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Abstract. Recent devastating attacks by Cheon et al. [Eurocrypt’15]
and others have highlighted significant gaps in our intuition about secu-
rity in candidate multilinear map schemes, and in candidate obfuscators
that use them. The new attacks, and some that were previously known,
are typically called “zeroizing” attacks because they all crucially rely on
the ability of the adversary to create encodings of 0.

In this work, we initiate the study of post-zeroizing obfuscation, and
we obtain a key new mathematical tool to analyze security in a post-
zeroizing world. Our new mathematical tool allows for analyzing polyno-
mials constructed by the adversary when given encodings of randomized
matrices arising from a general matrix branching program. This tech-
nique shows that the types of encodings an adversary can create are
much more restricted than was previously known, and is a crucial step
toward achieving post-zeroizing security. We also believe the technique is
of independent interest, as it yields efficiency improvements for existing
schemes – efficiency improvements that have already found application
in other settings.

Finally, we show how to apply our new mathematical tool to the special
case of evasive functions. We show that our obfuscator survives all known
attacks on the underlying multilinear maps, by proving that no top-level
encodings of 0 can be created by a generic-model adversary. Previous
obfuscators (for both evasive and general functions) were either analyzed
in a less-conservative “pre-zeroizing” model that does not capture recent
attacks, or were proved secure relative to assumptions that no longer
have any plausible instantiation due to zeroizing attacks.
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1 Introduction

Over the past three years, all candidate constructions [18, 16, 22, 17, 27] of mul-
tilinear maps, also called graded encoding schemes, have been shown to suffer
from “zeroizing” attacks [18, 13, 9, 15, 28, 11, 27, 14, 32] — and these attacks have
in many cases been devastating.

Given this state of affairs, one would expect that the most-studied application
of graded encodings schemes – indistinguishability obfuscation [7, 20] – would be
similarly devastated. However, quite surprisingly, until our work, none of the
zeroizing attacks placed current obfuscation schemes over prime-order3 graded
encodings in jeopardy. In this paper, we ask: Why is this the case? Given the
profound level of interest in obfuscation over the past two years [20, 12, 6, 33, 24,
1, 38, 30, 4, 35, 25, 19, 10], and given that so far all proposed obfuscation schemes
rely on graded encoding schemes, we believe this question is of paramount im-
portance. And indeed, before our work, no security analysis for obfuscation used
a model or assumption that took into account the impact of zeroizing attacks.

Long-term vision. This paper seeks to initiate a research program whose aim
is to build fully secure obfuscation schemes out of weakened graded encodings
schemes – graded encoding schemes that are subject to zeroizing attacks. As the
research cycle of construct-and-attack over the past 3 years has shown, building
fully secure graded encoding schemes is a challenging task. Thus, our approach
is to take a pessimistic view and see if, in fact, even weakened forms of graded
encoding schemes suffice for constructing fully secure obfuscation. We note that
even if future constructions of graded encoding schemes are successful in avoiding
zeroizing attacks, the research program initiated by our work would still be
valuable, because it will help to identify the minimal security properties actually
needed by graded encoding schemes to achieve secure obfuscation. This could
lead to greater efficiency.

The central contribution of our work is a new mathematical tool that charac-
terizes when an adversary can set up the most basic requirement for a zeroizing
attack, namely a top-level encoding of zero. Furthermore, we present this math-
ematical tool in a very general form, which even has consequences for efficiency
of prime-order obfuscation constructions. We believe that our characterization
lemma will prove valuable in the long-term study of both guiding research into
new attacks on graded encodings as well as building secure obfuscation from
weak graded encodings. We demonstrate this by applying our lemma to the case
of evasive circuits, for which we can show security even using only extremely

3 We note that certain simplified versions of obfuscation schemes over composite-order
graded encoding schemes [38] have been broken by zeroizing attacks [15]. There
are no published methods for converting the composite-order obfuscation schemes
of [38, 4] to the prime-order setting. Furthermore, zeroizing attacks over prime-order
graded encoding schemes discovered prior to our work typically applied when the
multiplicity of zero achieved at the top level is greater than zero, and if a prime-order
conversion was attempted, care would need to be taken to ensure that such higher
multiplicities do not occur.
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weak graded encodings whose security completely breaks down when a top-level
encoding of zero is found.

Background - Obfuscation. Obfuscation is a cryptographic tool that offers a
powerful capability: software that can keep a secret. That is, consider a piece
of software that makes use of a secret to perform its computation. Obfuscation
allows us to transform this software so that it can be run publicly: anyone can
obtain the full code of the program, run it, and see its outputs, but no one
can learn anything about the embedded secret, beyond what can be learned by
examining the outputs of the program.

The first candidate construction for a general-purpose obfuscator was given
by Garg, Gentry, Halevi, Raykova, Sahai, andWaters [20]. This construction, and
all subsequent works constructing candidate obfuscators [12, 6, 33, 24, 1, 38, 30,
4], are built on top of another cryptographic primitive called a graded encoding
scheme. In a graded encoding scheme, plaintext elements are encoded at various
levels, and can be added and multiplied subject to algebraic restrictions relating
to these levels. Further, there is a “top” level at which one can test whether an
element encodes 0.

Background - Zeroizing Attacks. The many zeroizing attacks differ somewhat
in their details, but each attack obeys the algebraic restrictions imposed by the
graded encodings schemes, and critically they all share the need to create top-
level 0-encodings. Indeed, many such encodings are needed for each attack, and
the attacks require that these encodings have further structure.

Several of the works constructing candidate obfuscators prove security in an
idealized “generic multilinear model” that seeks to capture the algebraic restric-
tions imposed by the graded encoding scheme candidates. However, the known
zeroizing attacks use extra information that is provided by the zero-testing pro-
cedure, which is not captured in the standard generic model. Thus, a proof of
security in the generic multilinear model by itself is no longer a persuasive argu-
ment of security. In particular, it is now crucial to gain a better understanding
of exactly what types of top-level 0-encodings can be constructed in prime-order
graded encoding schemes.

Our contribution. We introduce a new mathematical tool for analyzing how an
adversary can create 0-encodings given a set of randomized matrices. This tool
both shows that the types of 0-encodings an adversary can create are much more
restricted than was previously known, and that the adversary’s behavior can be
so controlled in a much richer set of circumstances than was previously known.
We stress that this new tool, Theorem 4, was not present in any previous work,
and allows for a much more fine-grained analysis of the adversary’s behavior in
prime-order settings than was previously available.

Briefly, we first consider an obfuscator O that can use much wider class of
matrix branching programs than was previously known, most notably this class
includes matrix branching programs that involve low-rank matrices. Theorem 4
shows that any polynomial p over (the encodings in) the obfuscation O(f) can
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be efficiently mapped to a poly-size set of inputs X such that p evaluates to an
encoding of 0 if and only if every x ∈ X satisfies f(x) = 0. For context, previous
works both could not handle the case of low-rank matrices, and only gave a map
that allowed the evaluation of p to be simulated given the set {f(x) | x ∈ X},
but did not show the stronger precise characterization of 0-encodings that we
obtain. We stress that we do not know of any simpler way of obtaining such a
characterization.

We now elaborate on Theorem 4, how it is proved, and how previous works
that did not consider zeroizing attacks did not need and did not achieve such
a theorem. Following that, we mention two applications of this new theorem,
namely improving the efficiency of obfuscation, and obfuscating evasive functions
in a model that captures all known attacks on graded encoding schemes.

1.1 Our Techniques

As stated above, the main technical challenge in our paper is to show that any
polynomial p over the obfuscation O(f) can be efficiently mapped to a set of
inputs X such that p evaluates to an encoding of 0 if and only if every x ∈ X

satisfies f(x) = 0.

One ingredient in our paper is the notion of strong straddling sets from [30],
as this tool allows us to show that low-level encodings of 0 can be efficiently
transformed into top-level encodings of 0. Thus, the only obstacle that remains
is to prove Theorem 4 for top-level encodings.

The technical barrier – Kilian’s statistical simulation. Before we proceed to pro-
vide intuition about our proof, let us consider the technical roots of how security
was shown in previous works. In every paper constructing secure obfuscation for
matrix branching programs so far [20, 12, 6, 33, 24, 1, 30] and in every different
model that has been considered, one theorem has played a starring role in all
security analyses: Kilian’s statistical simulation theorem [29]. As relevant here,
Kilian’s theorem considers the setting where we randomize each matrix in a
sequence of matrices as follows:

B̂i = R−1i−1BiRi

where Ri are random invertible matrices for i ∈ [ℓ − 1], and identity otherwise.
Note that this randomization does not affect the iterated product. Then, for any
particular input x, if the iterated product is M , Kilian’s theorem states that we

can statistically simulate the collection of matrices {B̂i}i∈[ℓ] knowing only M

but with no knowledge of the original matrices {Bi}.
Kilian’s statistical simulation theorem has been a keystone in all previous

analyses of obfuscation: in one way or another, all previous security analyses
for obfuscation methods have found some way to isolate the adversary’s view of
the obfuscation to a single input. Once this isolation was accomplished, Kilian’s
theorem provided the assurance that the adversary’s view of the obfuscation, as
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it related to this single input, only encoded information about the output of the
computation within M , and nothing more.

However, Kilian’s statistical simulation theorem only allows for simulation. It
does not rule out the possibility that an encoding of 0 may result no matter what
the function outputs on the input in question. Indeed, it is not hard to construct
an obfuscator that is secure in the generic model but allows for encodings of 0
even when the function being obfuscated always outputs 1. Moreover, Kilian’s
theorem only applies when the branching programmatrices are full-rank. Indeed,
if the matrices are allowed to be arbitrary rank, then it is impossible to simulate
each of the matrices just given the product M , as there is no way to determine
what the rank of each matrix should be, nor the ranks of various subproducts of
matrices. (In the next subsection, we discuss the efficiency benefits of allowing
low-rank matrices.) Because of this impossibility, we know of no way to generalize
Kilian’s theorem or its proof to obtain our theorem.

Our Approach. To obtain our result, we directly analyze what kinds of poly-
nomials an adversary can generate using multilinear operations. We model the
multilinear setting as follows. There is a universe set [ℓ], and for every subset
S ⊆ [ℓ], we have a copy of Zq that we name GS . Then, the adversary has access
to the following operations:

– Add: GS ×GS → GS , for every subset S ⊆ [ℓ].
– Mult: GS ×GT → GS∪T , for every pair S, T ⊆ [ℓ] : S ∩ T = ∅.
– ZeroTest: G[ℓ] → {True,False}.

This is sometimes called the “asymmetric” multilinear setting, is natively sup-
ported by known instantiations of prime-order graded encoding schemes [18],
and was used in previous works. Observe that in this setting, if the adversary
is given a matrix entirely encoded in G{1}, then for example it is not possible
for it to compute the rank of this matrix. This is because no two entries within
this matrix can be multiplied together, since they both reside in the same group
G{1}, and multiplication is only possible across elements of groups corresponding
to disjoint index sets.

Even though we do not rely on Kilian’s simulation theorem, our obfuscator
uses a matrix randomization scheme that is essentially4 identical to the one used
when applying Kilian’s randomization. Our analysis then proceeds by consider-
ing the most general polynomial that the adversary can construct in G[ℓ]. More
precisely, we consider every possible monomial m that can exist over the matrix
entries that are given to the adversary, and we associate each such monomial
m with a coefficient αm that the adversary could potentially choose arbitrarily.
Thus, the adversary’s polynomial is a giant sum p = Σmαmm over all these
potential monomials.

4 Because we consider rectangular matrices in general, we do need to modify this
slightly. Also, for technical simplification, we consider the adjugate matrix rather
than the inverse. However, for the purposes of this technical overview, these varia-
tions can be ignored.
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Observe that the adversary can only extract useful information from this
polynomial by passing it to ZeroTest, thereby determining if it is zero or not.
However, recall that the randomizing matrices {Ri} are chosen uniformly during
obfuscation. Therefore, by the Schwartz-Zippel lemma, we know that unless the
adversary’s polynomial p is the zero polynomial over the entries of the Ri ma-
trices, ZeroTest will declare the polynomial to be nonzero with overwhelming
probability. So, we restrict ourselves to analyzing adversarial polynomials that
are identically zero over the entries of the Ri matrices.

Our new analysis differs at a fundamental level from Kilian’s analysis. At the
heart of the analysis is an argument based on the structure of random square
matrices R and their inverses R−1 that allows us to argue about how terms that
arise in R−1 can be cancelled using terms from R. In particular, we use the fact
that:

R−1i,ℓ =
1

det(R)

∑

σ:σ(i)=ℓ

sign(σ)


∏

t6=i

Rσ(t),t




Our analysis is obtained by carefully considering different types of permutations
σ that arise in the expression above, and how different permutations interfere
with each other. (This exemplifies our conceptual departure from the proof of
Kilian’s theorem.) Our analysis shows that multilinear polynomials that allow
for cancellation of R and R−1 terms are extremely constrained.

From this analysis, we conclude that any adversarial polynomial that is iden-
tically zero over the entries of the {Ri} matrices must in fact be the result of
an honest iterated matrix multiplication (or a constant multiple thereof), which
corresponds to evaluating f(x) for some input x. In other words, such an ad-
versarial polynomial will result in an encoding of 0 if and only if f(x) = 0, as
desired. Even though the analysis as presented here is not efficient, we are still
able to use it to yield an efficient simulator in our generic model. At a high level,
this is done by using the Schwartz-Zippel lemma to “weed out” most adversarial
polynomials without needing to examine their structure at all.

1.2 Applications

We now discuss two applications of our new analysis tool.

Efficiency of obfuscation. Current techniques, while being asymptotically polynomial-
time, lead to incredibly inefficient implementations of obfuscation. For example,
the recent implementation of Apon et al. [2] for obfuscating (only) 16-bit point
functions resulted in a 31GB obfuscated program, which took over 6 hours to
generate and about 11 minutes to run on each input.

A major source of inefficiency is that the direct application of current ob-
fuscators to circuits requires overhead that grows exponentially with the depth.
This occurs because the level of multilinearity required grows exponentially with
the depth, while current multilinear map candidates have complexity that grows
polynomially with the level of multilinearity.
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The work of Garg et al. [20] shows that, nevertheless, such a “core” obfuscator
can be used to obfuscate general (high depth) circuits with a polynomial over-
head through a “bootstrapping” procedure (see also [26, 12, 3]). However, boot-
strapping based on existing core obfuscators entails overheads that are asymp-
totically polynomial but easily reach above 2100. Such large overheads primarily
arise due to the depth of the circuit processed by the core obfuscator (though,
asymptotically, this circuit has depth logarithmic in the security parameter).
Indeed, similarly large overheads arise when attempting to apply the core ob-
fuscator to other programs represented in circuit form, since few interesting and
non-learnable families of circuits have depth below, say, 50.

This suggests that practical implementations of obfuscation will only be able
to handle functionalities that require a polynomial level of multilinearity, and
not exponential. One such class of functionalities are those computable by small
matrix branching programs, where evaluation corresponds to evaluating an iter-
ated matrix product. This class of functionalities includes, among others, finite
automata.

Unfortunately, natural representations of finite automata and other simple
programs as branching programs require low-rank matrices. Though these rep-
resentations can be made full rank by using much larger matrices, this results
in substantial efficiency loss. The reason for this, intuitively, is that branching
programs with invertible matrices model reversible computation, whereas gen-
eral computation allows for previous states to be forgotten. While it is possible
to convert an irreversible computation into a reversible one, the cost is a signif-
icant loss in efficiency. The ability to handle low-rank matrices is thus crucial
to obtaining efficient obfuscators even for simple functionalities. As detailed in
the preceding subsection, all previous constructions critically relied on full-rank
matrices.

Armed with our new tool (Theorem 4), our construction no longer requires
full-rank matrices, and even non-square matrices are allowed.5 That is, we show
for the first time how to obfuscate matrix branching programs that are repre-
sented with low-rank, rectangular matrices. This leads to more efficient obfus-
cators, even beyond previous works that lack a post-zeroizing proof of security;
for details, see the full version of this paper. Our analysis also extends to other
settings besides obfuscation: for example, Boneh et al. [8] rely on our analysis
to obtain implementable constructions of order-revealing encryption.

Obfuscating evasive circuits in a post-zeroizing model. We view Theorem 4 as
the first step on a path towards achieving obfuscation in a post-zeroizing world.
As a “proof of concept” for this goal, we construct an obfuscator for a natural
class of functions that, for the first time, is provably secure in a model that
captures all known attacks on graded encoding schemes.

5 We do require a mild natural technical condition, called non-shortcutting, on the
branching program. Non-shortcutting can be achieved generically on any branching
program with minimal overhead.
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In previous works that prove security in a generic model, the graded encoding
scheme’s zero-test procedure is modeled as a Boolean function (i.e. one that
returns a yes/no answer). In candidate constructions however, a successful zero-
test actually returns an algebraic element in the ring of encodings, and this
fact is crucially exploited in the zeroizing attacks. By contrast, our new model
considers any encoding of 0 to be a complete break, thereby capturing these
attacks.

We show how to obfuscate evasive functions [5] in this model, namely func-
tions for which it is hard to find an input that evaluates to 0. (Typically one
defines evasive functions as having hidden 1-outputs, but in terms of their func-
tionality this is only a semantic difference.) A natural example of an evasive
function is the “password check” function (typically called a point function),
which evaluates to 0 on only a single, secret input. Obfuscating general evasive
functions has many applications, including most notably obfuscating important
classes of software patches that check for rare inputs on which the unpatched
software is known to misbehave (see [5] for further discussion).

Prior to our work, except as a special case of general obfuscation, the only
work that considered obfuscating general classes of evasive functions is that of [5].
However, the positive results in [5] were based on assumptions over approximate
multilinear maps that are now known to be false when instantiated with cur-
rent multilinear map candidates. Furthermore, the positive results in [5] did not
consider completely arbitrary distributions of evasive circuits, as we do here.

Using our new analysis techniques, we prove the following.

Theorem 1 (informal). There exists a PPT obfuscator O such that, for any
evasive function family C on n-bit inputs and any efficient generic-model adver-
sary A,

Pr [A(O(C)) constructs an encoding of 0] < negl(n)

where the probability is over the choice of C ← C and the coins of A and O.

Theorem 1 in particular implies the first witness encryption scheme [21] with
a generic model proof that captures zeroizing attacks6. Indeed, in the original
witness encryption protocol of [21] the attacker can produce top-level encodings
of zero, and therefore the protocol is not secure in the post-zeroizing model.
Subsequent witness encryption protocols [23, 37] also allow top-level encodings
of zero to be constructed.

In proving Theorem 1, we show that the “bootstrapping” theorem of [20]
extends to the setting of evasive functions. (As mentioned above, this theorem
transforms a core obfuscator for a “small” class of functions into an obfuscator
for all efficient functions.) We observe that the proof of this theorem only uses the
core obfuscator on evasive functions, and we show that it holds only assuming
the core obfuscator’s security on such functions. In particular, we show that

6 When building witness encryption from obfuscation, witness encryption security only
requires the obfuscator to be secure when obfuscating functions that always evaluate
to 0, which are in particular evasive.
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Theorem 1 applies to all evasive functions and not only those on which the core
obfuscator operates. Interestingly, the more recent bootstrapping technique of
Applebaum [3] cannot be used for our purposes, because it inherently produces
encodings of 0 regardless of the function being obfuscated.

Directions for future work. The obvious next step is to consider obfuscating
non-evasive functions. To do so, we will need to look precisely at the kinds of
post-zero-test information that can be obtained using zeroizing attacks during
zero testing for general (non-evasive) functions. We note that our paper answers
a critical first question toward this goal: we show that in our scheme, the only
way that the adversary can create top-level encodings of zero are the prescribed
ways of evaluating the function at a particular input. This is a necessary first
step in understanding what kinds of information can arise in the general case,
and whether this information can lead to more sophisticated attacks.

Subsequent work by a subset of the authors [31] has shown how to attack
candidate iO schemes (including the one here), when implemented with the [18]
multilinear map candidate, by further analyzing the polynomials that correspond
to honest evaluations of the obfuscated function. However, we remark that this
attack still crucially relies on encodings of 0 (corresponding to 0-outputs of
the function), and as a result it cannot be mounted when the function being
obfuscated is evasive.

Organization. In Section 2 we give some preliminary definitions and background
information. In Section 3 we define our obfuscator for matrix branching pro-
grams. In Section 4 we prove the key technical theorem that analyzes adversarially-
constructed polynomials over the obfuscation. The proof of VBB security is out-
lined in Section 5 (due to space limitations, the complete proof is deferred to the
full version of this paper). In Section 6 we prove that, when obfuscating evasive
functions, no encodings of zero can be created.

2 Preliminaries

2.1 Evasive circuits

We define evasive circuit collections as in Barak et al. [5], except that in our
definition it is hard to find a 0-output (typically one says that it is hard to find
a 1-output).

Definition 1. A function family {Cℓ}ℓ∈N is evasive if for every oracle-aided

adversary A(·) that makes at most poly(ℓ) queries on input 1ℓ, and every ℓ ∈ N:

Pr
C←Cℓ

[
C
(
AC

(
1ℓ
))

= 0
]
= negl(ℓ).

{Cℓ}ℓ∈N is evasive with auxiliary input Aux for a (possibly randomized) function
Aux : Cℓ → {0, 1}

∗
if A additionally receives Aux(C) when its oracle is C.
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2.2 Obfuscation

We now give the definition of virtual black-box obfuscation in an idealized model,
identical to the model studied in Barak et al. [6] and Ananth et al. [1], with one
exception: we also consider giving both the adversary and simulator an auxiliary
input determined by the program.

Definition 2 (Virtual Black-Box Obfuscation in anM-idealized model).
For a (possibly randomized) oracleM, a circuit class

{
Cℓ
}
ℓ∈N

, and an efficiently

computable deterministic function Auxℓ : Cℓ → {0, 1}
tℓ , we say that a uniform

PPT oracle machine O is a “Virtual Black-Box” Obfuscator for
{
Cℓ
}
ℓ∈N

in the
M-idealized model with respect to auxiliary information Auxℓ, if the following
conditions are satisfied:

– Functionality: For every ℓ ∈ N, every C ∈ Cℓ, every input x to C, and for
every possible coins for M:

Pr[(OM(C))(x) 6= C(x)] ≤ negl(|C|) ,

where the probability is over the coins of C.
– Polynomial Slowdown: there exist a polynomial p such that for every ℓ ∈ N

and every C ∈ Cℓ, we have that |OM(C)| ≤ p(|C|).
– Virtual Black-Box: for every PPT adversary A there exist a PPT simulator

Sim, and a negligible function µ such that for all PPT distinguishers D, for
every ℓ ∈ N and every C ∈ Cℓ:
∣∣∣Pr
[
D
(
AM

(
OM(C),Auxℓ(C)

) )
= 1,

]
− Pr

[
D
(
SimC

(
1|C|,Auxℓ(C)

) )
= 1
]∣∣∣ ≤ µ(|C|) ,

where the probabilities are over the coins of D,A,Sim,O andM.

Note that in this model, both the obfuscator and the evaluator have access to
the oracle M but the function family that is being obfuscated does not have
access toM.

We also define the average-case version of VBB obfuscation, which is the
correct security notion when obfuscating evasive circuit collections.

Definition 3 (Average-case Virtual Black-Box Obfuscation in an M-
idealized model). Let M,

{
Cℓ
}
ℓ∈N

, and Auxℓ be as in Def. 2. We say that a
uniform PPT oracle machine O is an average-case Virtual Black-Box Obfuscator
for
{
Cℓ
}
ℓ∈N

in theM-idealized model with respect to auxiliary information Auxℓ,
if it satisfies all properties in Def. 2 except that in the Virtual Black-Box property
the probabilities are over a uniform choice of C ← Cℓ (as opposed to ∀C ∈ Cℓ).

Definition 4 (Average-case Indistinguishability Obfuscation in an M-
idealized model). For a (possibly randomized) oracleM, a circuit class

{
Cℓ
}
ℓ∈N

,
we say that a uniform PPT oracle machine O is an Average-case Indistinguisha-
bility Obfuscator for

{
Cℓ
}
ℓ∈N

in theM-idealized model if the following conditions
are satisfied:
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– Functionality: Same as in the definition of VBB.
– Polynomial Slowdown: Same as in the definition of VBB.
– Indistinguishability: For every PPT Distinguisher D, there exists a negligible

function µ such that the following holds : for every ℓ ∈ N, for a uniform
choice of circuit C ∈ Cℓ and for every pair of circuits C0, C1 ∈ Cℓ that
compute the same function as C, we have :

∣∣Pr
[
D(OM(C0)) = 1

]
− Pr

[
D(OM(C1)) = 1

]∣∣ ≤ µ(|C|) ,

where the probabilities are over the coins of D, O, M and the choice of C.

Note that in this model, both the obfuscator and the evaluator have access to
the oracle M but the function family that is being obfuscated does not have
access toM.

2.3 Branching Programs

Here we define the main type of branching program we consider. A detailed de-
scription of other types of branching programs, and how to build these branching
programs from other computational models, can be found in the full version of
this paper.

Definition 5. A dual-input generalized matrix branching program of length ℓ

and shape (d0, d1, . . . , dℓ) ∈ (Z+)ℓ+1 for n-bit inputs is given by a sequence

BP =
(
inp0, inp1, {Bi,b0,b1}i∈[ℓ],b0,b1∈{0,1}

)

where Bi,b0,b1 ∈ Zdi−1×di are di−1 × di matrices, and inp : [ℓ] → [n] is the
evaluation function of BP . BP defines the following three functions:

– BParith : {0, 1}n → Zd0×dℓ computed as BParith(x) =
n∏

i=1

Bi,xinp0(i),xinp1(i)

– BPbool : {0, 1}
n → {0, 1}d0×dℓ computed as BPbool(x)j,k =

{
0 if BParith(x)j,k = 0

1 if BParith(x)j,k 6= 0

– BPbool(q) : {0, 1}
n → {0, 1}d0×dℓ computed as BPbool(q)(x)j,k =

{
0 if BParith(x)j,k = 0 mod q

1 if BParith(x)j,k 6= 0 mod q

A matrix branching program is t-bounded if |BParith(x)j,k| ≤ t for all x, j, k.

Next, we define a notion of non-shortcuttingfor matrix branching programs,
which roughly states that it is not possible to determine any of the output com-
ponents of BParith/bool without carrying out the entire matrix product. In the
case d0 = dℓ = 1 (so that the branching program outputs just a single element),

this translates to requiring that no strict sub-product
∏i1

i=i0
Bi,xinp0(i),xinp1(i)

for
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(i0, i1) 6= (1, n) of the overall matrix product evaluates to an all-zero matrix.
Clearly, if some sub-product evaluates to zero, the entire product would evaluate
to zero, and so the evaluation could stop after computing just the sub-product.
We call this a short-cut, and non-shortcuttingis the requirement that there are
no shortcuts for any inputs. In the more general case of arbitrary d0, dℓ, the
condition becomes slightly more technical, and is given below:

Definition 6. A dual-input generalized matrix branching program is non-shortcutting
if, for any input x, and any j ∈ [d0] and any k ∈ [dℓ], the following holds:

eTj ·

(
ℓ−1∏

i=1

Bi,xinp0(i),xinp1(i)

)
6= 0dℓ−1 and

(
ℓ∏

i=2

Bi,xinp0(i),xinp1(i)

)
· ek 6= 0d1

where ej and ek are the jth and kth standard basis vectors of the correct di-

mension. Equivalently, each row of the product
∏ℓ−1

i=1 Bi,xinp0(i),xinp1(i)
and each

column of the product
∏ℓ

i=2 Bi,xinp0(i),xinp1(i)
has at least one non-zero entry.

Matrix Branching Program Samplers. We now define a matrix branching pro-
gram sampler (MBPS). Roughly, an MBPS is a procedure that takes as input a
modulus q, and outputs a matrix branching program BP . However, we will be
interested mainly in the function BPbool(q).

Definition 7. A matrix branching program sampler (MBPS) is a possibly ran-
domized procedure BPS that takes as input a modulus q satisfying q > t for some
bound t. It outputs a matrix branching program.

Fact 2 Any matrix branching program BP with bound t can trivially be con-
verted into a matrix branching program sampler BPS with the same bound t,
such that if BP ′ ← BPS(q), then BP ′bool(q)(x) = BPbool(x).

2.4 The Ideal Graded Encoding Model

In this section, we describe the ideal graded encoding model. This section has
been taken almost verbatim from [6] and [1]. All parties have access to an or-
acleM, implementing an ideal graded encoding. The oracleM implements an
idealized and simplified version of the graded encoding schemes from [18]. The
parties are provided with encodings of various elements at different levels. They
are allowed to perform arithmetic operations of addition/multiplication and test-
ing equality to zero as long as they respect the constraints of the multilinear
setting. We start by defining an algebra over the elements.

Definition 8. Given a ring R and a universe set U, an element is a pair (α, S)
where α ∈ R is the value of the element and S ⊆ U is the index of the element.
Given an element e we denote by α(e) the value of the element, and we denote
by S(e) the index of the element. We also define the following binary operations
over elements:
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– For two elements e1, e2 such that S(e1) = S(e2), we define e1 + e2 to be
the element (α(e1) + α(e2), S(e1)), and e1 − e2 to be the element (α(e1) −
α(e2), S(e1)).

– For two elements e1, e2 such that S(e1) ∩ S(e2) = ∅, we define e1 · e2 to be
the element (α(e1) · α(e2), S(e1) ∪ S(e2)).

We will often use the notation [α]S to denote the element (α, S). Next, we
describe the oracle M. M is a stateful oracle mapping elements to “generic”
representations called handles. Given handles to elements,M allows the user to
perform operations on the elements.M will implement the following interfaces:

Initialization. M will be initialized with a ring R, a universe set U, and a list L
of initial elements. For every element e ∈ L, M generates a handle. We do not
specify how the handles are generated, but only require that the value of the
handles are independent of the elements being encoded, and that the handles are
distinct (even if L contains the same element twice).M maintains a handle table
where it saves the mapping from elements to handles. M outputs the handles
generated for all the elements in L. AfterM has been initialized, all subsequent
calls to the initialization interface fail.

Algebraic operations. Given two input handles h1, h2 and an operation ◦ ∈
{+,−, ·},M first locates the relevant elements e1, e2 in the handle table. If any
of the input handles does not appear in the handle table (that is, if the handle
was not previously generated byM) the call toM fails. If the expression e1 ◦ e2
is undefined (i.e., S(e1) 6= S(e2) for ◦ ∈ {+,−}, or S(e1)∩S(e2) 6= ∅ for ◦ ∈ {·})
the call fails. Otherwise,M generates a new handle for e1 ◦e2, saves this element
and the new handle in the handle table, and returns the new handle.

Zero testing. Given an input handle h, M first locates the relevant element e

in the handle table. If h does not appear in the handle table (that is, if h was
not previously generated byM) the call to M fails. If S(e) 6= U, the call fails.
Otherwise,M returns 1 if α(e) = 0, and returns 0 if α(e) 6= 0.

2.5 Straddling Set Systems

We use the strong straddling set system of [30], which modifies the straddling
set system of [6] to obtain a denser intersection graph between the subsets. This
extra power is used in Section 6 when showing that the adversary cannot create
low-level encodings of 0.

Definition 9 (Strong straddling set system). A strong straddling set sys-
tem with n entries is a collection of sets S = {Si,b : i ∈ [n] , b ∈ {0, 1}} over a
universe U, such that ∪i∈[n]Si,0 = U = ∪i∈[n]Si,1, and the following holds.

– (Collision at universe.) If C,D ⊆ S are distinct non-empty collections of
disjoint sets such that

⋃
S∈C S =

⋃
S∈D S, then ∃b ∈ {0, 1} such that C =

{Si,b}i∈[n] and D = {Si,1−b}i∈[n].
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– (Strong intersection.) For every i, j ∈ [n], Si,0 ∩ Sj,1 6= ∅.

We will need the following simple lemma.

Lemma 1. Let S = {Si,b : i ∈ [n] , b ∈ {0, 1}} be a strong straddling set system
over a universe U. Then for any T ( U that can be written as a disjoint union
of sets from S, there is a unique b ∈ {0, 1} such that T =

⋃
i∈I Sb,i for some

I ⊆ [n].

Proof. By the second property of Def. 9, any pairwise disjoint collection of sets
from S must be either all of the form Si,0 or all of the form Si,1. If there are two
sets I0, I1 ⊆ [n] such that

⋃
i∈I0

Si,0 = T =
⋃

i∈I1
Si,1, then by the first property

of Def. 9 we must have T = U which contradicts our assumption.

We use the following construction from [30].

Construction 3 (Strong straddling set system) Define S = {Si,b : i ∈ [n] , b ∈ {0, 1}}
over a universe U =

{
1, 2, ..., n2

}
as follows for all 1 ≤ i ≤ n.

Si,0 = {n(i−1)+1, n(i−1)+2, . . . , ni} Si,1 = {i, n+i, 2n+i, . . . , n(n−1)+i}

3 Obfuscator for Low-Rank Branching Programs

We now describe our obfuscator for generalized matrix branching programs.
Our obfuscator is essentially the same as the obfuscator of Ananth et al. [1]. The
differences are as follows:

– We view branching programs as including the bookends. While the bookends
of previous works did not depend on the input, they can in our obfuscator.
However, for [1], this distinction is superficial: the bookends of [1] can be “ab-
sorbed” into the branching program by merging them with the left-most and
right-most matrices of the branching program. This does not change func-
tionality, since this merging always happens during evaluation, and it does
not change security, since the adversary can perform the merging himself.

– We allow our branching program to have singular and rectangular matrices.
We do, however, require the branching program to be non-shortcutting. Note
that a branching program with square invertible internal matrices and non-
zero bookend vectors, such as in [1], necessarily is non-shortcutting.

– We allow branching programs to output multiple bits — that is, the function
computed by our obfuscated program will be BPbool, which is a matrix of
0/1 entries. In order to prove security, we will have to perform additional
randomization. However, in the case of single-bit outputs, this additional
randomization is redundant.
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Input. The input to our obfuscator is a dual-input matrix branching program
sampler BPS of length ℓ, shape (d0, d1, . . . , dℓ), and bound t. The first step is to
choose a large prime q for the graded encodings. Then sample BP ← BPS(q).
Write

BP = (inp0, inp1, {Bi,b0,b1})

We require BPS to output BP satisfying the following properties:

– BP is non-shortcutting.
– For each i, inp0(i) 6= inp1(i)
– For each pair (j, k) ∈ [n]2, there exists an i ∈ [ℓ] such that (inp0(i), inp1(i)) =

(j, k) or (inp1(i), inp0(i)) = (j, k)

For ease of notation in our security proof, we will also assume that each input
bit is used exactly m times, for some integer m. In other words, for each i ∈ [n],
the sets ind(i) = {j : inpb(j) = i for some b ∈ {0, 1}} have the same size. This
requirement, however, is not necessary for security.

Step 1: Randomize BP . First, similar to previous works, we use Kilian [29] to
randomize BP , obtaining a randomized branching program BP ′. This is done
as follows.

– Let q be a sufficiently large prime of Ω(λ) bits.
– For each i ∈ [ℓ− 1], choose a random matrix Ri ∈ Zdi×di

q . Set R0,Rℓ to be
identity matrices of the appropriate size. Define

B̂i,b0,b1 = Radj
i−1 ·Bi,b0,b1 ·Ri

– For each s ∈ [d0], choose a random βs and set S to be the d0 × d0 diagonal
matrix with the βs along the diagonal. For each t ∈ [dℓ], choose a random γt
and set T to be the dℓ × dℓ diagonal matrix with γt along the diagonal. Set

C1,b0,b1 = S · B̂1,b0,b1 Cℓ,b0,b1 = B̂1,b0,b1 ·T Ci,b0,b1 = B̂i,b0,b1 for each i ∈ [2, ℓ− 1]

We note that this additional randomization step is not present in previous
works, but is required to handle multi-bit outputs

– For each i ∈ [ℓ], b0, b1 ∈ {0, 1}, choose a random αi,b0,b1 ∈ Zp, and define

Di,b0,b1 = αi,b0,b1Ci,b0,b1

Then define BP ′ = (inp0, inp1, {Di,b0,b1}). Observe thatBP ′bool(q)(x) = BPbool(q)(x)
for all x.

Step 2: Create set systems. Consider a universe U, and a partition U1, . . . ,Uℓ of
U into equal sized disjoint sets: |Ui| = 2m− 1. Let Sj be a straddling set system
over the elements of Uj . Note that Sj will have m entries, corresponding to the
number of times each input bit is used. We now associate the elements of Sj to
the indicies of BP that depend on xj :

Sj = {Sj
k,b : k ∈ ind(j), b ∈ {0, 1}}
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Next, we associate a set to each element output by the randomization step.
Recall that in a dual-input relaxed matrix branching program, each step depends
on two fixed bits in the input defined by the evaluation functions inp0 and inp1
. For each step i ∈ [n], b0, b1 ∈ {0, 1}, we define the set S(i, b0, b1) using the
straddling sets for input bits inp1(i) and inp2(i) as follows:

Si,b0,b1 = S
inp0(i)
i,b0

∪ S
inp1(i)
i,b1

Step 3: Initialization. O initializes the oracleM with the ring Zp and the uni-
verse U. Then it asks for the encodings of the following elements:

{(Di,b0,b1 [j, k], Si,b0,b1)}i∈[ℓ],b0,b1∈{0,1},j∈[di−1],k∈[di]

O receives a list of handles back from M. Let [β]S denote the handle for
(β, S), and for a matrix M , let [M ]S denote the matrix of handles ([M ]S)[j, k] =
[M [j, k]]S . Thus, O receives the handles:

{
[Di,b0,b1 ]Si,b0,b1

}
i∈[ℓ],b0,b1∈{0,1}

Output. O(BPS) outputs these handles, along with the length ℓ, shape d0, . . . , dℓ,
and input functions inp0, inp1, as the obfuscated program. Denote the resulting
obfuscated branching program as BPO

Evaluation. To evaluate BPO on input x, use the oracleM to add and multiply
encodings in order to compute the product

h =


∏

i∈[ℓ]

Di,xinp0(i),xinp1(i)



U

=
∏

i∈[ℓ]

[
Di,xinp0(i),xinp1(i)

]
Si,xinp0(i),xinp1(i)

h is a d0× dℓ matrix of encodings relative to U. Next, useM to test each of the
components of h for zero, obtaining a matrix hbool ∈ {0, 1}

d0×dℓ . That is, if the
zero test on returns a 1 on h[s, t], hbool[s, t] is 0, and if the zero test returns a 0,
hbool[s, t] is 1.

Correctness of evaluation. The following shows that all calls to the oracle M
succeed:

Lemma 2 (Adapted from [1]). All calls made to the oracleM during obfus-
cation and evaluation succeed.

It remains to show that the obfuscated program computes the correct func-
tion. Fix an input x, and define bic = xinpc(i)

for i ∈ [ℓ], c ∈ {0, 1}. From the

description above, BPO outputs 0 at position [s, t] if and only if
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0 =


∏

i∈[ℓ]

Di,bi0,b
i
1


 [s, t] = βsγt


∏

i∈[ℓ]

αi,bi0,b
i
1
Radj

i−1 ·Bi,bi0,b
i
1
·Ri


 [s, t]

= βsγt




∏

i∈[ℓ]

αi,bi0,b
i
1




∏

i∈[ℓ]

Bi,bi0,b
i
1




 [s, t] =


βsγt

∏

i∈[ℓ]

αi,bi0,b
i
1


 (BParith(x)[s, t])

With high probability βs, γt, αi,b0,b1 6= 0, meaningBParith(x)[s, t] = 0 mod q

if and only if the zero test procedure on position [s, t] gives 0. Therefore,BPO(x) =
BPbool(q)(x) for the branching program BP sampled from BPS .

4 Polynomials on Kilian-Randomized Matrices

In this section, we prove a theorem about polynomials on the Kilian-randomized
matrices from the previous section. Our high level goal is to show polynomials
the adversary tries to construct other than the correct matrix products will be
useless to the adversary. In this section, we focus on a simpler case where the
polynomial is only over matrices corresponding to a single input. In the following
section, we use the results of this section to prove the general case.

Previous works showed the single-input case using Kilian simulation [12, 6],
or a variant of it [34, 1]. Namely, these works queried the function oracle to
determine what the result of the matrix product P (x) should be. Then, they
tested the polynomial on random matrices, subject to the requirement that the
product equaled P (x), to see what the result was. Unfortunately, this step of the
analysis does indicate what the outputs of the polynomial may be, only that they
can be simulated. If the polynomial were to output zero, this would correspond
to the adversary obtaining a zero encoding, which would violate security in our
post-zeroizing model.

Moreover, previous works crucially relied on the fact that the matrices the
polynomial is tested on come from the same distribution as the matrices would
in the branching program. This requires the branching program to consist of
square invertible matrices. However, we need to be able to handle generalized
matrix branching programs with rectangular and low-rank matrices.

In light of the two issues above, we need to replace the Kilian randomization
theorem with a new theorem suitable in our setting.

Let d1, . . . , dn−1 be positive integers and d0 = dn = 1. Let Âk for k ∈ [n] be
dk−1 × dk matrices of variables.

Definition 10. Let dk, Âk be as above. Consider a multilinear polynomial p on

the variables in {Âk}k∈[n]. We call p allowable if each monomial in the expansion

of p contains at most one variable from each of the Âk.

17



As an example of an allowable polynomial, consider the the matrix product

polynomial Â1 · Â2 · · · · · Ân.
Now fix a field F, and let Ak ∈ Fdk−1×dk for k = 1, . . . , n be a collection of

matrices over F. Let Rk be dk×dk matrices of variables for k ∈ [n], and let Radj
k

be the adjugate matrix of Rk. Let R0 = Rn+1 = 1. Now suppose we set

Âk = Radj
k−1 ·Ak ·Rk

Theorem 4. Let F, dk,Ak,Rk, Âk be as above. Consider an allowable polyno-

mial p in the Âk, and suppose p, after making the substitution Âk = Radj
k−1 ·Ak ·

Rk, is identically 0 as a polynomial over the Rk. Then the following is true:

– If A1 ·A2 · · · · ·An 6= 0, then p is identically zero as a polynomial over its

formal variables, namely the Âk.
– If A1 ·A2 · · · · ·An = 0 but

A1 ·A2 · · · · ·An−1 6= 01×dn

A2 · · · · ·An−1 ·An 6= 0d2×1

then p, as a polynomial over the Âk, is a constant multiple of the matrix

product polynomial Â1 · Â2 · · · · · Ân.

Proof. If n = 1, there are no Rk matrices, a single A1 matrix of dimension
1 × 1, with entry a. Then p = p(a) = ca for some constant c. As a polynomial
over the (non-existent) Ri matrices, p is just a constant polynomial, so p = 0
means ca = 0. In the first case above, a 6= 0, so c = 0, meaning p is identically 0.
The second case above is trivially satisfied since the matrix product polynomial
is also a constant.

We will assume that A1 is non-zero in every coordinate. At the end of the
proof, we will show this is without loss of generality.

Now we proceed by induction on n. Assume Theorem 4 is proved for n− 1.
Consider an arbitrary allowable polynomial p. We can write p as

p =
∑

j1,i2,j2,...,jn,in+1

αj1,i2,...,jn−1,inÂ1,1,j1Â2,i2,j2 . . . Ân−1,in−1,jn−1Ân,in,1

Where ik+1, jk ∈ [dk], and Âk,i,j is the (i, j) entry of the matrix Âk. From this
point forward, for convenience, we will no longer explicitly refer to the bounds
dk on the ik+1, jk.

Now we can expand p in terms of the R1 matrix:

p =
∑

j1,i2,j2,...,jn,in+1,m,ℓ

αj1,i2,...,jn−1,inA1,1,mR1,m,j1R
adj
1,i2,ℓ

(A2 ·R2)ℓ,j2 Â3,i3,j3 . . . Ân,in,1

=
∑

j,i,ℓ,m

α′j,i,ℓA1,1,mR1,m,jR
adj
1,i,ℓ
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where

α′j,i,ℓ =
∑

j2,...,jn,in+1

αj,i,...,jn−1,in (A2 ·R2)ℓ,j2 Â3,i3,j3 . . . Ân,in,1

Recall that

R
adj
1,i,ℓ =

∑

σ:σ(i)=ℓ

sign(σ)


∏

t6=i

R1,σ(t),t




where the sum is over all permutations satisfying σ(i) = ℓ. Thus we can write p

as

p =
∑

j,i,σ,m

sign(σ)α′j,i,σ(i)A1,1,mR1,m,j


∏

t6=i

R1,σ(t),t




Now, since p is identically zero as a polynomial over the Rk matrices, it must

be that for each product R1,m,j

(∏
t6=iR1,σ(t),t

)
, the coefficient of the product

(which is a polynomial over the Rk : k ≥ 2 matrices) must be identically 0. We
now determine the coefficients.

First, we examine the types of products of entries in R1 that are possible.
Products can be thought of as arising from the following process. Choose a
permutation σ, which corresponds to selecting d1 entries of R1 such that each
row and column of R1 contain exactly one selected entry. Then, for some i, un-
select the selected entry from column i and instead select any entry from R1

(possibly selecting the same entry twice). We observe that the following products
are possible:

–
∏

t R1,σ(t),t for a permutation σ. This corresponds to re-selecting the un-
selected entry from column i. The resulting list of entries determines the
permutation σ used to select the original entries (since it is identical to the
original list), but allows the column i of the un-selected/re-selected entry to
vary. Thus in the summation above, this fixes σ, j = i and m = σ(i), but
allows i to vary over all values, corresponding to the fact that if we remove
any entry and replace it with itself, the result is independent of which entry
we removed. Call such products well-formed. Well-formed products give the
following equation:

∑

i

α′i,i,σ(i)A1,1,σ(i) = 0 for all σ (1)

– R1,m,j

∏
t6=iR1,σ(t),t where j 6= i and m 6= σ(i). This corresponds to, after

un-selecting the entry in column i, selecting a another entry that is in both
a different row and a different column. Note that, given final list of selected
entries, it is possible to determine the newly selected entry as the unique
selected entry that shares both a column with another selected entry and
a row with another selected entry. It is also possible to determine the un-
selected entry as the only entry that shares no column nor row with another
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entry. Therefore, the original entry selection is determined as well. Thus, in
the summation above, the selected entries fix σ, i, j, and m. In other words,
there is no other selection process that gives the same list of entries from
R1.

We call such products malformed type 1. Malformed type 1 products have
the coefficient

α′j,i,σ(i)A1,1,m

Given any i, j 6= i,m, ℓ 6= m, pick σ so that σ(i) = ℓ. Since A1,1,m 6= 0 for
all m, this gives

α′j,i,ℓ = 0 for all i, j 6= i, ℓ (2)

– R1,m,i

∏
t6=iR1,σ(t),t where m 6= σ(i). This corresponds to, after un-selecting

the entry R1,σ(i),i, selecting a different entry R1,m,i in the same column. Let
i′,m′, σ′ be some other selection process that leads to the same product.

Given the final selection of entries, it is possible to determine m′ = m

as the only row with two selected entries. It is also possible to determine
σ′(i′) = σ(i) as the only row with no selected entries (though i′ has not been
determined yet). Moreover, i′ must be one of the two columns selected in
row m, call the other i′′. All entries outside of these two rows must have
come from the original selection of entries, so this determines σ′(t) = σ(t)
on all inputs outside of i, i′′. Notice that if i = i′, then σ′ agrees with σ on
d1−1 entries, and since they are both permutations, this sets σ′ = σ. In this
case, (i′,m′, σ′) = (i,m, σ).

Otherwise i′ 6= i, so i′′ = i, which leaves σ′(i) = σ(i′) = m. At this point, σ′

is fully determined as σ ◦ (i i′) where (i i′) is the transposition swapping
i and i′. Therefore, there are two possibilities leading to this product, one
corresponding to i and the other corresponding to i′.

We call these products malformed type 2. Notice that σ′ and σ only differ by
a transposition swapping i and i′, and so they have opposite parity, meaning
the corresponding terms in p have the opposite sign. Given i, i′ 6= i,m, ℓ 6= m,
choose σ so that σ(i) = ℓ. This gives us (α′i,i,ℓ − α′i′,i′,ℓ)A1,1,m = 0. Since
A1,1,m 6= 0 for all m, we therefore have that α′i,i,ℓ = α′i′,i′,ℓ for all i, i′. We
can thus choose βℓ such that:

α′i,i,ℓ = βℓ for all i, ℓ (3)

– R1,σ(i),j

∏
t6=iR1,σ(t),t where j 6= i. We call such products malformed type

3. the coefficients of these products are linear combinations of the α′i,j,ℓ
for i 6= j, which we already know to be 0. Therefore, these equations are
redundant, and we will not need to consider them.

Setting σ(i) = i in Equation 1 and combining with Equation 3, we have that

∑

ℓ

βℓA1,1,ℓ = 0 (4)
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Now we can expand α′j,i,ℓ and βi in Equations 2 and 4, obtaining:

0 = α′i,j,ℓ =
∑

j2,i3,...,jn−1,in

αj,i,j2,i3,...,jn−1,in (A2 ·R2)ℓ,j2 Â3,i3,j3 . . . Ân,in,1 for all ℓ, i, j 6= i

(5)

0 =
∑

ℓ

βℓA1,1,ℓ =
∑

ℓ,j2,i3,...,jn−1,in

αi,i,j2,i3,...,jn−1,inA1,1,ℓ (A2 ·R2)ℓ,j2 Â3,i3,j3 . . . Ân,in,1

=
∑

j2,i3,...,jn−1,in

αi,i,j2,i3,...,jn−1,in (A1 ·A2 ·R2)1,j2 Â3,i3,j3 . . . Ân,in,1 for all i

(6)

Now we invoke the inductive step multiple times. Let A2,ℓ be the ℓth row of

A2, and let Â2,ℓ = A2,ℓ ·R2. Since A2 ·A3 . . .An 6= 0, there is some ℓ such that
A2,ℓ ·A3 . . .An 6= 0. Then the matrices A2,ℓ,A3, . . . ,An satisfy the first set of
requirements of Theorem 4 for n − 1. Moreover, the right side of Equation 5
gives an allowable polynomial that is identically zero as a polynomial over the
Rk, k ≥ 2, and therefore, by induction, it is identically 0 as a polynomial over

Â2,ℓ, Â3, . . . , Ân. This shows us that

αj,i,j2,i3,...,jn−1,in = 0 for all j 6= i (7)

Next, Let A′2 = A1 ·A2, and let Â′2 = A′2 ·R2. There are two cases:

– A1 ·A2 · · ·An 6= 0. Then A′2 ·A3 · · ·An 6= 0. Therefore, A′2,A3, . . . ,An sat-
isfy the first set of requirements in Theorem 4. Moreover, for each i, Equa-
tion 6 gives an allowable polynomial that is identically zero as a polynomial
over the Rk, k ≥ 2. Therefore, by induction, the polymomial is identically

zero as a polynomial over Â′2, Â3, . . . , Ân. This means

αi,i,j2,i3,...,jn−1,in = 0 for all i

Combining with Equation 7, we have that all the α values are 0. Therefore

p is identically zero as a polynomial over the Â1, Â2, . . . , Ân.
– A1 ·A2 · · ·An = 0. ThenA′2 ·A3 · · ·An = 0. However,A′2·A3 · · ·An−1 = A1 ·

A2 · · ·An−1 6= 0 andA3 . . .A4 · · ·An 6= 0 (since otherwiseA2 · · ·A3 · · ·An =
0, contradicting the assumptions of Theorem 4). Therefore, A′2,A3, . . . ,An

satisfy the second set of requirements in Theorem 4. By induction, for each i,

the polynomial in Equation 6 must therefore be a multiple γiÂ′2 · Â3 · · · Ân

of the matrix product polynomial. This is equivalent to

αi,i,j2,i3,...,jn−1,in = 0 if jk 6= ik+1 for any k

αi,i,i3,i3,...,in,in = γi

This means we can write

α′j,i,ℓ = 0 for all j 6= i (by Equation 7 and the definition of α′i,j,ℓ)

α′i,i,ℓ = γi
∑

i3,...,in

(A2 ·R2)ℓ,i3 Â3,i3,i4 . . . Ân,in,1 = γi (A2 ·A3 · · ·An)ℓ,1
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Since α′i,i,ℓ = βℓ for all i and the product A2 ·A3 · · ·An is non-zero, we have
that γi = γ is the same for all i. Therefore,

αi,i,i3,i3,...,in,in = γ for all i, i3, . . . , in

meaning p is a multiple of the matrix product polynomial, as desired.

It remains to show the case where A1 has zero entries. Since A is non-zero (as
a consequence of our assumptions), and A is a single row vector, it is straight-
forward to build an invertible matrix B such that A′1 = A1 · B is non-zero in
every coordinate.

Let A′2 = B−1A2. Let R′1 = B−1 · R1, Â′1 = A′1 · R
′
1 = Â1, and Â′2 =

(R′1)
adj · A′2 · R2 = Â2. Now A′1,A

′
2,A3, . . . ,An satisfy the same conditions

of Theorem 4 as the original Ak. Moreover, p is still allowable as a polynomial

over Â′1, Â
′
2, Â3, . . . Ân. Moreover, we can relate p as a polynomial over Rk to

p as a polynomial over R′1,R2, . . . ,Rn−1 by a linear transformation on the R1

variables. Therefore, p is identically zero as a polynomial over the Rk if and only
if it is identically zero as a polynomial over R′1,R2, . . . ,Rn. Thus we can invoke
Theorem 4 on A′1,A

′
2, . . . ,An using the same polynomial p, and arrive at the

desired conclusion. This completes the proof.

5 Sketch of VBB Security Proof

We now explain how to use Theorem 4 to prove the VBB security of our obfus-
cator. Due to space constraints, the complete proof is deferred to the full version
of this paper. In this sketch, we pay special attention to the steps in our proof
that deviate from previous works [6, 1]. We also state a definition and lemma
that will be used in Section 6 to prove that encodings of zero cannot be created
when the function being obfuscated is evasive.

The adversary is given an obfuscation of a branching program BP , which
consists of a list of handles corresponding to elements in the graded encoding.
The adversary can operate on these handles using the graded encoding interface,
which allows performing algebraic operations and zero testing. Our goal is to
build a simulator that has oracle access only to the output of BP , and is yet
able to simulate all of the handles and interfaces seen by the adversary. Formally,
we prove the following theorem.

Theorem 5. If BPS outputs non-shortcutting branching programs, then for any
PPT adversary A, there is a PPT simulator Sim such that
∣∣∣∣Pr[AM(OM(BPS)) = 1]− Pr

BP←BPS
[SimBP (ℓ, d0, . . . , dℓ, inp0, inp1) = 1]

∣∣∣∣ < negl.

The simulator will choose random handles for all of the encodings in the ob-
fuscation, leaving the actual entries of the Di,b0,b1 as formal variables7. Simulat-
ing the algebraic operations is straightforward; the bulk of the security analysis

7 The simulator does not know the branching program, and so it has no way of actually
sampling the Di,b0,b1 .
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goes in to answering zero-test queries. Any handle the adversary queries the zero
test oracle on corresponds to some polynomial p on the variables Di,b0,b1 , which
the adversary can determine by inspecting the queries made by the adversary so
far.

The simulator’s goal is to decide if p evaluates to zero, when the formal
variables in the Di,b0,b1 are set to the values in the randomized matrix branching
program BP ′. However, the simulator does not know BP ′, and must instead
determine if p gives zero knowing only the outputs of BP .

The analysis of [6] and [1] first simplifies the problem of determining if p
evaluates to zero, using Lemma 3 below.

Definition 11. A single-input element for an input x is a polynomial px whose
variables are the Ci,xinp0(i),xinp1(i)

matrices, and px is allowable in the sense of
Definition 10: each monomial in the expansion of px contains exactly one variable
from each of the Ci,xinp0(i),xinp1(i)

matrices.

Lemma 3 (Adapted from [6, 1]). Any polynomial p over the obfuscation
OM(BPS) can be efficiently decomposed into a sum p =

∑
x∈D αxpx, where

αx =
∏

i∈[ℓ] αi,xinp0(i),xinp1(i)
, each px is a single-input element for input x, and

|D| is polynomial in the circuit size of p.

Due to the independence of the αx variables, it can be shown that p evaluates
to zero iff each of the polynomials px do. Thus Lemma 3, along with some extra
analysis of our own to handle multi-bit outputs, reduces the general problem
to the following simpler problem. There is an unknown sequence of matrices

Ai ∈ Z
di−1×di
q for i ∈ [ℓ], where d0 = dℓ = 1 (the shapes of theAi ensure that the

product
∏

i∈[ℓ] Ai is valid and results in a scalar). We are also given an allowable

polynomial p′ on matrices of random variables Âi. Our goal is to determine, if

the Âi are set to the Kilian-randomized matrices Âi = Ri−1 ·A·R
adj
i , whether or

not p′ evaluates to zero. We note that by applying the Schwartz-Zippel lemma,
it suffices to decide if p′ is identically zero, when considered a polynomial over
the formal variables Ri.

It is not hard to see that this simpler problem is impossible in general: p′

could be the polynomial computing the iterated matrix product
∏

k∈[ℓ] Âi, which

is equal to
∏

i∈[ℓ]Ai. Therefore, to decide if p′ is identically zero in this case, we

at a minimum need to know if
∏

i∈[ℓ] Ai evaluates to 0.

The analysis shows that the Ai are actually equal to Bi,xinp0(i),xinp1(i)
for some

(known) input x, where Bi,b0,b1 are the matrices in the branching program BP .
Therefore, we can determine if

∏
i∈[ℓ] Ai = 0 by querying the BP oracle on x.

In the case where p′ is the iterated matrix product, this allows us to determine
if p′ is identically 0. What about other, more general, polynomials p′?

In previous works,A1 andAℓ are bookend vectors, and theAi for k ∈ [2, ℓ−1]
are square invertible matrices. In this setting, Kilian’s statistical simulation the-

orem allows us to sample from the distribution of Âi knowing only the product
of the Ai, but not the individual values. Then we can apply p′ to the sample, and
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the Schwartz-Zippel lemma shows that p′ will evaluate to zero, with high prob-
ability, if and only if it is identically zero. This allows deciding if p′ is identically
zero.

In our case, we cannot sample from the correct distribution of Âi. Instead,
we observe that our branching program is non-shortcutting, which means the
Ai and p′ satisfy the requirements of Theorem 4. Theorem 4 implies something
remarkably strong: if p′ is not (a multiple of) the iterated matrix product, it
cannot possibly be identically zero as a polynomial over the formal variables Rk.
Thus, we first decide if p′ is a multiple of the iterated matrix product, which
is possible using the Schwartz-Zippel lemma. If p′ is a multiple, then we know
it is identically zero if and only if the product

∏
i∈[ℓ]Ai is zero, and we know

whether this product is zero by using our BP oracle.

6 Obfuscating Evasive Functions with No Zero Encodings

In this section we show that when the obfuscator of Section 3 is applied to an
evasive function, any poly-time adversary will have only negligible probability
in constructing an encoding of 0.

Definition 12. We say that an adversary A constructs an encoding of 0 if it
ever receives a handle h from M such that (a) h maps to an encoding of 0 in
M’s table, and (b) the polynomial that produced the encoding is not identically
zero as a polynomial over its formal variables.

Theorem 6. Let O be the obfuscator from Section 3, and let BPS sample an
evasive function family. Then for any PPT adversary A:

Pr
[
AM(OM(BPS)) constructs an encoding of 0

]
< negl(ℓ).

One can never prevent an adversary from constructing a trivial encoding of
0 by computing e − e for some encoding e that it has. (More generally, any
identically zero polynomial will produce a trivial encoding of 0.) However in all
candidate constructions of graded encoding schemes, such an operation always
produces the integer 0, which contains no information. Indeed, it seems unlikely
that a plausible candidate would not have this property.

To prove Theorem 6, we first show that any element that is not at the top
level U can be “completed” to the top level by multiplying with other basic
elements output by the obfuscator. This is a consequence of our use of strong
straddling sets.

Definition 13. For i ∈ [ℓ] and b ∈ {0, 1}, an element encoded at level Sj,b0,b1

implies xi = b if either inp0(j) = i and b0 = b or inp1(j) = i and b1 = b.

Lemma 4. Let R := {[Di,b0,b1 ]Si,b0,b1
} be the basic elements output by the ob-

fuscator O, and let [r]S be any valid element created by a polynomial p over
R.

Then there exists a set of elements R′ ⊆ R such that [r]S×
∏

z∈R′ z is a valid
element at level U, and further R′ can be efficiently found.
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Proof. We say that p touches layer j ∈ [n] if any leaf of p is a basic element
from layer j (cf. [30, Def. 4.2]). S uniquely determines the layers touched by
p and vice versa (though not necessarily the specific matrices touched in each
layer); in particular, p touches every layer iff S = U. Thus we construct R′ to
contain one basic element from each layer that is not touched by p. If S = U
then the lemma holds trivially with R′ := ∅, so assume S 6= U and let J ⊆ [n]
be the set of layers not touched by p. Let I := {inp0(j), inp1(j) | j ∈ J} ⊆ [ℓ] be
the set of all indices that are read in some untouched layer.

We claim that there is a sequence (bi)i∈I ∈ {0, 1}
|I| such that for every i ∈ I,

p’s leaves do not contain any basic element that implies xi = 1 − bi. Fix any
i ∈ I. Recall that Ui ⊂ U is the universe set for index i, and note that we must
have Ui 6⊆ S because some layer that reads index i is untouched. If Ui ∩ S = ∅,
then p’s leaves do not contain a basic element that implies xi = 0 nor one that
implies xi = 1; in this case we can take bi = 0. If instead Ui ∩ S 6∈ {∅,Ui}, then
by Lemma 1 there is a unique bi ∈ {0, 1} for which there exists J ′ ⊂ [n] such
that

Ui ∩ S =
⋃

j′∈J′

Si
j′,bi .

(Recall that each Si
j′,bi

comes from the strong straddling set system over Ui.)
Thus p’s leaves do not contain any basic element that implies xi = 1− bi.

Finally letR′ contain, for each j ∈ J , an arbitrary entry from the (binp0(j), binp1(j))th
matrix in layer j. Formally, R′ := {Dj,binp0(j),binp1(j)

[0, 0] | j ∈ J} which can be
efficiently computed given e. Then [r]S ×

∏
z∈R′ z is valid by construction, and

it is at level U because it touches every layer.

We now prove the main theorem of this section. The proof uses the simulator
Sim of Theorem 5 in a non-black-box way, and specifically relies on properties
of the decomposition p =

∑
x αxpx given by Lemma 3.

Proof (Proof of Theorem 6). For any PPT adversary A, denote

P ′(A) := Pr
[
AM(OM(BPS)) constructs a level-U encoding of 0

]
.

We first show that if P ′(A) is a noticeable function of ℓ for some PPT A,
then BPS cannot be evasive, in contradiction to our assumption. Next we use
Lemma 4 to remove the assumption that A’s encoding of 0 is at level U.

Let f ← BPS denote the function being obfuscated. Let A be any PPT, and
let Sim denote the corresponding simulator given by Theorem 5. We construct
a new adversary B, with oracle access to f , that finds an input x such that
f(x) = 0.

Bf
(
1ℓ
)
:

1. Run Simf , which itself is running A, up until the point where A constructs
a level-U encoding.

2. Decompose p =
∑

x∈D αxpx as in Lemma 3. Check if f(x) = 0 for any
x ∈ D. If so, stop and output x; otherwise, continue running Sim until A’s
next level-U encoding, and repeat.
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3. If Sim halts, then output a random x ∈ {0, 1}ℓ.

Note that B’s simulation of A’s view is correct up to statistical distance negl(ℓ),
because Sim’s is. The proof of Theorem 5 establishes that for any level-U p

constructed by A,

Pr[p is an encoding of 0 but some px is not] < negl(ℓ).

Further, Theorem 4 establishes that if px is not identically zero (and some px
must not be since p is not), then px is a multiple of the honest matrix product
polynomial corresponding to input x. Thus px is an encoding of 0 iff f(x) = 0,
and we have established ∀ PPT A ∃ PPT B:

Pr
[
f
(
Bf(1ℓ)

)
= 0
]
≥ P ′(A) − negl(ℓ). (8)

Finally, let

P(A) := Pr
[
AM(OM(BPS)) constructs an encoding of 0

]

be the probability that we want to bound. We claim that ∀ PPT A ∃ PPT
A′: P ′(A′) ≥ P(A). Namely A′ runs A, and for every encoding [r]S with S 6=
U created by A, A′ also creates the level-U encoding [r′]U := [r]S ×

∏
z∈R′ z

guaranteed by Lemma 4. Note that if [r]S encodes 0 then [r′]U must encode 0
as well, so we have P ′(A′) ≥ P(A). Combining this with (8), we complete the
proof: if ∃ PPT A such that P(A) is a noticeable function of ℓ, then BPS does
not sample an evasive function family.

In the full version of this paper, we show that, via the bootstrapping tech-
nique of [20, 12], an obfuscator for log-depth evasive circuits implies an obfuscator
for all poly-size evasive circuits.
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