCC 2016-A, Part I, volume 9562 of LNCS, pages 474–502.
Springer, Heidelberg, Jan. 2016.

19. D. Boneh and B. Waters. Constrained pseudorandom functions and their applica-
tions. In K. Sako and P. Sarkar, editors, ASIACRYPT 2013, Part II, volume 8270
of LNCS, pages 280–300. Springer, Heidelberg, Dec. 2013.

20. E. Boyle, K.-M. Chung, and R. Pass. On extractability obfuscation. In Y. Lindell,
editor, TCC 2014, volume 8349 of LNCS, pages 52–73. Springer, Heidelberg, Feb.
2014.

21. E. Boyle, S. Goldwasser, and I. Ivan. Functional signatures and pseudorandom
functions. In H. Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages 501–
519. Springer, Heidelberg, Mar. 2014.

22. C. Brzuska and A. Mittelbach. Using indistinguishability obfuscation via UCEs.
In P. Sarkar and T. Iwata, editors, ASIACRYPT 2014, Part II, volume 8874 of
LNCS, pages 122–141. Springer, Heidelberg, Dec. 2014.

23. R. Canetti, J. Holmgren, A. Jain, and V. Vaikuntanathan. Succinct garbling and
indistinguishability obfuscation for RAM programs. In R. A. Servedio and R. Ru-
binfeld, editors, 47th ACM STOC, pages 429–437. ACM Press, June 2015.

24. R. Canetti, H. Lin, S. Tessaro, and V. Vaikuntanathan. Obfuscation of probabilistic
circuits and applications. In Y. Dodis and J. B. Nielsen, editors, TCC 2015, Part
II, volume 9015 of LNCS, pages 468–497. Springer, Heidelberg, Mar. 2015.

25. N. Chandran, S. Raghuraman, and D. Vinayagamurthy. Constrained pseudoran-
dom functions: Verifiable and delegatable. Cryptology ePrint Archive, Report
2014/522, 2014. http://eprint.iacr.org/2014/522.

26. G. Fuchsbauer. Constrained verifiable random functions. In M. Abdalla and R. D.
Prisco, editors, SCN 14, volume 8642 of LNCS, pages 95–114. Springer, Heidelberg,
Sept. 2014.

27. S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. In 54th
FOCS, pages 40–49. IEEE Computer Society Press, Oct. 2013.

28. S. Garg, C. Gentry, S. Halevi, and D. Wichs. On the implausibility of differing-
inputs obfuscation and extractable witness encryption with auxiliary input. In
J. A. Garay and R. Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of
LNCS, pages 518–535. Springer, Heidelberg, Aug. 2014.

29. C. Gentry, S. Halevi, M. Raykova, and D. Wichs. Outsourcing private RAM com-
putation. In 55th FOCS, pages 404–413. IEEE Computer Society Press, Oct. 2014.

30. C. Gentry, A. B. Lewko, A. Sahai, and B. Waters. Indistinguishability obfuscation
from the multilinear subgroup elimination assumption. In V. Guruswami, editor,
56th FOCS, pages 151–170. IEEE Computer Society Press, Oct. 2015.

30 Bellare, Stepanovs, Waters

31. C. Gentry, A. B. Lewko, and B. Waters. Witness encryption from instance inde-
pendent assumptions. In J. A. Garay and R. Gennaro, editors, CRYPTO 2014,
Part I, volume 8616 of LNCS, pages 426–443. Springer, Heidelberg, Aug. 2014.

32. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions.
Journal of the ACM, 33(4):792–807, Oct. 1986.

33. S. Goldwasser and Y. T. Kalai. On the impossibility of obfuscation with auxiliary
input. In 46th FOCS, pages 553–562. IEEE Computer Society Press, Oct. 2005.

34. S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281–
308, Apr. 1988.

35. S. Gorbunov, V. Vaikuntanathan, and H. Wee. Attribute-based encryption for
circuits. In D. Boneh, T. Roughgarden, and J. Feigenbaum, editors, 45th ACM
STOC, pages 545–554. ACM Press, June 2013.

36. S. Hada. Zero-knowledge and code obfuscation. In T. Okamoto, editor, ASI-
ACRYPT 2000, volume 1976 of LNCS, pages 443–457. Springer, Heidelberg, Dec.
2000.

37. I. Haitner, T. Holenstein, O. Reingold, S. P. Vadhan, and H. Wee. Universal
one-way hash functions via inaccessible entropy. In H. Gilbert, editor, EURO-
CRYPT 2010, volume 6110 of LNCS, pages 616–637. Springer, Heidelberg, May
2010.

38. Y. Ishai, O. Pandey, and A. Sahai. Public-coin differing-inputs obfuscation and its
applications. In Y. Dodis and J. B. Nielsen, editors, TCC 2015, Part II, volume
9015 of LNCS, pages 668–697. Springer, Heidelberg, Mar. 2015.

39. J. Katz and C.-Y. Koo. On constructing universal one-way hash functions from
arbitrary one-way functions. Cryptology ePrint Archive, Report 2005/328, 2005.
http://eprint.iacr.org/2005/328.

40. A. Kiayias, S. Papadopoulos, N. Triandopoulos, and T. Zacharias. Delegatable
pseudorandom functions and applications. In A.-R. Sadeghi, V. D. Gligor, and
M. Yung, editors, ACM CCS 13, pages 669–684. ACM Press, Nov. 2013.

41. V. Koppula, A. B. Lewko, and B. Waters. Indistinguishability obfuscation for
turing machines with unbounded memory. In R. A. Servedio and R. Rubinfeld,
editors, 47th ACM STOC, pages 419–428. ACM Press, June 2015.

42. M. Naor and M. Yung. Universal one-way hash functions and their cryptographic
applications. In 21st ACM STOC, pages 33–43. ACM Press, May 1989.

43. R. Pass, K. Seth, and S. Telang. Indistinguishability obfuscation from semantically-
secure multilinear encodings. In J. A. Garay and R. Gennaro, editors,
CRYPTO 2014, Part I, volume 8616 of LNCS, pages 500–517. Springer, Heidel-
berg, Aug. 2014.

44. J. Rompel. One-way functions are necessary and sufficient for secure signatures.
In 22nd ACM STOC, pages 387–394. ACM Press, May 1990.

45. A. Sahai and B. Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In D. B. Shmoys, editor, 46th ACM STOC, pages 475–484.
ACM Press, May / June 2014.

46. V. Shoup. A composition theorem for universal one-way hash functions. In B. Pre-
neel, editor, EUROCRYPT 2000, volume 1807 of LNCS, pages 445–452. Springer,
Heidelberg, May 2000.

47. B. Waters. A punctured programming approach to adaptively secure functional
encryption. In R. Gennaro and M. J. B. Robshaw, editors, CRYPTO 2015, Part
II, volume 9216 of LNCS, pages 678–697. Springer, Heidelberg, Aug. 2015.

