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Abstract. We construct a general-purpose multi-input functional en-
cryption scheme in the private-key setting. Namely, we construct a sche-
me where a functional key corresponding to a function f enables a user
holding encryptions of x1, . . . , xt to compute f(x1, . . . , xt) but noth-
ing else. This is achieved starting from any general-purpose private-key
single-input scheme (without any additional assumptions), and is proven
to be adaptively secure for any constant number of inputs t. Moreover,
it can be extended to a super-constant number of inputs assuming that
the underlying single-input scheme is sub-exponentially secure.

Instantiating our construction with existing single-input schemes, we ob-
tain multi-input schemes that are based on a variety of assumptions (such
as indistinguishability obfuscation, multilinear maps, learning with er-
rors, and even one-way functions), offering various trade-offs between
security and efficiency.

Previous and concurrent constructions of multi-input functional encryp-
tion schemes either rely on stronger assumptions and provided weaker
security guarantees (Goldwasser et al. [EUROCRYPT ’14], and Ananth
and Jain [CRYPTO ’15]), or relied on multilinear maps and could be
proven secure only in an idealized generic model (Boneh et al. [EURO-
CRYPT ’15]). In comparison, we present a general transformation that
simultaneously relies on weaker assumptions and guarantees stronger se-
curity.
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1 Introduction

The emerging vision of functional encryption [14,31, 32] extends the traditional
“all-or-nothing” view of encryption schemes. Specifically, functional encryption
schemes offer additional flexibility by supporting restricted decryption keys.
These keys allow users to learn specific functions of the encrypted data, without
learning any additional information. Building upon the early examples of func-
tional encryption schemes for restricted function families (such as identity-based
encryption [11, 20, 34]), extensive research is currently devoted to the construc-
tion of functional encryption schemes offering a variety of expressive families of
functions (see, for example, [2, 4, 5, 9, 10,14,16,19,21,22,25,26,30–32,36]).

Until very recently, research on functional encryption has focused on the case
of single-input functions. In a single-input functional encryption scheme, a func-
tional key skf corresponding to a function f enables a user holding an encryption
of a value x to compute f(x), while not revealing any additional information on
x. In many scenarios, however, dealing only with single-input functions is insuf-
ficient, and a more general framework allowing multi-input functions is required.

Goldwasser et al. [24] recently introduced the notion of a multi-input func-
tional encryption scheme. In such a scheme, a functional key corresponding to
a t-input function f enables a user holding encryptions of x1, . . . , xt to com-
pute f(x1, . . . , xt) without learning any additional information on the xi’s. The
work of Goldwasser et al. and their new notion are very well-motivated by a
wide range of applications based on mining aggregate information from sev-
eral different data sources. These include, for example, running SQL queries on
encrypted databases, computing over encrypted data streams, non-interactive
differentially-private data release, and order-revealing encryption (all of which
are relevant in both the public-key setting and the private-key one [12]).

Goldwasser et al. presented a rigorous framework for capturing the security
of multi-input schemes in the public-key setting and in the private-key one.
In addition, relying on indistinguishability obfuscation and one-way functions
[8, 21, 29], they constructed the first multi-input functional encryption schemes.
In terms of functionality, their schemes are extremely expressive, supporting all
multi-input functions that are computable by bounded-size circuits. In terms
of security, however, their private-key scheme satisfies a weak selective notion,
which does not allow the adversary to access an encryption oracle (which is
quite crippling in the private-key setting), and requires an a-priori bound on the
number of challenge ciphertexts (the ciphertext length in their scheme depends
on the number of challenge ciphertexts).

Following the work of Goldwasser et al. [24], a private-key multi-input func-
tional encryption scheme that satisfies a more standard notion of security (one
that allows access to an encryption oracle) was constructed by Boneh et al. [12].
Their scheme is based on multilinear maps, and is proven secure in the ideal-
ized generic multilinear map model. In addition, in an independent and con-
current work, Ananth and Jain [5] constructed a selectively-secure multi-input
private-key functional encryption scheme based on any general-purpose public-
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key functional encryption scheme (as an intermediate step in constructing an
indistinguishability obfuscator).

Thus, constructions of multi-input functional encryption schemes in the priv-
ate-key setting have so far either relied on stronger assumptions and provided
weaker security guarantees [5,24]3, or could be proven secure only in an idealized
generic model [12].

1.1 Our Contributions

In this paper we present a construction of private-key multi-input functional en-
cryption from any general-purpose private-key single-input functional encryption
scheme (without introducing any additional assumptions). The resulting scheme
supports any set of efficiently-computable functions, and provides adaptive se-
curity in the standard model for any constant number of inputs. We prove the
following theorem:

Theorem 1.1. Assuming the existence of any private-key single-input selective-
ly-secure functional encryption scheme, for any constant t ≥ 2 there exists a
private-key t-input adaptively-secure functional encryption scheme.

Moreover, assuming that the underlying private-key single-input scheme is
sub-exponentially secure, our resulting scheme provides adaptive security for a
super-constant number of inputs (we refer the reader to Section 1.3 for more
details). Following [1,19], our scheme provides not only message privacy, but in
fact a unified notion that captures both message privacy and function privacy
(this notion is known as full security – see Section 2.3 for more details).

Instantiations. Instantiating our construction with existing private-key single-
input schemes, we obtain new multi-input schemes based on a variety of assump-
tions in the standard model. Specifically, we obtain schemes that are secure for
an unbounded number of encryption and key-generation queries based on indis-
tinguishability obfuscation or multilinear maps. In addition, if the number of
encryption and key-generation queries is a-priori bounded, we can rely on much
milder assumptions such as learning with errors [25] or even the existence of
one-way functions or low-depth pseudorandom generators [26]. See Section 2.2
for further discussion.

Comparison with previous and concurrent work. Compared to the previ-
ous work of Goldwasser et al. [24] and Boneh et al. [12], our work yields stronger
security guarantees and at the same time relies solely on a necessary assumption.
Specifically, whereas Goldwasser et al. and Boneh et al. rely on indistinguisha-
bility obfuscation and multilinear maps, respectively, we rely on the existence
of any general-purpose private-key single-input scheme, which is obviously nec-
essary. Moreover, whereas the scheme of Goldwasser et al. provides a selective

3 In terms of assumptions, the recent work of Asharov and Segev [7] shows that in-
distinguishability obfuscation and public-key functional encryption are significantly
stronger primitives than private-key functional encryption. We refer the reader to
Section 1.1 for a more elaborate discussion.
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notion of security which, in addition, does not allow adversaries to access an
encryption oracle and requires an a-priori bound on the number of challenge
ciphertexts, and the scheme of Boneh et al. is proved secure only in an idealized
generic model that does not properly capture real-world adversaries, our scheme
provides adaptive security in the standard model for any number of challenge
ciphertexts.

Compared to the concurrent work of Ananth and Jain [5], our work again
yields stronger security guarantees while relying on a weaker assumption. Specifi-
cally, whereas the construction of Ananth and Jain relies on public-key functional
encryption and guarantees selective security (where, in addition, the adversary is
not allow to access an encryption oracle), our construction relies on private-key
functional encryption and guarantees full security. From the technical point of
view, the scheme of Ananth and Jain is essentially “Step 1” of our approach (see
Section 1.3), which was sufficient (together with additional techniques and as-
sumptions) for constructing their obfuscator. The vast majority of our efforts in
this paper are devoted for providing better security while simultaneously relying
on weaker assumptions, as mentioned above.

In terms of assumptions, the recent work of Asharov and Segev [7] shows that
private-key functional encryption is much weaker than any public-key primi-
tive (in particular, it is much weaker than public-key functional encryption).
Specifically, they show that using the currently-known techniques it is impos-
sible to use a private-key functional encryption scheme for constructing even a
key-agreement protocol (and therefore, in particular, it is impossible to construct
a public-key encryption scheme or a public-key functional encryption scheme).

Finally, we note that in addition to introducing the notion of a multi-input
functional encryption scheme, Goldwasser et al. [24] introduced the more general
notion of a multi-client multi-input functional encryption scheme. In such a
scheme, each input coordinate is associated with its own encryption key, and
security should be satisfied for all coordinates whose encryption keys are not
known to the adversary. In this paper we do not consider this more general
notion, and an interesting open problem is to extend our approach to the multi-
client setting.

1.2 Additional Related Work

Extensive research has been devoted to the study of functional encryption, and
for concreteness we focus here only on those previous efforts that are directly
relevant to the techniques used in this paper.

Function-private functional encryption. The security guarantees of func-
tional encryption typically focus on message privacy. Intuitively, message privacy
asks that a functional key skf does not help in distinguishing encryptions of two
messages, m0 and m1, as long as f(m0) = f(m1). In various cases, however, it is
also useful to consider function privacy [1,13,19,35], asking that a functional key
skf does not reveal any unnecessary information on the function f . Specifically,
in the private-key setting, function privacy asks that an encryption of a message
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m does not help in distinguishing two functional keys, skf0 and skf1 , as long as
f0(m) = f1(m). Brakerski and Segev [19] recently showed that any private-key
functional encryption scheme can be generically transformed into one that satis-
fies a unified notion of security, referred to as full security, which considers both
message privacy and function privacy.

Other than being a useful notion for various applications, function privacy
was found useful as a building block in the construction of several functional
encryption schemes [4, 30]. One of the key insights that we utilize in this work
is that function-private functional encryption allows to successfully apply proof
techniques “borrowed” from the indistinguishability obfuscation literature (in-
cluding, for example, a variant of the punctured programming approach of Sahai
and Waters [33]).

Key-encapsulation techniques in functional encryption. Key encapsula-
tion (also known as “hybrid encryption”) is an extremely useful approach in the
design of encryption schemes, both for improved efficiency and for improved se-
curity. Specifically, key encapsulation typically means that instead of encrypting
a message m under a fixed key sk, one can instead sample a random key k, en-
crypt m under k and then encrypt k under sk. Recently, Ananth et al. [4] showed
that key encapsulation is useful also in the setting of functional encryption. They
showed that it can be used to transform any selectively-secure functional encryp-
tion scheme into an adaptively-secure one (in both the public-key setting and the
private-key one). Their construction and proof technique hint that key encap-
sulation techniques may in fact be a general tool that is useful in the design of
functional encryption schemes. Our constructions incorporate key encapsulation
techniques, and exhibit additional strengths of this technique in the context of
functional encryption schemes. Specifically, as discussed in Section 1.3, we use
key encapsulation techniques to create “sufficient independence” between com-
binations of different ciphertexts, a crucial ingredient in our constructions (see
Section 1.3 for a detailed comparison between our technique and that of Ananth
et al.).

Multi-input functional encryption schemes and obfuscation. An im-
portant aspect in studying multi-input functional encryption schemes is its tight
connection to indistinguishability obfuscation. Goldwasser et al. [24] showed that
the following three primitives are equivalent: (1) selectively-secure private-key
multi-input functional encryption scheme with polynomially many inputs, (2)
selectively-secure public-key two-input functional encryption scheme, and (3) in-
distinguishability obfuscation. The works of Ananth and Jain [5] and Ananth,
Jain and Sahai [6] show how to construct a selectively-secure private-key multi-
input functional encryption scheme with polynomially many inputs (and thereby
an indistinguishability obfuscator) from any sub-exponentially-secure public-key
single-input functional encryption scheme.4

4 Bitansky and Vaikuntanathan [10] achieved the same result (an indistinguishability
obfuscator) as [5] using a similar construction (at least conceptually) while relying
essentially on the same assumptions. However, they construct an indistinguishability
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1.3 Overview of Our Constructions and Techniques

In this section we provide a high-level overview of our constructions. For con-
creteness, we focus here mainly on two-input schemes, and then briefly discuss
the generalization of our approach to more than two inputs (we refer the reader
to Appendix A for the generalization to t-input schemes for t ≥ 2). In what
follows, we start by briefly describing the functionality and security properties
of two-input schemes in the private-key setting. Then, we explain the main ideas
underlying our constructions. We emphasize that the forthcoming overview is
very high-level and ignores many technical details. For the full details we refer
to Sections 3 and 4.

Functionality and security. In a private-key two-input functional encryption
scheme, the master secret key msk of the scheme is used for encrypting any
messages x and y (separately) to the first and second coordinates, respectively,
and for generating functional keys for two-input functions. A functional key
skf corresponding to a function f enables to compute f(x, y) given Enc(x) and
Enc(y). Building upon the previous notions of security for private-key multi-
input functional encryption schemes [12,24], we consider a strengthened notion of
security that combines both message privacy and function privacy (as in [1,19] for
single-input schemes), to which we refer as full security.5 Specifically, we consider
adaptive adversaries that are given access to “left-or-right” key-generation and
encryption oracles. These oracles operate in one out of two modes corresponding
to a randomly-chosen bit b. The key-generation oracle receives as input pairs
of the form (f0, f1) and outputs a functional key for fb. The encryption oracle
receives as input pairs of the form (x0, x1) for the first coordinate, or (y0, y1) for
the second coordinate, and outputs an encryption of xb or yb. We require that
no efficient adversary can guess the bit b with probability noticeably higher than
1/2, as long as for each such three queries (f0, f1), (x0, x1) and (y0, y1) it holds
that f0(x0, y0) = f1(x1, y1).

Intuition: Input aggregation. Given a two-input function f(·, ·), one can
view f as a single-input function, f∗, that takes a tuple (x, y), which we denote
by x‖y to avoid confusion, and computes f∗(x‖y) = f(x, y). Using a single-
input scheme, we can generate a functional key for the function f∗. We thus
remain with the problem of aggregating the input. That is, we need to be able
to encrypt inputs x and y, such that given Enc(x) and Enc(y) it is possible to
compute Enc(x‖y). At a very high-level, this is achieved by having the encryption
of x be an “aggregator”: To encrypt x, we will generate a functional key for the
function AGGx(·), that on input y outputs an encryption of x‖y.6 There are many

obfuscator directly without going through the equivalence to multi-input functional
encryption schemes.

5 We consider a unified notion capturing both message privacy and function privacy
not only as a useful feature for various applications. In fact, the function privacy
of the resulting two-input scheme plays a crucial role when extending our results to
more than two inputs.

6 A somewhat related functionality was recently considered by Iovino and Ze-
browski [27] who introduced the notion of mergeable functional encryption, where
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technical difficulties in realizing this intuition, as we explain in the remainder of
this section.

Step 1: Functional keys as ciphertexts. Given any private-key single-input
functional encryption scheme, 1FE, the first step in our transformation is to use
both its ciphertexts and its functional keys as ciphertexts for a two-input scheme
2FE: An encryption of a message x to the first coordinate is a functional key skx
corresponding to a certain functionality that depends on x, and an encryption
of a message y to the second coordinate is simply an encryption of y. Intuitively,
the hope is that the function privacy of 1FE will hide x, and that the message
privacy of 1FE will hide y. More specifically, a first attempt towards realizing
this intuition is as follows:

1. The master secret key consists of two keys, mskin and mskout, for the single-
input scheme 1FE. The key mskin is used for encryption, and the key mskout
is used to decryption.

2. An encryption of a message x to the first coordinate is a functional key
skx,mskout that is generated using mskin and corresponds to the following func-
tionality: Given an input y, it outputs an encryption Encmskout(x||y) of x con-
catenated with y under mskout. An encryption of a message y to the second
coordinate is simply an encryption Encmskin(y) of y under mskin.

3. A functional key for a two-input function f is a functional key that is gener-
ated using mskout for the function f when viewed as a single-input function.

4. Given a functional key for a function f , and two encryptions skx,mskout and
Encmskin(y), we first apply skx,mskout on Encmskin(y) to obtain Encmskout(x||y),
and then apply the functional key for f on Encmskout(x||y).

It is straightforward to verify that the above scheme indeed provides the required
functionality of a two-input scheme. Proving its security, however, does not seem
to go through: When “attacking” the key mskout, we clearly cannot embed it in
the encryptions skx,mskout generated to the first coordinate. A typical approach
for dealing with such a difficulty (e.g., [4,19,30]) is to embed all possibly-needed
encryptions under mskout inside the ciphertexts of the two-input scheme (so
that the key mskout will not be explicitly needed). Note, however, that when an
adversary makes T encryption queries there may be roughly T 2 different pairs of
the form (x, y), and these T 2 pairs cannot be embedded into T ciphertexts (we
note that T = T (λ) may be any polynomial and it is not known in advance).

An additional approach is to use a public-key functional encryption scheme
for the role played by mskout (i.e., replacing skx,mskout with skx,pkout). Although
this solution allows to prove security, we view it as a “warm-up solution” as we
would like to avoid relying on a stronger primitive than necessary. Specifically,

one can publicly transform encryptions, Enc(x) and Enc(y), of two values into an
encryption Enc(x‖y) of their concatenation. They show how to construct such a
scheme for two inputs building on the specific construction of [21] and assuming
strong notions of obfuscation. In comparison, our approach applies to many inputs
(as discussed below), and is based on minimal assumptions.
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we would like to rely on private-key functional encryption and not on public-key
function encryption (as recently shown by Asharov and Segev [7], private-key
functional encryption is significantly weaker than any public-key primitive).

Step 2: Selective security via “one-sided” key encapsulation. Our ap-
proach for resolving the difficulty described uses key-encapsulation techniques
in functional encryption. Our main idea here is that when encrypting a mes-
sage x, we sample a fresh key msk? for the single-input scheme, and output two
components: Encmskout(msk?) and skx,msk? . Given an encryption Encmskin(y) of a
message y, the component skx,msk? enables to compute Encmsk?(x||y). In addi-
tion, a functional key for a function f is now generated using mskout for the
following functionality: Given an input msk?, it outputs a functional key for f
(viewed as a single-input function) using msk?. This enables to compute f(x, y)
given Encmsk?(x||y) and provides the required functionality.

This “one-sided” key encapsulation enables us to prove a selectively-secure
variant of our notion of security.7 In this variant we require adversaries to spec-
ify their encryption queries in advance, and they are then given adaptive access
to the left-or-right key-generation oracle. The main idea underlying the proof
of security is that our one-sided key encapsulation approach yields sufficient
independence and allows attacking the x’s one by one, by attacking their cor-
responding encapsulated keys. Focusing on one message x and its encapsulated
key msk∗, an adversary that make T encryption queries y1, . . . , yT to the second
coordinate induces only T pairs {(x, yi)}i∈[T ] (instead of T 2 pairs as above).
Moreover, given that the encryption queries are chosen in advance, we can em-
bed an encryption of x||yi under msk? inside the encryption of each yi. This
way the key msk? is not explicitly needed, and thus can be attacked (while not
affecting any of the other x’s).

As discussed in Section 1.2, key-encapsulation techniques have been intro-
duced into the setting of functional encryption by Ananth et al. [4]. Our approach
builds upon and significantly extends their initial observations, and enables us to
create “sufficient independence” between combinations of different ciphertexts,
a crucial ingredient in our constructions.

This enables us to construct a selectively-secure two-input scheme from any
selectively-secure single-input one (we refer the reader to Section 3 for the scheme
and its proof of security). Note, however, that this approach is limited to selective
adversaries: embedding an encryption of x||yi inside the encryption of yi requires
knowing x before the adversary queries for the encryption of yi.

Step 3: Adaptive security via “two-sided” key encapsulation. Next, we
present a general transformation from selective security to adaptive security (in
fact, to our stronger notion of full security). Specifically, we rely on two build-
ing blocks: (1) any private-key selectively-secure two-input scheme, and (2) any
private-key adaptively-secure single-input scheme (recall that in the single-input
setting, selective security implies adaptive security [4]). For this transformation

7 “One-sided” here refers to the fact that the encapsulated key msk? is generated only
from the side of the x’s.
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we introduce a new technique which we call “two-sided” key encapsulation, where
each pair of messages x and y has its own encapsulated key msk?. This, more
subtle approach, enables us to “attack” a specific pair of messages each time,
since each such pair uses a different encapsulated key: If x is known before y
then we embed x||y inside the encryption of y, and if x is known after y then we
embed x||y inside the encryption of x. This leaves the problem of how to realize
this idea of two-sided key encapsulation. Our two-sided key encapsulation works
as follows.

1. The master secret key consists of two keys: A master secret key mskout for
a selectively-secure two-input scheme, and a master secret key mskin for an
adaptively-secure single-input scheme.

2. An encryption of a message y consists of two components: Encmskout(t) and
Encmskin(y, t), where t is a fresh random tag.

3. An encryption of a message x consists of two components: Encmskout(s) and
skx,s, where s is a fresh random tag. The functional key skx,s is generated
using mskin and corresponds to the following functionality: Given an input
(y, t), derive msk? = PRF(s, t),8 and output Encmsk?(x||y).

4. A functional key for a function f is generated using mskout for the following
functionality: Given two inputs, s and t, derive msk? = PRF(s, t), and output
a functional key for f (viewed as a single-input function) using msk?.

The crucial observation is that the master secret key mskout of the two-input
selectively-secure scheme is used for encrypting random tags, whereas the plain-
text itself is always encrypted using the master secret key mskin of the adaptively-
secure single-input scheme. This enables us to prove the full security of the re-
sulting scheme (we refer the reader to Section 4 for the scheme and its proof of
security).

Comparison to the selective-to-adaptive transformation of Ananth et
al. [4]. Our two-sided key encapsulation technique shows that the usability
of key-encapsulation in the context of functional encryption, demonstrated by
Ananth et al. [4], can be significantly extended. Whereas their generic transfor-
mation from selective security to adaptive security for single-input scheme uses
a rather direct form of key encapsulation, our approach requires a significantly
more structured one in which the encapsulated key is not determined at the time
of encryption, but rather generated “freshly” (in a pseudorandom manner) for
any two messages x and y as above.

Specifically, Ananth et al. encrypted a message m under a selectively-secure
key msk, by sampling a fresh master secret key msk? for a “one-time” adaptively-
secure scheme, encrypted m under msk? and then encrypted msk? under msk.
This direct encapsulation does not seem to extend to the two-input setting, as
applying it independently in each coordinate seems to hurt both the security and
the functionality of the scheme. By introducing our two-sided key-encapsulation

8 More accurately, the key msk? is computed by applying the setup algorithm of 1FE
with randomness PRF(s, t).
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idea we are able to balance between the need for using key encapsulation in each
coordinate and the need for generating sufficient independence between different
pairs of messages.

Step 4: Generalization to t-input schemes. The generalization of our result
to t-input schemes, for t ≥ 2, consists of two components. The first component is
a construction that uses any (t−1)-input scheme for building a selectively-secure
t-input scheme, for any t ≥ 2. The second component is a construction that uses
any selectively-secure t-input scheme and a fully-secure (t− 1)-input scheme for
building a fully-secure t-input scheme. Thus, for obtaining a fully-secure t-input
scheme from any single-input scheme, one can iteratively apply both components
alternately t times. This is illustrated in Figure 1 for the case t = 3 (and the
same illustration generalizes to any t > 3 in a straightforward manner).

This iterative application of our components places a restriction on the num-
ber of supported inputs. In general, each such application may result in a poly-
nomial blow-up in the parameters of the scheme. Therefore, t − 1 applications

may result in a blow-up of λ2
O(t)

which must be kept polynomial. Without any
additional assumptions, this implies that t can be any fixed constant. Assuming,
in addition, that the underlying single-input scheme is sub-exponentially secure,
the number of inputs can be made super-constant. Specifically, for any constant
0 < ε < 1, when instantiating the underlying single-input scheme with secu-
rity parameter λ̃ = 2(log λ)

ε

, the first component can be iteratively applied to
reach t = Θ(log log λ) inputs. Obtaining a generic transformation that supports
a super-constant number of inputs without assuming sub-exponential security
(or an alternative form of “succinctness”) is left as an open problem.

Selectively-
secure 1-FE

Adaptively-
secure 1-FE

Selectively-
secure 2-FE

Adaptively-
secure 2-FE

Selectively-
secure 3-FE

Adaptively-
secure 3-FE

[4]
Thm 3.1

Thm 4.1 Thm A.6

Thm A.5

Fig. 1. An illustration of the required iterative applications of our two transformations
for obtaining an adaptively-secure three-input scheme based on any selectively-secure
single-input scheme.
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1.4 Paper Organization

The remainder of this paper is organized as follows. In Section 2 we provide
an overview of the notation, definitions, and tools underlying our constructions.
In Section 3 we present a construction of a selectively-secure two-input func-
tional encryption scheme from any single-input scheme. In Section 4 we present
a construction of a fully-secure two-input functional encryption scheme from
any selectively-secure one. In Appendix A we generalize our approach to t-input
schemes for t ≥ 2. In the full version [18] we provide the formal proofs of our
theorems from Sections 3 and 4, and from Appendix A.

2 Preliminaries

In this section we present the notation and basic definitions that are used in
this work. For a distribution X we denote by x ← X the process of sam-
pling a value x from the distribution X. Similarly, for a set X we denote by
x← X the process of sampling a value x from the uniform distribution over X .
For a randomized function f and an input x ∈ X , we denote by y ← f(x)
the process of sampling a value y from the distribution f(x). For an inte-
ger n ∈ N we denote by [n] the set {1, . . . , n}. A function neg : N → R
is negligible if for every constant c > 0 there exists an integer Nc such that
neg(λ) < λ−c for all λ > Nc. Two sequences of random variables X = {Xλ}λ∈N
and Y = {Yλ}λ∈N are computationally indistinguishable if for any probabilistic
polynomial-time algorithm A there exists a negligible function neg(·) such that∣∣Pr[A(1λ, Xλ) = 1]− Pr[A(1λ, Yλ) = 1]

∣∣ ≤ neg(λ) for all sufficiently large λ ∈ N.
Throughout the paper, we denote by λ the security parameter.

2.1 Pseudorandom Functions

Let {Kλ,Xλ,Yλ}λ∈N be a sequence of sets and let PRF = (PRF.Gen,PRF.Eval)
be a function family with the following syntax:

– PRF.Gen is a probabilistic polynomial-time algorithm that takes as input the
unary representation of the security parameter λ, and outputs a key K ∈ Kλ.

– PRF.Eval is a deterministic polynomial-time algorithm that takes as input a
key K ∈ Kλ and a value x ∈ Xλ, and outputs a value y ∈ Yλ.

The sets Kλ, Xλ, and Yλ are referred to as the key space, domain, and range
of the function family, respectively. For easy of notation we may denote by
PRF.EvalK(·) or PRFK(·) the function PRF.Eval(K, ·) for K ∈ Kλ. The following
is the standard definition of a pseudorandom function family.

Definition 2.1 (Pseudorandomness). A function family PRF = (PRF.Gen,
PRF.Eval) is pseudorandom if for every probabilistic polynomial-time algorithm
A there exits a negligible function neg(·) such that

AdvPRF,A(λ)
def
=

∣∣∣∣ Pr
K←PRF.Gen(1λ)

[
APRF.EvalK(·)(1λ) = 1

]
− Pr
f←Fλ

[
Af(·)(1λ) = 1

]∣∣∣∣
≤ neg(λ),



12 Zvika Brakerski, Ilan Komargodski, and Gil Segev

for all sufficiently large λ ∈ N, where Fλ is the set of all functions that map Xλ
into Yλ.

In addition to the standard notion of a pseudorandom function family, we rely
on the seemingly stronger (yet existentially equivalent) notion of a puncturable
pseudorandom function family [15, 17, 28, 33]. In terms of syntax, this notion
asks for an additional probabilistic polynomial-time algorithm, PRF.Punc, that
takes as input a key K ∈ Kλ and a set S ⊆ Xλ and outputs a “punctured” key
KS . The properties required by such a puncturing algorithm are captured by
the following definition.

Definition 2.2 (Puncturable PRF). A pseudorandom function family PRF
= (PRF.Gen,PRF.Eval,PRF.Punc) is puncturable if the following properties are
satisfied:

1. Functionality: For all sufficiently large λ ∈ N, for every set S ⊆ Xλ, and
for every x ∈ Xλ \ S it holds that

Pr
K←PRF.Gen(1λ);

KS←PRF.Punc(K,S)

[PRF.EvalK(x) = PRF.EvalKS (x)] = 1.

2. Pseudorandomness at punctured points: Let A = (A1,A2) be any prob-
abilistic polynomial-time algorithm such that A1(1λ) outputs a set S ⊆ Xλ, a
value x ∈ S, and state information state. Then, for any such A there exists
a negligible function neg(·) such that

AdvPRF,A(λ)
def
= |Pr [A2(KS ,PRF.EvalK(x), state) = 1]

−Pr [A2(KS , y, state) = 1]|
≤ neg(λ)

for all sufficiently large λ ∈ N, where (S, x, state)← A1(1λ),
K ← PRF.Gen(1λ), KS = PRF.Punc(K,S), and y ← Yλ.

For our constructions we rely on pseudorandom functions that need to be
punctured only at one point (i.e., in both parts of Definition 2.2 it holds that
S = {x} for some x ∈ Xλ). As observed by [15,17,28,33] the GGM construction
[23] of PRFs from any one-way function can be easily altered to yield such a
puncturable pseudorandom function family.

2.2 Private-Key Single-Input Functional Encryption

A private-key single-input functional encryption scheme over a message space
X = {Xλ}λ∈N and a function space F = {Fλ}λ∈N is a quadruple (FE.S,FE.KG,
FE.E,FE.D) of probabilistic polynomial-time algorithms. The setup algorithm
FE.S takes as input the unary representation 1λ of the security parameter λ ∈ N
and outputs a master-secret key msk. The key-generation algorithm FE.KG takes
as input a master-secret key msk and a single-input function f ∈ Fλ, and outputs
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a functional key skf . The encryption algorithm FE.E takes as input a master-
secret key msk and a message x ∈ Xλ, and outputs a ciphertext ct. In terms
of correctness we require that for all sufficiently large λ ∈ N, for every function
f ∈ Fλ and message x ∈ Xλ it holds that FE.D(FE.KG(msk, f),FE.E(msk, x)) =
f(x) with all but a negligible probability over the internal randomness of the
algorithms FE.S, FE.KG, and FE.E.

In terms of security, we rely on the private-key variant of the existing indist-
inguishability-based notions for message privacy and function privacy. In fact,
following [1,19], our notion of security combines both message privacy and func-
tion privacy. When formalizing this notion it would be convenient to use the
following standard notion of a left-or-right oracle.

Definition 2.3 (Left-or-right oracle). Let O(·, ·) be a probabilistic two-input
functionality. For each b ∈ {0, 1} we denote by Ob the probabilistic three-input

functionality Ob(k, z0, z1)
def
= O(k, zb).

Intuitively, a private-key functional-encryption scheme is secure if encryp-
tions of messages x1, . . . , xT together with functional keys corresponding to func-
tions f1, . . . , fT reveal essentially no information other than the values
{fi(xj)}i,j∈[T ]. We consider an adaptive notion of security, to which we refer to
as full security, in which adversaries are given adaptive access to left-or-right
encryption and key-generation oracles.

Definition 2.4 (Full security [1, 19]). A private-key single-input functional
encryption scheme FE = (FE.S,FE.KG,FE.E,FE.D) over a message space X =
{Xλ}λ∈N and a function space F = {Fλ}λ∈N is fully secure if for any probabilistic
polynomial-time adversary A there exists a negligible function neg(·) such that

Advfull1FEFE,A,F (λ)
def
=
∣∣∣Pr
[
AKG0(msk,·,·),Enc0(msk,·,·)(1λ) = 1

]
−Pr

[
AKG1(msk,·,·),Enc1(msk,·,·)(1λ) = 1

]∣∣∣
≤ neg(λ)

(f0, f1) ∈ Fλ×Fλ and (x0, x1) ∈ Xλ×Xλ with which A queries the left-or-right
key-generation and encryption oracles, respectively, it holds that f0(x0) = f1(x1).
Moreover, the probability is taken over the choice of msk ← FE.S(1λ) and the
internal randomness of A.

Known constructions. Private-key single-input functional encryption schemes
that satisfy the above notion of full security and support circuits of any a-priori
bounded polynomial size are known to exist based on a variety of assumptions.

Ananth et al. [4] gave a generic transformation from selective-message (or
selective-function) security to full security. Moreover, Brakerski and Segev [19]
showed how to transform any message-private functional encryption scheme into
a functional encryption scheme which is fully secure, and the resulting scheme in-
herits the security guarantees of the original one. Therefore, based on [4,19], given
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any selective-message (or selective-function) message-private functional encryp-
tion scheme we can generically obtain a fully-secure scheme. This implies that
schemes that are fully secure for any number of encryption and key-generation
queries can be based on indistinguishability obfuscation [21, 36], differing-input
obfuscation [3, 16], and multilinear maps [22]. In addition, schemes that are
fully secure for a bounded number T = T (λ) of encryption and key-generation
queries can be based on the Learning with Errors (LWE) assumption (where the
length of ciphertexts grows with T and with a bound on the depth of allowed
functions) [25], based on pseudorandom generators computable by small-depth
circuits (where the length of ciphertexts grows with T and with an upper bound
on the circuit size of the functions) [26], and even based on one-way functions
(for T = 1) [26].

2.3 Private-Key Two-Input Functional Encryption

In this section we define the functionality and security of private-key two-input
functional encryption scheme (we refer the reader to Appendix A for the general-
ization to t-input schemes for any t ≥ 2). Let X = {Xλ}λ∈N, Y = {Yλ}λ∈N, and
Z = {Zλ}λ∈N be ensembles of finite sets, and let F = {Fλ}λ∈N be an ensemble
of finite two-ary function families. For each λ ∈ N, each function f ∈ Fλ takes
as input two strings, x ∈ Xλ and y ∈ Yλ, and outputs a value f(x, y) ∈ Zλ.
A private-key two-input functional encryption scheme Π for F consists of four
probabilistic polynomial time algorithm Setup, Enc, KG and Dec, described as
follows.

– Setup(1λ) – The setup algorithm takes as input the security parameter λ,
and outputs a master secret key msk.

– Enc(msk,m, i) – The encryption algorithm takes as input a master secret
key msk, message input m, and an index i ∈ [2], where m ∈ Xλ if i = 1 and
m ∈ Yλ if i = 2. It outputs a ciphertext cti.

– KG(msk, f) – The key-generation algorithm takes as input a master secret
key msk and a function f ∈ Fλ, and outputs a functional key skf .

– Dec(skf , ct1, ct2) – The (deterministic) decryption algorithm takes as input
a functional key skf and two ciphertexts ct1 and ct2, and outputs a string
z ∈ Zλ ∪ {⊥}.

Definition 2.5 (Correctness). A private-key two-input functional encryption
scheme Π = (Setup,Enc,KG,Dec) for F is correct if there exists a negligible
function neg(·) such that for every λ ∈ N, for every f ∈ Fλ, and for every
(x, y) ∈ Xλ × Yλ, it holds that

Pr
[
Dec(skf ,Enc(msk, x, 1),Enc(msk, y, 2)) = f(x, y)

]
≥ 1− neg(λ),

where msk← Setup(1λ), skf ← KG(msk, f), and the probability is taken over the
internal randomness of Setup,Enc and KG.
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Intuitively, we say that a two-input scheme is secure if for any two pairs of
messages (x0, x1) and (y0, y1) that are encrypted with respect to indices i = 1
and i = 2, respectively, and for every pair of functions (f0, f1), the triplets
(skf0 ,Enc(msk, x0, 1),Enc(msk, y0, 2)) and (skf1 ,Enc(msk, x1, 1),Enc(msk, y1, 2))
are computationally indistinguishable as long as f0(x0, y0) = f1(x1, y1) (note
that this considers both message privacy and function privacy). The formal no-
tions of security build upon this intuition and capture the fact that an adversary
may in fact hold many functional keys and ciphertexts, and may combine them in
an arbitrary manner. As in the case of single-input schemes, we formalize our no-
tions of security using left-or-right key-generation and encryption oracles. Specif-

ically, for each b ∈ {0, 1} and i ∈ {1, 2} we let KGb(msk, f0, f1)
def
= KG(msk, fb)

and Encb(msk, (m0,m1), i)
def
= Enc(msk,mb, i). Before formalizing our notions of

security we define the notion of a valid two-input adversary.

Definition 2.6 (Valid two-input adversary). A probabilistic polynomial-
time algorithm A is a valid two-input adversary if for all private-key two-input
functional encryption schemes Π = (Setup,KG,Enc,Dec) over a message space
X ×Y = {Xλ}λ∈N × {Yλ}λ∈N and a function space F = {Fλ}λ∈N, for all λ ∈ N
and b ∈ {0, 1}, and for all (f0, f1) ∈ Fλ, ((x0, x1), 1) ∈ Xλ × Xλ × {1} and
((y0, y1), 1) ∈ Yλ×Yλ×{2} with which A queries the left-or-right key-generation
and encryption oracles, respectively, it holds that f0(x0, y0) = f1(x1, y1).

We consider two notions of security for two-input schemes, both of which
combine message privacy and function privacy. The first notion, full security,
considers adversaries that have adaptive access to both the encryption oracle and
the key-generation oracle. The second notion, selective-message security, consid-
ers adversaries that must specify all of their encryption queries in advance, but
can then have adaptive access to the key-generation oracle. Full security clearly
implies selective-message security, and our work shows that the two notions are
in fact equivalent for multi-input schemes.

Definition 2.7 (Full security). A private-key two-input functional encryption
scheme Π = (Setup,KG,Enc,Dec) over a message space X × Y = {Xλ}λ∈N ×
{Yλ}λ∈N and a function space F = {Fλ}λ∈N is fully secure if for any valid
two-input adversary A there exists a negligible function neg(·) such that

Advfull2FEΠ,F,A
def
=

∣∣∣∣Pr
[
Expfull2FEΠ,F,A(λ) = 1

]
− 1

2

∣∣∣∣ ≤ neg(λ),

for all sufficiently large λ ∈ N, where the random variable Expfull2FEΠ,F,A(λ) is defined
via the following experiment:

1. msk← Setup(1λ), b← {0, 1}.
2. b′ ← AKGb(msk,·,·),Encb(msk,(·,·),·) (1λ, ).
3. If b′ = b then output 1, and otherwise output 0.

Definition 2.8 (Selective-message security). A private-key two-input func-
tional encryption scheme Π = (Setup,KG,Enc,Dec) over a message space X ×
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Y = {Xλ}λ∈N×{Yλ}λ∈N and a function space F = {Fλ}λ∈N is selective-message
secure if for any valid two-input adversary A = (A1,A2) there exists a negligible
function neg(λ) such that

Advsel2FEΠ,F,A
def
=

∣∣∣∣Pr
[
Expsel2FEΠ,F,A(λ) = 1

]
− 1

2

∣∣∣∣ ≤ neg(λ),

for all sufficiently large λ ∈ N, where the random variable Expsel2FEΠ,F,A(λ) is defined
via the following experiment:

1. (~x, ~y, state)← A1

(
1λ
)
, where ~x = ((x01, x

1
1), . . . , (x0T , x

1
T )) and ~y = ((y01 , y

1
1),

. . . , (y0T , y
1
T )).

2. msk← Setup(1λ), b← {0, 1}.
3. ct1,i ← Enc(msk, xbi , 1) and ct2,i ← Enc(msk, ybi , 2) for i ∈ [T ].

4. b′ ← AKGb(msk,·,·)
2

(
1λ, ct1,1, . . . , ct1,T , ct2,1 . . . , ct2,T , state

)
.

5. If b′ = b then output 1, and otherwise output 0.

Our definitions of a two-input functional encryption scheme is inspired by
the definition of [12]. It is a natural generalization of the single-input case and
gives rise to an order-revealing encryption. Moreover, as a concrete motivation,
a t-input scheme according to the above definition is enough to construct indis-
tinguishability obfuscation for circuits with t input bits [24].9

Additional natural ways to define two-input functional encryptions schemes
exist. Specifically, Goldwasser et al. [24] considered two such definitions. The
first allows to encrypt a message m independently of an index i ∈ [2]. Thus,
given a key for a two-input function f and encryptions of two messages x and
of y, one can compute both f(x, y) and f(y, x). Hence, this definition requires a
stronger “validity requirement” (see Definition 2.6), which means it can support
less functionalities. A construction which satisfies our (indexed) definition can
be easily transformed into one which satisfies the above (non-indexed) definition
by encrypting each message with respect to both indices.

The second, referred to as “multi-client”, considers each index as a different
“client” and gives each of them his own secret key. In this setting, their security
game is quite different, and in particular, an adversary is allowed to obtain the
secret keys of a subset of the clients of his choice. The approach underlying our
schemes does not seem to directly extend to the multi-client setting, and we
leave it as an interesting path for future exploration.

3 A Selectively-Secure Two-Input Scheme from any
Single-Input Scheme

In this section we construct a private-key two-input functional encryption scheme
that is selectively secure. Let F = {Fλ}λ∈N be a family of two-ary functionalities,

9 Indeed, [5] get a construction of a t-input scheme for any t ≥ 1 which implies an
indistinguishability obfuscator. Our construction falls short from being generalized
to such extent (however, it relies on weaker assumptions).
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where for every λ ∈ N the set Fλ consists of functions of the form f : Xλ×Yλ →
Zλ. Our construction relies on the following building blocks:

1. A private-key single-input functional encryption scheme 1FE = (1FE.S,
1FE.KG, 1FE.E, 1FE.D).

2. A pseudorandom function family PRF = (PRF.Gen,PRF.Eval).

As discussed in Section 1.1, we assume that the scheme 1FE is sufficiently
expressive in the sense that 1FE supports the function family F (when viewed as
a family of single-input functions), the evaluation procedure of the pseudoran-
dom function family PRF, the encryption and key-generation procedures of the
private-key functional encryption scheme 1FE, and a few additional basic oper-
ations. Our scheme 2FEsel = (2FEsel.S, 2FEsel.KG, 2FEsel.E, 2FEsel.D) is defined as
follows.

– The setup algorithm. On input the security parameter 1λ the setup al-
gorithm 2FEsel.S samples mskout,mskin ← 1FE.S(1λ) and outputs msk =
(mskout,mskin).

– The key-generation algorithm. On input the master secret key msk and
a function f ∈ Fλ, the key-generation algorithm 2FEsel.KG samples a ran-
dom string z ← {0, 1}λ and outputs skf ← 1FE.KG(mskout, Df,⊥,z,⊥), where
Df,⊥,z,⊥ is a single-input function that is defined in Figure 1.

Df0,f1,z,u((msk?,K,w)):
1. If msk? = ⊥, output u and HALT.

2. Compute r = PRF.Eval(K, z).

3. Output 1FE.KG(msk?, Cfw ; r).

Cf((x, y)):
1. Output f(x, y).

Figure 1: The single-input functions Df0,f1,z,u and Cf .

– The encryption algorithm. On input the master secret key msk, a message
m and an index i ∈ [2], the encryption algorithm 2FEsel.E has two cases:
• If (m, i) = (x, 1), it samples a master secret key msk? ← 1FE.S(1λ), a

PRF key K ← PRF.Gen(1λ), and a random string s ∈ {0, 1}λ, and then
outputs a pair (ct1, sk1) defined as follows:

ct1 ← 1FE.E(mskout, (msk?,K, 0))

sk1 ← 1FE.KG(mskin,AGGx,⊥,0,s,msk?,K),

where AGGx,⊥,0,s,msk?,K is a single-input function that is defined in Fig-
ure 2.

• If (m, i) = (y, 2), it samples a random string t ∈ {0, 1}λ, and outputs

ct2 ← 1FE.E(mskin, (y,⊥, t,⊥,⊥)).
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AGGx0,x1,a,s,msk?,K((y0, y1, t, s
′, v)):

1. If s′ = s output v and HALT.

2. Compute r = PRF.Eval(K, t).

3. Output 1FE.E(msk?, (xa, ya); r).

Figure 2: The single-input function AGGx0,x1,a,s,msk?,K .

– The decryption algorithm. On input a functional key skf and two ci-
phertexts, (ct1, sk1) and ct2, the decryption algorithm 2FEsel.D computes
ct′ = 1FE.D(sk1, ct2), sk′ = 1FE.D(skf , ct1) and outputs 1FE.D(sk′, ct′).

The correctness of the above scheme with respect to any family of two-ary
functionalities follows in a straightforward manner from the correctness of the
underlying functional encryption scheme 1FE. Specifically, consider any pair of
messages x and y and any function f . The encryption of x with respect to the
index i =1 and the encryption of y with respect to the index i = 2 result in
ciphertexts (ct1, sk1) and ct2, respectively. Using the correctness of the scheme
1FE, by executing 1FE.D(sk1, ct2) we obtain an encryption ct′ of the message
(x, y) under the key msk?. In addition, by executing 1FE.D(skf , ct1) we obtain a
functional key sk′ for Cf under the key msk?. Therefore, executing 1FE.D(sk′, ct′)
outputs the value Cf ((x, y)) = f(x, y) as required.

The following theorem captures the security of the scheme, stating that under
suitable assumptions on the underlying building blocks, the two-input scheme
2FEsel is selective-message secure (see Definition 2.8). We refer the reader to the
full version [18] for the complete proof.

Theorem 3.1. Assuming that (1) 1FE is fully secure, and (2) PRF is a pseu-
dorandom function family, then 2FEsel is selective-message secure.

We note that for proving that 2FEsel is selective-message secure it suffices to
require selective-message security from 1FE. However, given the generic transfor-
mations of Ananth et al. [4] (from selective security to adaptive security) and of
Brakerski and Segev [19] (from message security to full security), for simplifying
the proof of Theorem 3.1 we assume that 1FE is fully secure. In addition, when
assuming that 1FE is fully secure, the scheme 2FEsel can be shown to satisfy a
notion of security that seems in between selective-message security and full secu-
rity. Specifically, this notion considers adversaries that first have adaptive access
to encryptions only for the first coordinate, and then have adaptive access to
encryptions only for the second coordinate (while having adaptive access to the
key-generation oracle throughout the experiment). However, given our generic
transformation from selective-message security to full security for multi-input
schemes (see Section 4), for simplifying the proof of Theorem 3.1 we focus on
proving selective-message security.

In addition, for concreteness we focus on the unbounded case where the
underlying scheme supports an unbounded (i.e., not fixed in advance) number
of key-generation queries and encryption queries. More generally, the proof of
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Theorem 3.1 shows that if the scheme corresponding to mskout supports T1 en-
cryption queries and T2 key-generation queries, the scheme corresponding to
mskin supports T3 encryption queries and T4 key-generation queries, and the
scheme corresponding to each msk? supports T5 encryption queries and T6 key-
generation queries, then the resulting scheme 2FEsel supports min{T1, T4, T5}
encryption queries with respect to index i = 1, min{T3, T5} encryption queries
with respect to index i = 2 and min{T2, T6} key-generation queries. When the
polynomials T1, . . . , T6 are known in advance (i.e., do not depend on the adver-
sary), such schemes are known to exist based on the LWE assumption or even
only one-way functions (see Section 2.2 for a more elaborated discussion of the
existing schemes).

4 From Selective to Adaptive Security for Two-Input
Schemes

In this section we show how to transform any private-key selective-message secure
two-input functional encryption scheme (see Definition 2.8) into a fully secure
one (see Definition 2.7). Our construction relies on the following building blocks:

1. A private-key single-input functional encryption scheme 1FE = (1FE.S,
1FE.KG, 1FE.E, 1FE.D).

2. A private-key two-input functional encryption scheme 2FEsel = (2FEsel.S,
2FEsel.KG, 2FEsel.E, 2FEsel.D).

3. A puncturable pseudorandom function family PRF = (PRF.Gen,PRF.Eval,
PRF.Punc).

We assume that the schemes 1FE and 2FEsel are sufficiently expressive in
the sense that they support the function family F (when viewed as a family
of single-input functions), the evaluation procedure of the pseudorandom func-
tion family PRF, the setup, encryption and key-generation procedures of the
scheme 1FE, and a few additional basic operations. The scheme 2FE = (2FE.S,
2FE.KG, 2FE.E, 2FE.D) is defined as follows.

– The setup algorithm. On input the security parameter 1λ the setup algo-
rithm 2FE.S samples msk1 ← 1FE.S(1λ) and msk2 ← 2FEsel.S(1λ) and then
outputs msk = (msk1,msk2).

– The key-generation algorithm. On input the master secret key msk and
a function f ∈ Fλ, the key-generation algorithm 2FE.KG outputs skf ←
2FEsel.KG(msk2, Df,⊥,1,⊥,⊥,⊥), where Df,⊥,1,⊥,⊥,⊥ is a two-input function
that is defined in Figure 3.



20 Zvika Brakerski, Ilan Komargodski, and Gil Segev

Df0,f1,c,s′,t′,u((K
msk,Kkey, s, thr), (c′, t)):

1. If s′ = s and t′ = t, output u and HALT.

2. Compute r = PRF.Eval(Kmsk, t).

3. Compute r′ = PRF.Eval(Kkey, t).

4. Compute msks,t = 1FE.S(1λ; r).

5. If c ≤ thr and c′ ≤ thr set f = f1.

6. Else (if c > thr or c′ > thr) set f = f0.

7. Output 1FE.KG(msks,t, Cf ; r′).

Cf((x, y)):
1. Output f(x, y).

Figure 3: The two-input function Df0,f1,c,s′,t′,u and the single-input function
Cf .

– The encryption algorithm. On input the master secret key msk, a message
m and an index i ∈ [2], the encryption algorithm 2FE.E has two cases:
• If (m, i) = (x, 1), it samples s ← {0, 1}λ uniformly at random, three

PRF keys Kenc,Kkey,Kmsk ← PRF.Gen(1λ) and outputs a pair (ct1, sk1)
defined as follows:

ct1 ← 2FEsel.E(msk2, (K
msk,Kkey, s, 0), 1)

sk1 ← 1FE.KG(msk1,AGGx,⊥,0,s,Kmsk,Kenc,⊥,⊥)

where the single-input function AGGx,⊥,0,s,Kmsk,Kenc,⊥,⊥ is defined in Fig-
ure 4.

• If (m, i) = (y, 2), it samples t← {0, 1}λ uniformly at random and outputs
a pair (ct2, ct3) defined as follows:

ct2 ← 2FEsel.E(msk2, (1, t), 2)

ct3 ← 1FE.E(msk1, (y,⊥, 1, t,⊥,⊥)).

AGGx0,x1,thr,s,Kmsk,Kenc,t′,v′((y0, y1, c, t, s
′, u′)):

1. If t′ = t output v′ and HALT.

2. If s′ = s output u′ and HALT.

3. Compute r = PRF.Eval(Kmsk, t).

4. Compute r′ = PRF.Eval(Kenc, t).

5. Compute msks,t = 1FE.S(1λ; r).

6. If c ≤ thr set x = x1 and y = y1.

7. Else (if c > thr) set x = x0 and y = y0.

8. Output 1FE.E(msks,t, (x, y); r′).

Figure 4: The single-input function AGGx0,x1,thr,s,Kmsk,Kenc,t′,v′ .
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– The decryption algorithm. On input a functional key skf and two ci-
phertexts (ct1, sk1) and (ct2, ct3), the decryption algorithm 2FE.D first com-
putes the value sk′ = 2FEsel.D(skf , ct1, ct2), then it computes the value
ct′ = 1FE.D(sk1, ct3), and finally it outputs 1FE.D(sk′, ct′).

The correctness of the above scheme with respect to any family of two-ary
functionalities follows in a straightforward manner from the correctness of the
underlying functional encryption schemes 1FE and 2FEsel. Specifically, consider
any pair of messages x and y and any function f . The encryption of x with
respect to the index i =1 and the encryption of y with respect to the index i = 2
result in ciphertexts (ct1, sk1) and (ct2, ct3), respectively. Using the correctness
of the scheme 2FEsel, by executing 2FEsel.D(skf , ct1, ct2) we obtain a functional
key sk′ for Cf under the key msks,t. In addition, by executing 1FE.D(sk1, ct3) we
obtain a an encryption ct′ of (x, y) under the key msks,t. Therefore, executing
1FE.D(sk′, ct′) outputs the value Cf ((x, y)) = f(x, y) as required.

The following theorem captures the security of the scheme. This theorem
states that under suitable assumptions on the underlying building blocks, the
two-input scheme 2FE is fully secure (see Definition 2.7). We refer the reader to
the full version [18] for the complete proof.

Theorem 4.1. Assuming that (1) 1FE is fully secure, (2) 2FEsel is selective-
message secure, and (3) PRF is a puncturable pseudorandom function family,
then 2FE is fully secure.

As in Section 3, for concreteness we focus on the unbounded case where the
underlying schemes, 1FE and 2FEsel, support an unbounded (i.e., not fixed in
advance) number of key-generation queries and encryption queries. More gener-
ally, the proof of Theorem 4.1 shows that if the scheme corresponding to msk1
supports T1 encryption queries and T2 key-generation queries, the scheme cor-

responding to msk2 supports T
(1)
3 encryption queries with respect to index i = 1

and T
(2)
3 encryption queries with respect to index i = 2, and T4 key-generation

queries, and the scheme corresponding to each msks,t supports a single encryp-
tion query and T5 key-generation queries, then the resulting scheme 2FE sup-

ports min{T2, T (1)
3 } encryption queries with respect to index i = 1, min{T1, T (2)

3 }
encryption queries with respect to index i = 2 and min{T4, T5} key-generation

queries. When the polynomials T1, T2, T
(1)
3 , T

(2)
3 , T4 and T5 are known in advance

(i.e., do not depend on the adversary), such schemes are known to exist based
on the LWE assumption or even only one-way functions (see Section 2.2 for a
more elaborated discussion of the existing schemes).

Acknowledgments. We thank Eylon Yogev for various insightful discussions
and the EUROCRYPT ’16 reviewers for their useful comments.
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A Generalization to t ≥ 2 Inputs

In this section we generalize our results to more than two inputs. In Appendix A.1
we generalize the definitions introduced in Section 2.3, and in Appendices A.2
and A.3 we generalize the constructions from Sections 3 and 4, respectively. More
precisely, in Appendix A.2 we show how to obtain a selectively-secure t-input
scheme assuming any fully secure (t− 1)-input scheme. Then, in Appendix A.3
we show how to obtain a fully-secure t-input scheme assuming any fully-secure
(t− 1)-input scheme and a selectively-secure t-input scheme.

A.1 Private-Key t-Input Functional Encryption

In this section we generalize the framework introduced in Section 2.3 to the
general case of t-input schemes (Section 2.3 dealt with the case t = 2).

For i ∈ [t] let Xi = {(Xi)λ}λ∈N be an ensemble of finite sets, and let
F = {Fλ}λ∈N be an ensemble of finite t-ary function families. For each λ ∈ N,
each function f ∈ Fλ takes as input t strings, x1 ∈ (X1)λ, . . . , xt ∈ (Xt)λ, and
outputs a value f(x1, . . . , xt) ∈ Zλ. A private-key t-input functional encryption
scheme Π for F consists of four probabilistic polynomial time algorithm Setup,
Enc, KG and Dec, described as follows. The setup algorithm Setup(1λ) takes
as input the security parameter λ, and outputs a master secret key msk. The
encryption algorithm Enc(msk,m, i) takes as input a master secret key msk, a
message m, and an index i ∈ [t], where m ∈ (Xi)λ, and outputs a ciphertext cti.
The key-generation algorithm KG(msk, f) takes as input a master secret key msk
and a function f ∈ Fλ, and outputs a functional key skf . The (deterministic)
decryption algorithm Dec takes as input a functional key skf and t ciphertexts,
ct1, . . . , ctt, and outputs a string z ∈ Zλ ∪ {⊥}.

Definition A.1 (Correctness). A private-key t-input functional encryption
scheme Π = (Setup,Enc,KG,Dec) for F is correct if there exists a negligible
function neg(·) such that for every λ ∈ N, for every f ∈ Fλ, and for every
(x1, . . . , xt) ∈ (X1)λ × · · · × (Xt)λ, it holds that

Pr
[
Dec(skf ,Enc(msk, x1, 1), . . . ,Enc(msk, xt, t)) = f(x1, . . . , xt)

]
≥ 1− neg(λ),

where msk← Setup(1λ), skf ← KG(msk, f), and the probability is taken over the
internal randomness of Setup,Enc and KG.

Next, we generalize the security definitions from Section 2.3 to the t-input
case. As in Section 2.3, we start by defining the notion of a valid t-input adver-
sary. Then, we define full security and selective-message security.

Definition A.2 (Valid t-input adversary). A probabilistic polynomial-time
algorithm A is a valid t-input adversary if for all private-key t-input functional
encryption schemes Π = (Setup,KG,Enc,Dec) over a message space X1 × · · · ×
Xt = {(X1)λ}λ∈N × · · · × {(Xt)λ}λ∈N and a function space F = {Fλ}λ∈N, for
all λ ∈ N and b ∈ {0, 1}, and for all (f0, f1) ∈ Fλ and ((x0i , x

1
i ), i) ∈ Xi ×

Xi×{i} (where i ∈ [t]) with which A queries the left-or-right key-generation and
encryption oracles, respectively, it holds that f0(x01, . . . , x

0
t ) = f1(x11, . . . , x

1
t ).
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Definition A.3 (Full security). A private-key t-input functional encryption
scheme Π = (Setup,KG,Enc,Dec) over a message space X1 × · · · × Xt =
{(X1)λ}λ∈N×· · ·×{(Xt)λ}λ∈N and a function space F = {Fλ}λ∈N is fully secure
if for any valid t-input adversary A there exists a negligible function neg(·) such
that

AdvfullFEt

Π,F,A
def
=

∣∣∣∣Pr
[
ExpfullFEt

Π,F,A(λ) = 1
]
− 1

2

∣∣∣∣ ≤ neg(λ),

for all sufficiently large λ ∈ N, where the random variable ExpfullFEt

Π,F,A(λ) is defined
via the following experiment:

1. msk← Setup(1λ), b← {0, 1}.
2. b′ ← AKGb(msk,·,·),Encb(msk,(·,·),·) (1λ).
3. If b′ = b then output 1, and otherwise output 0.

Definition A.4 (Selective-message security). A private-key t-input func-
tional encryption scheme Π = (Setup,KG,Enc,Dec) over a message space X1 ×
· · · × Xt = {(X1)λ}λ∈N × · · · × {(Xt)λ}λ∈N and a function space F = {Fλ}λ∈N
is selective-message secure if for any valid t-input adversary A = (A1,A2) there
exists a negligible function neg(λ) such that

AdvselFEt

Π,F,A
def
=

∣∣∣∣Pr
[
ExpselFEt

Π,F,A(λ) = 1
]
− 1

2

∣∣∣∣ ≤ neg(λ),

for all sufficiently large λ ∈ N, where the random variable ExpselFEt

Π,F,A(λ) is defined
via the following experiment:

1. ( ~x1, . . . , ~xt, state) ← A1

(
1λ
)
, where ~xi = ((x0i,1, x

1
i,1), . . . , (x0i,T , x

1
i,T )) for

i ∈ [t].

2. msk← Setup(1λ), b← {0, 1}.
3. cti,j ← Enc(msk, xbi,j , 1) for i ∈ [t] and j ∈ [T ].

4. b′ ← AKGb(msk,·,·)
2

(
1λ, {cti,j}i∈[t],j∈[T ], state

)
.

5. If b′ = b then output 1, and otherwise output 0.

A.2 A Selectively-Secure t-Input Scheme from any (t − 1)-Input
Scheme

In this section we generalize the construction from Section 3 by presenting a
construction of a selectively-secure t-input scheme assuming any fully-secure
(t − 1)-input scheme. Let F = {Fλ}λ∈N be a family of t-input functionalities,
where for every λ ∈ N the set Fλ consists of functions of the form f : (X1)λ ×
· · · × (Xt)λ → Zλ. Our construction relies on the following building blocks:

1. A private-key single-input functional encryption scheme FE1 = (FE1.S,
FE1.KG,FE1.E,FE1.D).

2. A private-key (t− 1)-input functional encryption scheme FEsel
t−1 = (FEsel

t−1.S,

FEsel
t−1.KG,FE

sel
t−1.E,FE

sel
t−1.D).
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3. A pseudorandom function family PRF = (PRF.Gen,PRF.Eval).

Our scheme FEsel
t = (FEsel

t .S,FE
sel
t .KG,FE

sel
t .E,FE

sel
t .D) is defined as follows.

– The setup algorithm. On input the security parameter 1λ the setup algo-
rithm FEsel

t .S samples mskout ← FE1.S(1λ),mskin ← FEsel
t−1.S(1λ) and outputs

msk = (mskout,mskin).

– The key-generation algorithm. On input the master secret key msk and
a function f ∈ Fλ, the key-generation algorithm FEsel

t .KG samples a ran-
dom string z ← {0, 1}λ and outputs skf ← FE1.KG(mskout, Df,⊥,z,⊥), where
Df,⊥,z,⊥ is a single-input function that is defined in Figure 5.

Df0,f1,z,u((msk?,K,w)):
1. If msk? = ⊥, output u and HALT.

2. Compute r = PRF.Eval(K, z).

3. Output FEsel
t−1.KG(msk?, Cfw ; r).

Cf((x1, x2), x3, . . . , xt):
1. Output f(x1, . . . , xt).

Figure 5: The single-input function Df0,f1,z,u and the (t − 1)-input function
Cf .

– The encryption algorithm. On input the master secret key msk, a message
m and an index i ∈ [t], the encryption algorithm FEsel

t .E has two cases:
• If (m, i) = (x1, 1), it samples a master secret key msk? ← FEsel

t−1.S(1λ), a
PRF key K ← PRF.Gen(1λ), and a random string s ∈ {0, 1}λ, and then
outputs a pair (ct1, sk1) defined as follows:

ct1 ← FE1.E(mskout, (msk?,K, 0))

sk1 ← FEsel
t−1.KG(mskin,AGGx1,⊥,0,s,msk?,K),

where AGGx,⊥,0,msk?,K is a (t−1)-input function that is defined in Figure
6.

• If (m, i) = (xi, i) where i ∈ {2, . . . , t}, it samples a random string τi ∈
{0, 1}λ, and outputs

cti ← FEsel
t−1.E(mskin, (xi,⊥, τi,⊥,⊥), i− 1).

– The decryption algorithm. On input a functional key skf and ciphertexts

(ct1, sk1), ct2, . . . , ctt, the decryption algorithm FEsel
t .D computes (ct′2, . . . ,

ct′t) = FEsel
t−1.D(sk1, (ct2, . . . , ctt)), sk

′ = FE1.D(skf , ct1) and outputs

FEsel
t−1.D(sk′, (ct′2, . . . , ct

′
t)).

Theorem A.5. Assuming that (1) FE1 is fully secure, (2) FEsel
t−1 is selective-

message secure, and (3) PRF is a pseudorandom function family, then FEsel
t is

selective-message secure.
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AGGx0
1,x

1
1,a,s,msk?,K((x0

2, x
1
2, τ2, s2, v2), . . . , (x

0
t , x

1
t , τt, st, vt)):

1. If s2 = · · · = st = s output (v2, . . . , vt) and HALT.

2. Set xi = xai for all i ∈ [t].

3. Compute ri = PRF.Eval(K, τi) for 2 ≤ i ≤ t.
4. Output (FEsel

t−1.E(msk?, (x1, x2), 1; r2),FEsel
t−1.E(msk?, x3, 2; r3), . . . ,

FEsel
t−1.E(msk?, xt, t− 1; rt)).

Figure 6: The (t− 1)-input function AGGx0
1,x

1
1,a,s,msk?,K .

As in Theorem 3.1, we note that for proving that FEsel
t is selective-message

secure it suffices to require selective-message security from FE1. However, given
the generic transformation for single-input schemes [4,19] (from selective security
to adaptive security and from message security to full security, respectively), for
simplifying the proof of Theorem A.5 we assume that FE1 is fully secure. We
refer the reader to the full version [18] for the complete proof.

A.3 From Selective to Adaptive Security for t-Input Schemes

In this section we generalize the construction from Section 4 to get a fully-
secure t-input functional encryption scheme assuming any fully-secure (t − 1)-
input functional encryption scheme and any selectively-secure t-input functional
encryption scheme. Our construction relies on the following building blocks:

1. A private-key single-input functional encryption scheme FE1 = (FE1.S,
FE1.KG,FE1.E,FE1.D).

2. A private-key (t− 1)-input functional encryption scheme FEt−1 = (FEt−1.S,
FEt−1.KG,FEt−1.E,FEt−1.D).

3. A private-key t-input functional encryption scheme FEsel
t = (FEsel

t .S,FE
sel
t .KG,

FEsel
t .E,FE

sel
t .D).

4. A puncturable pseudorandom function family PRF = (PRF.Gen,PRF.Eval,
PRF.Punc).

The scheme FEt = (FEt.S,FEt.KG,FEt.E,FEt.D) is defined as follows.

– The setup algorithm. On input the security parameter 1λ the setup al-
gorithm FEt.S samples mskt−1 ← FEt−1.S(1λ) and mskt ← FEsel

t .S(1λ) and
then outputs msk = (mskt−1,mskt).

– The key-generation algorithm. On input the master secret key msk and
a function f ∈ Fλ, the key-generation algorithm FEt.KG outputs skf ←
FEsel

t .KG(mskt, Df,⊥,1,⊥, . . . ,⊥︸ ︷︷ ︸
t times

,⊥), where D
f,⊥,1,⊥, . . . ,⊥︸ ︷︷ ︸

t times

,⊥ is a t-input func-

tion that is defined in Figure 7.
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Df0,f1,c,τ ′
1,...,τ

′
t,u

((Kmsk,Kkey, τ1, thr2, . . . , thrt), (c2, τ2), . . . , (ct, τt)):

1. If τ ′i = τi for all i ∈ [t], output u and HALT.

2. Compute r = PRF.Eval(Kmsk, τ2 . . . τt).

3. Compute r′ = PRF.Eval(Kkey, τ2 . . . τt).

4. Compute mskτ1,...,τt = FE1.S(1λ; r).

5. For i = 1, . . . , t do:
(a) If ci < thri then set f = f1 and exit loop.

(b) If ci > thri then set f = f0 and exit loop.

(c) If ci = thri and i < t continue to next iteration (with i = i+ 1).

(d) If ci = thri and i = t set f = f1.

6. Output FE1.KG(mskτ1,...,τt , Cf ; r′).

Cf((x1, . . . , xt)):
1. Output f(x1, . . . , xt).

Figure 7: The t-input function Df0,f1,c,τ ′1,...,τ
′
t,u

and the single-input function
Cf .

– The encryption algorithm. On input the master secret key msk, a message
m and an index i ∈ [2], the encryption algorithm FEt−1.E has two cases:
• If (m, i) = (x1, 1), it samples τ1 ← {0, 1}λ uniformly at random, three

PRF keys Kenc,Kkey,Kmsk ← PRF.Gen(1λ) and outputs a pair (ct1, sk1)
defined as follows:

ct1 ← FEsel
t .E(mskt, (K

msk,Kkey, τ1, 0, . . . , 0︸ ︷︷ ︸
t−1 times

), 1)

sk1 ← FEt−1.KG(mskt−1,AGGx1,⊥,0, . . . , 0︸ ︷︷ ︸
t−1 times

,τ1,Kmsk,Kenc,⊥, . . . ,⊥︸ ︷︷ ︸
t−1 times

,⊥)

where the single-input function AGG
x1,⊥,0, . . . , 0︸ ︷︷ ︸

t−1 times

,τ1,Kmsk,Kenc,⊥, . . . ,⊥︸ ︷︷ ︸
t−1 times

,⊥ is

defined in Figure 8.

• If (m, i) = (xi, i) and i > 1, it samples τi ← {0, 1}λ uniformly at random
and outputs a pair (cti, ct

′
i) defined as follows:

cti ← FEsel
t .E(mskt, (1, τi), i)

ct′i ← FEt−1.E(mskt−1, (xi,⊥, 1, τi,⊥, . . . ,⊥︸ ︷︷ ︸
t−1 times

,⊥), i− 1).

– The decryption algorithm. On input a functional key skf and t cipher-
texts (ct1, sk1) and (ct2, ct

′
2), . . . , (ctt, ct

′
t), the decryption algorithm FEt.D

first computes the value sk′ = FEsel
t .D(skf , ct1, . . . , ctt), then it computes the

value ct′ = FEt−1.D(sk1, ct
′
2, . . . , ct

′
t), and finally it outputs FE1.D(sk′, ct′).

The following theorem captures the security of the scheme. This theorem
states that under suitable assumptions on the underlying building blocks, the
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AGGx0
1,x

1
1,thr2,...,thrt,τ1,K

msk,Kenc,τ1,2,...,τ1,t,u1

((x0
2, x

1
2, c2, τ2, τ2,1, . . . , τ2,t, u2), . . . ,

(x0
t , x

1
t , ct, τt, τt,1, . . . , τt,t, ut)) :

1. If ∃i ∈ [t] such that ∀j ∈ [t]\{i} it holds that τi,j = τj , then output ui and HALT.

2. Compute r = PRF.Eval(Kmsk, τ2 . . . , τt).

3. Compute r′ = PRF.Eval(Kenc, τ2 . . . , τt).

4. Compute mskτ1,...,τt = FE1.S(1λ; r).

5. For i = 1, . . . , t do:
(a) If ci < thri then set xi = x1i for all i ∈ [t] and exit loop.

(b) If ci > thri then set xi = x0i for all i ∈ [t] and exit loop.

(c) If ci = thri and i < t continue to next iteration (with i = i+ 1).

(d) If ci = thri and i = t set xi = x1i for all i ∈ [t].

6. Output FE1.E(mskτ1,...,τt , (x1 . . . , xt); r
′).

Figure 8: The t-input function AGGx0
1,x

1
1,thr2,...,thrt,τ1,K

msk,Kenc,τ ′1,2,...,τ
′
1,t,u1

.

t-input scheme FEt is fully private (see Definition 2.7). We refer the reader to
the full version [18] for the complete proof.

Theorem A.6. Let t > 1 be any fixed integer. Assuming that (1) FE1 is fully
secure, (2) FEt−1 is fully secure, (3) FEsel

t is selective-message secure, and (4)
PRF is a puncturable pseudorandom function family, then FEt is fully secure.

We note that the proof of Theorem A.6 assumes that t is a fixed constant. The
reason for this limitation is that the number of hybrids in the proof of security is
λO(t), where λ is the security parameter, which is polynomial for any constant t.
If we assume that the underlying building blocks are sub-exponentially secure,
then the proof of Theorem A.6 can be used for a super-constant number of
inputs.


