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Abstract. We present a new definition of computationally binding commit-
ment schemes in the quantum setting, which we call “collapse-binding”. The
definition applies to string commitments, composes in parallel, and works well
with rewinding-based proofs. We give simple constructions of collapse-binding
commitments in the random oracle model, giving evidence that they can be
realized from hash functions like SHA-3. We evidence the usefulness of our
definition by constructing three-round statistical zero-knowledge quantum
arguments of knowledge for all NP languages.

1 Introduction
We study the definition and construction of computationally binding string
commitment schemes in the quantum setting. A commitment scheme is a two-
party protocol consisting of two phases, the commit and the open phase. The
goal of the commitment is to allow the sender to transmit information related to
a message m during the commit phase in such a way that the recipient learns
nothing about the message (hiding property). But at the same time, the sender
cannot change his mind later about the message (binding property). Later, in
the open phase, the sender reveals the message m and proves that this was
indeed the message that he had in mind earlier. We will focus on non-interactive
classical commitments, that is, the commit and open phase consists of a single
classical message. However, the adversary who tries to break the binding or hiding
property will be a quantum-polynomial-time algorithm. At the first glance, it
seems that the definition of the binding property in this setting is straightforward;
we just take the classical definition but consider quantum adversaries instead of
classical ones:

Definition 1 (Classical-style binding – informal). No quantum-polynomial-
time algorithm A can output, except with negligible probability, a commitment c
(i.e., the message sent during the commit phase) as well as two openings u, u′
that open c to two different messages m,m′.

(Formal definition in Section 2.) Unfortunately, this definition turns out to be
inadequate in the quantum setting. Ambainis, Rosmanis, and Unruh [1] show the
existence of a commitment scheme (relative to a special oracle) such that: The
commitment is classical-style binding. Yet there exists a quantum-polynomial-
time adversary A that outputs a commitment c, then expects a message m as
input, and then provides valid opening information for c and m. That is, the
adversary can open the commitment c to any message of his choosing, even
if he learns that message only after committing. This is in clear contradiction



to the intuition of the binding property. How is this possible, as Definition 1
says that the adversary cannot produce two different openings for the same
commitment? In the construction from [1], the adversary has a quantum state |Ψ〉
that allows him to compute one opening for a message of his choosing, however,
this computation will destroy the state |Ψ〉. Thus, the adversary cannot compute
two openings simultaneously, hence the commitment is classically-binding. But
he can open the commitment to an arbitrary message once, which shows that
the commitment scheme is basically useless despite being classically-binding.1

1.1 Prior definitions

We now discuss various definitions that appeared in the literature and that
circumvent the above limitation of the classical-binding property. (We do not
discuss the hiding property here, because that one does not have any comparable
problems. See Definition 10 below for the definition of hiding.) In each case,
we discuss some limitations of the definitions to motivate the need for a new
definition for computationally binding commitments. The reader only interested
in our results can safely skip this section.

Sum-binding. The most obvious solution is to simply require that the adversary
cannot open successfully to each of two messages: That is:

Definition 2 (Sum-binding – informal). Consider a bit commitment
scheme. (I.e., one can only commit to m = 0 or m = 1.)

Given an adversary A, let pb be the probability that the recipient accepts
in the following execution: A commits, then A is given b, and then A provides
opening information for message b. A commitment is sum-binding iff for any
quantum-polynomial-time adversary A, p0 + p1 ≤ 1 + negligible.

Note that even with an ideal commitment, p0 + p1 = 1 is possible (the adversary
just picks b := 0 in the commit phase with probability p0, and b := 1 else). So
p0 + p1 ≤ 1 + negligible is the best we can expect if we allow for a negligible
probability of an attack. The sum-binding definition has occurred implicitly and
explicitly in different variants in [4,15,13,6,8]. We use the name sum-binding here
to distinguish it from the other definitions of binding discussed here since it does
not have an established name.

Although it avoids the attack described above, the sum-binding definition has
a number of disadvantages:
– It is specific to the bit commitment case. There is no straightforward gener-

alization to the the string commitment case (i.e., where the message m does
not have to be a single bit). See [6] for discussion why obvious approaches
fail.

1 Note that for classical adversaries, the classical-binding property gives useful guaran-
tees: If an adversary can produce an opening for any message m using some classical
algorithm, he can also produce two openings for different messages m,m′ by running
that algorithm twice.
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– It is unclear how the definition behaves when we use the commitment several
times. (I.e., it is not clear how it behaves under composition.) For example,
given bits m1, . . . ,mn, what are the security guarantees if we commit to each
of the mi? (Be it in parallel, or sequentially.) Basically, we would expect
that all commitments together form a binding commitment on the string
m = m1 . . .mn, but this is something we cannot even express using the
sum-binding definition.

– It is not clear how useful sum-binding commitments are as subprotocols in
larger protocols. That is, is the sum-binding property strong enough to allow
to prove the security of complex protocols using commitments? While there
are constructions of sum-binding in the literature (e.g., [13]), we are not
aware of research where (computational) sum-binding commitments are used
as subprotocols.

CDMS-binding. Crépeau, Dumais, Mayers, and Salvail [6] suggest a generaliza-
tion of the sum-binding property to string commitments. The basic idea is: Instead
of bounding p0+p1 ≤ 1+negligible where pm is the probability that the adversary
open his commitment as m ∈ {0, 1}, we could bound

∑
m pm ≤ 1 + negligible

where m ranges over all bitstrings. However, as discussed in [6], this would be
too strong a requirement. (Basically, this is because the sum

∑
m pm has expo-

nentially many summands, so even negligible attack probabilities can add up to
large probabilities.) Instead, they proposed the following definition:

Definition 3 (CDMS-binding – informal). Let F be a family of functions.
Fix a string commitment scheme. For f ∈ F , let p̃fy be the probability that the
recipient accepts in the following execution: A commits. A gets y. A tries to open
the commitment to some m with f(m) = y.

We call the commitment scheme F -CDMS-binding iff for all adversaries A
and all f ∈ F , we have

∑
y p̃

f
y ≤ 1 + negligible.

Now if all f ∈ F have a polynomial-size range, the sum
∑
y p̃

f
y will have poly-

nomially many summands. The intuition behind this definition is that every
function f ∈ F represents some property of the committed message m (e.g., f(m)
is the parity of m). Then, if a commitment scheme is F -CDMS-binding, this
intuitively means that the although the adversary might be able to change his
mind about the message m, he cannot change his mind about f(m). (E.g., if
the parity function is in F , this means that the adversary will be committed to
the parity of the message m.) [6] successfully used this definition (for a specific
class F ) to show that using quantum communication and a commitment, we can
construct an oblivious transfer protocol. (Note however that their protocol is
different and more complex than the original OT protocol from [2].)

Although the CDMS-binding definition generalizes the sum-binding definition
to the case of string commitments, it comes with its own challenges:
– The definition is parametrized by a specific family F of functions that specifies

in which way the commitment should be binding. This function family has
to be chosen dependent on the particular use case. This makes the definition
less universal and canonical.
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– To the best of our knowledge, no construction of CDMS-binding commitments
is known. Crépeau et al. [6] conjecture that the protocol from [7] can be
extended to a CDMS-binding one for functions F with small range, but no
proof or construction is given.

– It is not known whether the definition is composable. If we commit to messages
m1, . . . ,mn individually using F -CDMS-binding commitments, does this
constitute an F ′-CDMS-binding commitment on m := m1‖ . . . ‖mn? If so,
for which F ′?

– While CDMS-binding commitments have successfully been used in a larger
protocol (namely, the OT protocol from [6]), we believe that in many contexts,
the definition is still not very easy to use. At least in classical cryptography,
one often uses the fact that it is possible to extract the committed message
by rewinding (basically, one runs the open phase, saves the opened message,
and rewinds to before the opening phase). It is not clear how to do that with
CDMS-binding commitments. For example, it is not clear how one could
use CDMS-binding commitments in the construction of sigma-protocols that
are quantum arguments of knowledge (as done in Section 7 below using our
definition of binding commitments).

Perfectly-binding commitments. One possibility to solve all the problems
mentioned so far is simply to use perfectly-binding commitments.

Definition 4 (Perfectly-binding – informal). A commitment scheme is
perfectly-binding if there exists no tuple (c,m, u,m′, u′) with m 6= m′ such that
u is a valid opening for c with message m, and u′ is a valid opening for c with
message m′.

However, if we restrict ourselves to perfectly-binding commitments, we get the
following disadvantages:
– A perfectly-binding commitment cannot be statistically hiding [15]. That

is, the hiding property cannot hold against computationally unlimited ad-
versaries. That means that we give up on information-theoretical security
for one party just because we do not have a suitable definition for the
computationally-binding property. For example, the constructions in [19] are
only computational zero-knowledge (not statistical zero-knowledge) because
perfectly-binding commitments are used.

– Perfectly-binding commitments cannot be short. That is, the length of the
commitment must be as long as the length of the committed message. So by
using only perfectly-binding commitments, we may lose efficiency.

UC commitments. One further possibility is to use commitments that are
UC-secure [18]. Since the security of a protocol using a UC-secure commitment
can be reduced to the security of the same protocol using an ideal (in particular
perfectly-binding) commitment, UC-secure commitments are easy to use. Yet,
this solution again comes with disadvantages:
– UC-commitments do not exist without the use of additional setup such as,

e.g., a common reference strings (CRS). It is possible to chose the CRS in
a pre-computation phase using a coin-toss protocol [12]. But that increases
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the round complexity of the resulting protocol (and, incidentally, loses the
UC security and possibly even the concurrent composability of the resulting
protocol).

– In the construction of UC-secure commitment schemes, trapdoors are used
that allow the simulator to extract the committed message. This implies
that constructions of UC-secure commitment are usually more complex, less
efficient, and use stronger computational assumptions.

– At least when using a CRS, UC commitments cannot be short.
Damgård, Fehr, Lunemann, Salvail, and Schaffner [9] use so-called dual-mode
commitments, these are somewhat weaker than UC commitments. Yet, they also
use extraction using a trapdoor in the CRS. Hence the disadvantages of UC
commitments apply to dual-mode commitments as well.

Q-binding. Damgård, Fehr, and Salvail [11] give another definition for compu-
tationally binding string commitments. Intuitively, the definition says that an
adversary who uses the commitment has negligible advantage in a “betting game”
over an adversary that has to use perfect commitments. Here, a betting game is
represented as an arbitrary predicate on the opened values in the commitments,
and on some random input that the adversary learns only after committing. (E.g.,
a bet could be: the sum of all opened values equals the random value u that the
adversary learns just before opening.) Somewhat more formally:

Definition 5 (Q-binding – informal). For an adversary A and an predicate
Q, consider the following game: A outputs commitments C1, . . . , CN . Then A
gets a random bitstring u. Then A opens a subset A of the commitments, let
(si)i∈A be the contents. A wins if Q(A, (si)i∈A, u) = 1.

A commitment scheme is Q-binding iff for any quantum-polynomial-time A
and any predicate Q, the adversary A wins with probability at most pIDEAL + negl ,
where pIDEAL is the maximum winning probability when using a perfectly binding
commitment.

The definition overcomes some of the problems of the CDMS-binding definition.
In particular, there is no need to parametrize the definition with a class F of
functions, specifically chosen to fit the use case at hand. Also, the Q-binding
definition composes in parallel: if a commitment scheme is Q-binding, then the
commitment scheme resulting from committing to each ofm1, . . . ,mn individually
is Q-binding, too. (This should come as no surprise, since the Q-binding definition
itself explicitly refers to a polynomial number of parallel copies of the commitment
scheme.) The definition seems particularly well-suited for commit-and-choose
constructions (i.e., where one party commits to a set of values, and the other
party selects which of them should be opened), since security when opening
a specific subset is built into the definition. [11] give a generic construction
for unconditionally hiding Q-binding equivocal trapdoor commitments from a
certain class of sigma-protocols. They show that using such commitments, sigma-
protocols can be converted into statistical quantum zero-knowledge arguments in
the CRS model.

However, their definition also comes with a number of challenges:
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– The only construction of unconditionally hiding Q-binding commitments
known is actually an equivocal trapdoor commitment. Trapdoor commitments
usually need stronger assumptions. Note also that no protocols using non-
equivocal Q-binding commitments are known (the zero-knowledge protocols
in [11] need the trapdoor because they are constructed following the “no
quantum rewinding paradigm”). And, due to the absence of rewinding, the
zero-knowledge protocols only work in the CRS model.

– The possibility for parallel composition might be limited: It follows directly
from the definition that Q-binding commitments on m1, . . . ,mn are a Q-
binding commitment onm = m1 . . .mn. However, it is not clear what happens
if we commit to m1, . . . ,mn using different Q-binding commitments. (Or the
same Q-binding commitment, but using different public keys.)

– The definition is specialized for the commit-and-choose paradigm. It is unclear
how it can be used in rewinding-based proofs. (On the other hand, in commit-
and-choose situations, Q-binding commitments might be more suitable than
those we propose; whether this is the case constitutes future work.)

Summarizing, Q-binding commitments seem to be well suited for commit-and-
choose constructions, but for proofs involving rewinding, we need another defini-
tion.

DFRSS-binding. Damgård, Fehr, Renner, Salvail, and Schaffner [10] presented
a definition for the unconditional binding property, targeted mainly for the
bounded quantum storage model; the following is a direct adaptation of their
definition to the computational setting:

Definition 6 (DFRSS-binding – adapted). In a commitment, let V denote
the recipient’s classical state, and Z the sender’s classical state.

A bit commitment is DFRSS-binding iff for any quantum-polynomial-time
sender C̃, there exists a randomized function B′ such that the following holds:

Let C̃ and the honest recipient execute the commit phase. Compute b′ :=
B′(V,Z). Let C̃(b′) and the honest recipient execute the open phase. Let b denote
the opened bit (or ⊥ if the recipient does not accept). Then Pr[b′ 6= b] is negligible.

In other words, given the classical part of the state of the recipient and the
sender, it is possible to extract what bit the sender will open to. (The extraction
does not have to be efficiently feasible.) The definition can be extended to string
commitments by letting B′ range over bitstrings.

We have changed the original definition from [10] to refer to quantum-
polynomial-time adversaries. (We also reformulated it for easier readability,
changing a number of technical details in the process. However, the current
definition is in the spirit of the original. And our discussion also applies to the
original formulation.)

The definition was originally intended for protocols in the bounded quantum
storage model. What happens if we use it in the standard model, i.e., with no
limit on the quantum memory of the sender? In this case, it is always possible for
the malicious sender to perform all his operations in superposition, and only the
recipient will perform measurements. Then, in Definition 6, the register Z will be
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empty. Hence the definition requires that the committed bit b′ can be computed
from the recipient’s state V alone. This immediately implies that the scheme
cannot be statistically hiding, and that the commitments cannot be shorter than
the message.

Hence the DFRSS-binding definition shares the drawbacks of the perfectly
binding definition, unless we are in the bounded quantum storage model. (We
stress that [10] never claimed that the definition should be used outside the
bounded quantum storage model.)

1.2 Our contribution

We give a new definition for the computational-binding property for commitment
schemes, called “collapse-binding” (Section 2). This definition is composable
(several collapse-binding commitments are also collapse-binding together), works
well with quantum rewinding (see below), does not conflict with statistical hiding
(as perfectly-binding commitments would), allows for short commitments (i.e.,
the commitment can be shorter than the committed message, in contrast to
perfectly-binding commitments, and to extractable commitments in the CRS
model). Basically, collapse-binding commitments seem to be in the quantum
setting what computationally-binding commitments are in the classical setting.

We show that collision-resistant hash functions are not sufficient for getting
collapse-binding or even just sum-binding commitments (Section 3), at least when
using standard constructions, and relative to an oracle. We present a strengthening
of collision-resistant hash functions, “collapsing hash functions” that can serve as
a drop-in replacement for collision-resistant hash functions (Section 4). Using
collapsing hash functions, we show several standard constructions of commitments
to be collapse-binding (Section 5).

We conjecture that standard cryptographic hash functions such as SHA-3
[17] are collapsing (and thus lead to collapse-binding commitments). We give
evidence for this conjecture by proving that the random oracle is a collapsing
hash function.

We show that the definition of collapse-binding commitments is usable by
extending the construction of quantum proofs of knowledge from [19] (Section 7).
Their construction uses perfectly-binding commitments (actually, strict-binding,
which is slightly stronger) to get proofs of knowledge. We show that when
replacing the perfectly-binding commitments with collapse-binding ones, we get
statistical zero-knowledge quantum arguments of knowledge. In particular, this
shows that collapse-binding commitments work well together with rewinding.

1.3 Our techniques

Collapse-binding commitments. To explain the definition of collapse-binding
commitments, first consider a perfectly-binding commitment. That is, when an
adversary A outputs a commitment c, there is only one possible message mc that
A can open c to. Hence, if the adversary A outputs a superposition of messages
that he can open c to, that superposition will necessarily be in the state |mc〉.
Hence, we can characterize perfectly-binding commitments by requiring: when an
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adversary outputs a superposition of messages that he can open the commitment c
to, that superposition will necessarily be a single computational basis vector (i.e.,
no non-trivial superposition).

(a)

A B

A Vc B

A Vc B

A B
Vc

c ok

b/
M

/
S

/
U

(b)

A B

A Vc B

A Vc Mok B

A B
Vc

c ok

b/
M

/
S

/
U

Fig. 1: Games from the definition of
collapse-binding commitments.

To express this more formally, con-
sider the circuit in Figure 1 (a). Here
the adversary A outputs a commit-
ment c (classical message). Further-
more, he outputs three quantum reg-
isters S, U , M . S contains his state.
M is supposed to contain a superpo-
sition of messages, U a superposition
of corresponding opening informations.
Then we apply the measurement Vc.
This measurement measures whether
U,M contain matching opening infor-
mation/message. More formally, Vc
measures whether U,M is a superpo-
sition of states |u,m〉 such that u is
valid opening information for message
m and commitment c. Let ok = 1 if
the measurement succeeds. Then we feed the registers S,U,M back to the second
part B of the adversary. B outputs a classical bit b. As discussed before, a
commitment is perfectly-binding iff for all adversaries A, the state of M after
measuring ok = 1 is a computational basis vector.

The state of a register is a computational basis vector (or, synonymously:
is in a collapsed state) iff measuring that register in the computational basis
does not change that state. Consider the circuit in Figure 1 (b). Here we added
a measurement Mok on M after Vc. Mok is a complete measurement in the
computational basis, but is executed only if ok = 1. Since Mok disturbs the state
of M iff that state is not a computational basis vector, we can rephrase the
definition of perfectly-binding commitments:

A commitment is perfectly-binding iff, for all computationally unlimited
adversaries A,B, Pr[b = 1] is equal in Figures 1 (a) and 1 (b) where b is the
output (i.e., guess) of B.2

Now we are ready to weaken this characterization to get a computational bind-
ing property. Basically, we require that the same holds for quantum-polynomial-
time adversaries:

Definition 7 (Collapse-binding – informal). A commitment is collapse-
binding iff, for all quantum-polynomial-time adversaries A,B, Pr[b = 1] in
Figure 1 (a) is negligibly close to Pr[b = 1] in Figure 1 (b).

In other words, with a perfectly-binding commitment, the adversary cannot pro-
duce a superposition of different messages that are contained in the commitment.

2 Our exposition above was not very rigorous, but it is easy to see that this is indeed
an “if and only if”.
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But with a collapse-binding commitment, the adversary is forced to produce
a state that looks like it is not a superposition of different messages. For the
purpose of computational security, this will often be as good.

We quickly explain why collapse-binding commitments work well with quan-
tum rewinding. In the case of quantum rewinding (e.g., in the analysis of proofs
of knowledge [19]), one problem is that we might need to run an adversary until
he opens a commitment c, then to measure the opened message, and then to go
back to an earlier state by applying the inverse of the adversary. The problem
is that measuring the opened message will disturb the state of the adversary,
and thus make rewinding impossible. Except: if the opened message cannot be
distinguished from being already in a collapsed state (as guaranteed by collapse-
binding), then measuring the opened message does not disturb the state in a
noticeable way and we can rewind. (See the discussion on arguments of knowledge
below.)

Constructing collapse-binding commitments. Collapse-binding commit-
ments are useful only if they exist. Perfectly-binding commitments are easily
seen to be collapse-binding, but then we cannot have statistically hiding or short
commitments. In the classical setting, we get practical computationally-binding
commitments from a collision-resistant hash function H. The most obvious con-
struction is to send c := H(m‖u) for uniformly random u of suitable length.
We call this the “canonical commitment”. The canonical commitment is easily
seen to be classical-style binding if H is collision-resistant, and it is statistically
hiding if H is a random oracle. To get rid of the random-oracle requirement,
we can use a somewhat more complex constructions by Halevi and Micali [14]
instead. Unfortunately, both the canonical commitment and the Halevi-Micali
commitments are not collapse-binding if H is merely collision-resistant. In fact,
relative to a specific oracle and using a specific collision-resistant hash function,
there is a total break where the adversary can unveil the commitment to any
message of his chosing. To show this, we tweak the technique from [1] to construct
a hash function H such that the adversary can sample an image c of H together
with a quantum state |Ψ〉 such that: Given the state |Ψ〉, for any m, the adversary
can find a random u with H(m‖u) = c. But this process destroys |Ψ〉, so the
adversary cannot find two preimages of c; the hash function is collision-resistant.
But the canonical commitment, based on this H, is trivially broken. Similar
constructions break the Halevi-Micali commitments.

Since collision-resistance seems too weak a property in the quantum setting (at
least for our purposes), we give a strengthening of collision-resistance: collapsing
hash functions:

Definition 8 (Collapsing hash function – informal). An adversary is valid
if he outputs a classical value c, and a register M containing a superposition of
messages m with H(m) = c. We call H collapsing iff no quantum-polynomial-time
adversary can distinguish whether we measure M in the computational basis or
not, before giving the register M back to the adversary. (This is formalized with
games similar to those in Figure 1.)
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We can show that collapsing hash functions are collision-resistant, and they share
a number of structural properties with collision-resistant functions. E.g., injective
functions are collapsing, and the composition H ◦H ′ of collapsing functions is
collapsing.

Due to the similarity between the definition of collapsing hash functions and
collapse-binding commitments, we can show that the canonical commitment and
the Halevi-Micali commitments are collapse-binding if H is collapsing.

However, this leaves the question: do collapsing functions exist in the first
place? We conjecture that common industrial hash function like SHA3 [17]
are actually collapsing (not only collision-resistant). In fact, we argue that the
collapsing property should be a requirement for the design of future hash functions
(in the sense that a hash function where the collapsing property is in doubt should
not be selected for industry standards), since collision-resistance is not sufficient if
we wish to achieve post-quantum secure cryptography. We support our conjecture
that sufficiently unstructured functions are collapsing by proving that the random
oracle is collapsing:

Random oracles are collapsing. We now sketch on a high level our proof
that random oracles are collapsing, or, equivalently, that a random function is
collapsing with high probability. In our analysis, we assume that the adversary
can query the random oracle on the superposition of different inputs; this is
necessary for having a realistic modeling of hash functions [3]. As a first step, we
identify a new property, “half-collision resistance”:

Definition 9 (Half-collision resistance – informal). A half-collision of H
is a string x such that there exists an x′ 6= x with H(x′) = H(x). A hash function
H is half-collision resistant if no adversary does the following: He outputs a half-
collision with non-negligible probability. And he never outputs a non-half-collision.
(The adversary may output ⊥ though.)

That is, half-collision resistance says that the adversary cannot find non-injective
inputs to H without sometimes accidentally outputting injective inputs. We show:
if H is half-collision resistant, it is collapsing.

The proof idea is: if H is not collapsing, the adversary can produce a superpo-
sition M of messages m with H(m) = c and notice whether M is being measured.
The latter implies that M must be a superposition of at least two messages m
with H(m) = c. Hence by measuring M , the adversary gets a half-collision. Much
additional work is needed to make sure that the adversary does not accidentally
measure the register M when it is not a nontrivial superposition.

(The half-collision resistance property might be useful independent of the
proof that the random oracle is collapsing. When trying to construct collapsing
hash functions based on other assumptions, half-collision resistance might be
easier to verify since its definition consists of purely classical games.)

Next we construct a random function H∗ : X → Y with |Y | = 2
3 |X|. That

is, H∗ is slightly compressing. The domain of H∗ is partitioned into two sets
X1, X2 with |X1| = 2|X2|. H∗ is injective on X2, and 2-to-1 on X1. Besides those
constraints, H∗ is uniformly random. We can then show that H∗ is half-collision
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resistant. (Basically, this means that the adversary cannot identify the subset X1.)
Furthermore, we can show that H∗ is indistinguishable from a random function
H : X → Y . Since H∗ is half-collision resistant, it is collapsing. And since H is
indistinguishable from H∗, H is collapsing.

We now know that random functions H : X → Y are collapsing if |Y | = 2
3 |X|

(i.e., if they are slightly compressing). However, we want that H is collapsing
for arbitrary X and Y , as long as Y has superpolynomial size. For |X| ≤ |Y |, H
is indistinguishable from a random injection, which in turn is collapsing. The
interesting case is |X| > |Y | (namely, when H is compressing). In this case, we
show (following an idea from [24]) that H can be written as H = fn ◦ · · · ◦ f1
where all fi are slightly compressing. Since all fi are collapsing, so is H. This
shows that a random function H is collapsing, in other words, that the random
oracle is collapsing (if its range has superpolynomial size).

Quantum arguments of knowledge. We illustrate the use of collapse-binding
commitments by revisiting the construction of proofs of knowledge from Unruh
[19]. Unruh showed that a sigma-protocol (i.e., a particular kind of three round
proof system) is a quantum proof of knowledge if it has two properties: special
soundness (from two interactions with the same first and different second messages
one can efficiently compute a witness) and strict soundness (the first and second
message of a valid interaction determine the third). In the classical setting,
only special soundness is needed. In the quantum setting, strict soundness is
additionally required to allow for quantum rewinding: In the proof from [19],
we run the malicious prover to get his response (the third message). Then we
measure the response. Then we rewind the prover (by applying the inverse of the
unitary transformation representing the prover). Then we run the prover again to
get a second answer. Special soundness then implies that from the two responses,
we get a witness. However, we need to make sure that measuring the prover’s
response before rewinding does not disturb the state (too much). In [19], this
follows from strict soundness: strict soundness guarantees that the response is
uniquely determined, and thus measuring the response does not disturb the state.
To achieve strict soundness, [19] lets the prover commit to all possible responses
in the first message using perfectly-binding commitments.3 The drawback of this
solution is that the commitments cannot be statistically hiding, so we cannot get
statistical zero-knowledge proofs using the method from [19].

What happens if we replace the perfectly-binding commitments by collapse-
binding commitments containing the response? In that case, the response will
not necessarily be information-theoretically determined by the first two messages.
However, the definition of collapse-binding commitments guarantees that mea-
suring that response will be indistinguishable from not measuring it. Thus, if we
measure the response, the state might be disturbed, but it will be computationally
indistinguishable from not being disturbed. This is enough for the proof technique
from [19] to go through, assuming the prover is computationally limited. The
resulting protocol will not be a quantum proof of knowledge, but a quantum
3 Actually, “strict-binding commitments” but this distinction is not relevant for this
exposition.
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argument of knowledge (i.e., secure only against computationally limited provers).
But in contrast to [19], the proof system will be statistical zero-knowledge.

To summarize: from collapse-binding commitments (or from collapsing hash
functions), we get three-round statistical zero-knowledge quantum arguments of
knowledge for all languages in NP (with inverse polynomial knowledge error).
To the best of our knowledge, not even three-round statistical zero-knowledge
quantum arguments were known before.

1.4 Related work.

Commitments. Brassard, Crépeau, Jozsa, and Langlois [4] presented an
information-theoretically hiding and binding commitment scheme using quantum
communication. However, the protocol was flawed, Mayers [15] showed that
information-theoretically hiding and binding commitments are impossible. (This
is no contradiction to our results, because our commitments are not information-
theoretically binding.) Dumais, Mayers, and Salvail [13] and Crépeau, Légaré, and
Salvail [7] constructed statistically hiding commitments from quantum one-way
permutations/functions, respectively. Their protocols use quantum communica-
tion, and are sum-binding. Crépeau, Dumais, Mayers, and Salvail [6] generalized
the sum-binding definition to string commitments and constructed an OT pro-
tocol based on that definition. (However, it is not known whether the protocol
composes even sequentially.) Damgård, Fehr, Lunemann, Salvail, and Schaffner
[9] and Unruh [18] showed a much simpler OT protocol to be secure, assuming
much stronger commitment definitions in the CRS model, but achieving stronger
security notions (sequential composability/UC). Ambainis, Rosmanis, and Un-
ruh [1] show that classical-style binding commitments are not necessarily even
sum-binding.

Quantum random oracles. Random oracles were first explicitly considered
in a quantum cryptographic context by Boneh, Dagdelen, Fischlin, Lehmann,
Schaffner, and Zhandry [3] who stressed that the adversary should have superpo-
sition access to the random oracle. Zhandry [24] showed that the random oracle
is collision-resistant. In contrast, we show (based on his result) that the random
oracle is collapsing (a stronger property).

Quantum rewinding and proof systems. Watrous [23] showed how quantum
rewinding can be used to prove the security of quantum zero-knowledge protocols.
Unruh [19] showed how a different flavor of quantum rewinding can be used for
proving the security of quantum proofs of knowledge; we extend their technique
to quantum arguments of knowledge.

2 Definitions and basic properties

Preliminaries. For the necessary background in quantum computing, see, e.g.,
[16]. By |i〉 with i ∈ I we denote the vectors of the computational basis of the
Hilbert space with dimension |I|. We also use the symbol |·〉 to refer to other
(non-basis) vectors (e.g., |Ψ〉). And 〈Ψ | is the conjugate transpose of |Ψ〉. ‖x‖
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refers to the Euclidean or `2-norm. We only consider finite dimensional Hilbert
spaces. We denote |+〉 := 1√

2
|0〉+ 1√

2
|1〉 and |−〉 := 1√

2
|0〉 − 1√

2
|1〉. For a linear

operator A on a Hilbert space, we denote by A† its conjugate transpose. We
denote by I the identity. We call an operator A on a Hilbert space a projector iff
it is an orthogonal projector, i.e., a linear map with P 2 = P and P = P †. By
TD(ρ, ρ′) we denote the trace distance between ρ and ρ′, and by F (ρ, ρ′) the
fidelity.

Given an algorithm A, let x ← A(y) denote the result of running A with
inputs y, and assigning the output to x. Let x $←M denote assigning a uniformly
random element of M to x. We will use η to denote the security parameter, that
is a positive integer that will be passed to all algorithms and adversaries and
that indicates the required security level. By a‖b we denote the concatenation of
bitstrings a and b.

We call an algorithm quantum-polynomial-time if it is a quantum algorithm
and its runtime is bounded by a polynomial in its input length with probabil-
ity 1. We call an algorithm classical-polynomial-time if it performs only classical
operations and its runtime is bounded by a polynomial in its input length with
probability 1. We write 1η for a bitstring (of 1’s) of length η. (The latter is
useful for making algorithms run in polynomial-time in the length of the security
parameter, e.g., A(1η) will run polynomial-time in η.)

Commitments. A commitment scheme (com, verify) consists of a quantum-
polynomial-time algorithm com and a deterministic quantum-polynomial-time
algorithm verify .4 (c, u)← com(1η,m) returns a commitment c and the opening
information u for the message m and security parameter η. c alone is supposed
not to reveal anything about m (hiding). To open, we send (m,u) to the recipient
who checks whether verify(1η, c,m, u) = 1. Both com and verify have classical
input and output. com has a well-defined message space MSPη that also depends
on the security parameter η (e.g., {0, 1}η). Furthermore, for technical reasons,
we assume that it is possible to find triples (c,m, u) with verify(1η, c,m, u) = 1
with probability 1 in quantum-polynomial-time in η.

We first state some standard properties of commitments.

Definition 10. Let (com, verify) be a commitment scheme. We define:
– Perfect completeness: (com, verify) has perfect completeness iff for all
m ∈ MSPη, Pr[verify(1η, c,m, u) = 1 : (c, u)← com(1η,m)] = 1.

– Computational hiding: (com, verify) is computationally hiding iff for any
quantum-polynomial-time A and any polynomial `, there is a negligible µ
such that for any η, any m0,m1 ∈ MSPη with |m0|, |m1| ≤ `(η), and any
|Ψ〉,5

∣∣P0 − P1

∣∣ ≤ µ(η) where Pi := Pr[b = 1 : (c, u) ← com(1η,mi), b ←
A(1η, |Ψ〉, c)].

4 To be practical, those algorithms should of course be classical. We allow quantum-
polynomial-time algorithms here to state our results in greater generality.

5 |Ψ〉 is the auxiliary input of A that represents knowledge of A acquired, e.g., in prior
protocol runs. One could use a mixed state instead, this would lead to an equivalent
definition.
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– Statistical hiding: Like computational hiding, except that we quantify over
all A (not just quantum-polynomial-time A).

Definition 11 (Classical-style binding). A commitment scheme is classical-
style binding iff for any quantum-polynomial-time algorithm A, the following is
negligible in η: Pr[verify(1η, c,m, u) = 1 ∧ verify(1η, c,m′, u′) = 1 ∧m 6= m′ :
(c,m, u,m′, u′)← A(1η)].

Definition 12 (Collapse-binding). For algorithms A, B, consider the follow-
ing games:

Game1 : (S,M,U, c)← A(1η), ok ← Vc(M,U),m←Mok (M), b← B(1η, S,M,U)

Game2 : (S,M,U, c)← A(1η), ok ← Vc(M,U), b← B(1η, S,M,U)

Here S,M,U are quantum registers. Vc is a measurement whether M,U
contains a valid opening, formally Vc is defined through the projector∑

m,u
verify(1η,c,m,u)=1

|m〉〈m| ⊗ |u〉〈u|. Mok is a measurement of M in the com-

putational basis if ok = 1, and does nothing if ok = 0 (i.e., it sets m := ⊥ and
does not touch the register M).

A commitment scheme is collapse-binding iff for any quantum-polynomial-
time algorithms A,B, the difference

∣∣Pr[b = 1 : Game1] − Pr[b = 1 : Game2]
∣∣ is

negligible.

Instead of measuring using Vc whether the adversary outputs a correct opening
information, we can quantify only over adversaries that always output correct
opening information. This leads to the following equivalent definition of collapse-
binding commitments. This definition is often easier to handle when proving that
a given scheme is collapse-binding.

Definition 13 (Collapse-binding – variant). For algorithms A, B, consider
the following games:

Game1 : (S,M,U, c)← A(1η), m←Mcomp(M), b← B(1η, S,M,U)

Game2 : (S,M,U, c)← A(1η), b← B(1η, S,M,U)

Here S,M,U are quantum registers. Mcomp(M) is a measurement of M in the
computational basis.

We call an adversary (A,B) valid if Pr[verify(c,m, u) = 1] = 1 when running
(S,M,U, c)← A(1η) and measuring M,U in the computational basis to obtain
m,u.

A commitment scheme is collapse-binding iff for any quantum-polynomial-
time valid adversary (A,B), the difference

∣∣Pr[b = 1 : Game1]−Pr[b = 1 : Game2]
∣∣

is negligible.

In [20], we show Definitions 12 and 13 equivalent, and that the collapse-binding
property is preserved under parallel composition of commitments.
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3 Commitments from collision-resistant hash functions

In the following, we will often refer to hash functions. We will always assume
that a hash function depends implicitly on the security parameter (in particular,
the size of the range can depend on the security parameter). We also assume
that the hash function is quantum-polynomial-time computable (in η and the
input length).6 Besides that, we do not assume any further properties such as
collision-resistance unless explicitly mentioned.

Definition 14 (Canonical commitment scheme). Given a hash function H
and a parameter `u = `u(η), the canonical commitment scheme for H is:
– Message space MSPη := {0, 1}∗.
– comcan(m): Pick u $← {0, 1}`u . Compute c := H(m‖u). Return (c, u).
– verifycan(c,m, u): Return 1 iff H(m‖u) = c.

It is immediate to see that this scheme is classical-style binding if H is collision-
resistant. However, in general it will not be hiding; for example, H(m‖u) could
leak the first bit of m. However, it is hiding if H is a random oracle:

Lemma 15. Fix `u ≥ 0 and assume that |Y | ≤ 2`u/8. For a random oracle
H : X → Y , the canonical commitment is statistically hiding.

When using a hash function in the standard model, we can use the following
commitment scheme instead:

Definition 16 (Bounded-length Halevi-Micali commitment [14]). Fix
integers ` = `(η), n = n(η). Let L := 4` + 2n + 4. Let H : {0, 1}L → {0, 1}`
be a hash function. Let F = F (η) be a family of universal hash functions f :
{0, 1}L → {0, 1}n. We define the bounded-length Halevi-Micali commitment
(comHMb , verifyHMb) with MSPη = {0, 1}n as:
– comHMb(m): Pick f ∈ F and u ∈ {0, 1}L uniformly at random, conditioned
on f(u) = m. Compute h := H(u). Let c := (h, f). Return (c, u).

– verifyHMb(c,m, u) with c = (h, f): Check whether f(u) = m and h = H(u).
If so, return 1.

Definition 17 (Unbounded Halevi-Micali commitment [14]). Fix an in-
teger ` = `(η). Let H : {0, 1}∗ → {0, 1}` be a hash function. Let L := 6`+ 4. Let
F be a family of universal hash functions f : {0, 1}L → {0, 1}`. We define the
unbounded Halevi-Micali commitment (comHMu , verifyHMu) as:
– comHMu(m): Pick f ∈ F and u ∈ {0, 1}L uniformly at random, conditioned
on f(u) = H(m). Compute h := H(u). Let c := (h, f). Return (c, u).

– verifyHMu(c,m, u) with c = (h, f): Check whether f(u) = H(m) and h =
H(u). If so, return 1.

6 When working in the random oracle model: Quantum-polynomial-time computable
given access to the random oracle.
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Theorem 18 (Security of Halevi-Micali [14]). If ` is superlogarithmic, then
the Halevi-Micali commitment and the bounded-length Halevi-Micali commitment
are statistically hiding. If H is collision-resistant, then the Halevi-Micali com-
mitment and the bounded-length Halevi-Micali commitment are classical-style
binding.

Note that [14] did not prove the classical-style binding property against quantum
adversaries. But the (very simple) proof of binding carries over unchanged to the
quantum setting (if H is collision-resistant against quantum adversaries). The
statistical hiding property holds against unlimited adversaries anyway, thus also
against quantum adversaries.

The following theorem shows that collision-resistance does not seem to be
enough to make the above constructions secure in the quantum setting, i.e.,
classical-style binding is all we get.

Theorem 19. There is an oracle O relative to which there exists a collision-
resistant7 hash function H such that the canonical commitment scheme and both
Halevi-Micali commitment schemes using H admit the following attack:

There is a quantum-polynomial-time adversary AO that outputs a commitment
c, then expects a bit b, and then outputs with overwhelming probability a pair
(m,u) such that verify(c,m, u) = 1 and the first bit of m is b.

Clearly, a commitment with that property should not be considered secure.
This shows that collision-resistance is too weak a property for constructing
commitments in the quantum setting, at least when using standard constructions.

The proof [20] uses the oracles constructed in [1]. In a nutshell, those oracles
give the adversary access to sets Sy, such that the adversary can perform one
single search in Sy for an element with a specific property, but cannot get two
elements from the same Sy. Using a suitably constructed hash function H, finding
m,u that open c corresponds to a search in Sy. Thus the adversary can use that
search to break the binding property. But finding a collision in H corresponds to
finding two elements from the same Sy, hence H is collision-resistant.

4 Collapsing hash functions
As seen in the previous section, for many protocols collision-resistance is not a
sufficiently strong property in the quantum setting. In the following, we propose
a strengthening of the collision-resistance property that seems more useful in the
quantum setting, namely “collapsing” hash functions. We believe that collapsing
hash functions are a natural assumption for real-life hash functions such as SHA-3
etc. This belief is supported by the fact that the random oracle is collapsing (see
Section 6).

The definition of collapsing hash functions is similar to that of collapsing
commitments (Definition 13).

7 H is collision-resistant iff for any quantum-polynomial-time A, Pr[x 6= x′ ∧H(x) =
H(x′) : (x, x′)← A(1η)] is negligible.
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Definition 20 (Collapsing). For a function H and algorithms A, B, consider
the following games:

Game1 : (S,M, c)← A(1η), m←Mcomp(M), b← B(1η, S,M)

Game2 : (S,M, c)← A(1η), b← B(1η, S,M)

Here S,M are quantum registers. Mcomp(M) is a measurement of M in the
computational basis.

We call an adversary (A,B) valid if Pr[H(m) = c] = 1 when we run
(S,M, c)← A(1η) and measure M in the computational basis as m.

A function H is collapsing iff for any quantum-polynomial-time valid adver-
sary (A,B), the difference adv :=

∣∣Pr[b = 1 : Game1] − Pr[b = 1 : Game2]
∣∣ is

negligible. (We call adv the advantage.)

Notice that the definition of collapsing hash functions is inherently quantum,
even though the object we consider (the hash function H) is classical. We know
of no classical analogue to collapsing hash functions. However, a collapsing hash
function will necessarily be collision-resistant, see Lemma 22 below.

We proceed to give a number of useful properties of collapsing hash functions.

Lemma 21. An injective function H is collapsing with advantage 0.
Lemma 22. A collapsing hash function is collision resistant.
Theorem 23. If f and g are collapsing, so is g ◦ f .

5 Commitments from collapsing hash functions

In Section 3 we saw that collision-resistant hash functions are not sufficient for
several standard constructions of commitment schemes. We will now show that
those same constructions are secure in the quantum setting when using collapsing
hash functions instead.

The following theorem allows us to extend the message space of a collapsing
commitment by hashing the message with a collapsing hash function. Besides
being useful in its own right, we need it in the analysis of the unbounded
Halevi-Micali commitment.

Theorem 24. Let f be a collapsing function. Let (com, verify) be a col-
lapse binding commitment scheme. Let comf (1

η,m) := com(1η, f(m)) and
verifyf (1

η, c,m, u) = verify(1η, c, f(m), u). Then (comf , verifyf ) is a collapse-
binding commitment scheme.

Lemma 25. If H is collapsing, then the canonical commitment scheme
(comcan , verifycan), and the bounded-length Halevi-Micali commitment
(comHMb , verifyHMb), and the unbounded Halevi-Micali commitment
(comHMu , verifyHMu) are collapse-binding. (For any choice of the param-
eters `u, `, n.)
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We give the proof idea, the full proof is given in [20]. To show that the canonical
commitment comcan is collapse-binding, we use the characterization of collapse-
binding from Definition 13. We need to show that the adversary cannot distinguish
between a measurement on register M and no measurement on register M ,
assuming the adversary outputs M,U containing a superposition of m,u with
verifycan(c,m, u) = 1. The condition verifycan(c,m, u) = 1 is equivalent to
H(m‖u) = c. Hence the adversary outputs in M,U a superposition of preimages
of c under H. Since H is collapsing, this implies that the adversary cannot
distinguish between a measurement on M,U and no measurement on M,U . This
also implies (using some additional work) that the adversary cannot distinguish
between a measurement on M and no measurement on M . Hence comcan is
collapse-binding. The Halevi-Micali commitments are handled similarly.

6 Random oracles are collapsing
In Section 5 we saw that collapsing hash functions imply collapse-binding com-
mitments. In this section, we explore the existence of collapsing hash functions.
Specifically, we show that the random oracle is collapsing. This implies that
there are simple collapse-binding commitments in the random oracle model.
Furthermore, it supports the assumption that real-life hash functions such as
SHA-3 etc. could be collapse-binding. Alternatively, we could also directly start
with the assumption that SHA-3 is collapsing, in that setting the constructions
from Section 5 would not need the random oracle. (In fact, we advocate that a
hash function that is not collapsing should not be considered a secure practical
hash function, and not recommended for future use.)

For the remainder of this section, X and Y are sets, and H : X → Y is a
random oracle. Furthermore Y is finite, and X ⊆ {0, 1}∗ (finite or infinite). And
q ≥ 1 always refers to an upper bound on the number of oracle queries performed
by the adversary. The full proofs are given in [20].

We start by defining a seemingly unrelated property (half-collision resistance)
that will turn out to imply the collapsing property. We will need half-collision
resistance in our proof that the random oracle is collapsing. However, the concept
of half-collision resistance might be of use for constructions in the standard model,
too: since half-collision resistance is defined by a classical game, it might be easier
to construct hash functions that are half-collision resistant.8

Definition 26. A half-collision of a hash function f : X → Y is a value x such
that ∃x′ 6= x.f(x) = f(x′).

An adversary A has advantage ε against half-collision resistance iff
8 However, half-collision resistance is strictly stronger than collapsing, at least relative
to an oracle, as we show next. Consider an oracle O picked according to the following
distribution: Let P0, P1 : {0, 1}n → {0, 1}n be random permutations. Let O(b‖x) :=
Pb(x) for b ∈ {0, 1}, x ∈ {0, 1}n. Then every input to O is a half-collision, thus O
cannot be half-collision resistant. However P0 and P1 are indistinguishable from
a random function [24], hence O is indistinguishable from O′(b‖x) := Hb(x) for
random functions H0, H1. Note that O′ is a random function, hence O′ is collapsing
by Theorem 31. Since O and O′ are indistinguishable, O is collapsing as well.
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– with probability 1, the output of A is a half-collision or ⊥, and
– with probability at ε, A outputs a half-collision.

Lemma 27. If (A,B) is valid and has advantage µ against the collapsing prop-
erty of a hash function f , then there is an adversary D with advantage ≥ µ2/4
against the half-collision resistance of f . The time-complexity of D is linear in
that of (A,B). (If f is given as an oracle, D makes 4q + 4 queries to f when
(A,B) makes q queries.)

Proof sketch: By definition, a valid adversary A will always output in register M
a superposition of messages m with H(m) = c (all with the same c). So we have
two cases: M contains a superposition of a single message m, or M contains a
superposition of several messages that have the same image c, i.e., a superposition
of half-collisions. Thus, in the second case, we can find a half-collisions by
measuring M . But, an adversary against half-collision resistance must never
output a non-half-collision (no false positives). Thus, we need a possibility to test
whether M contains only a single message. (In this case, we abort.)

Note that when M contains only a single message, then the adversary B
cannot distinguish between a measurement on M and no measurement on M .
To exploit this, we run an execution where M is measured and an execution
where M is not measured in superposition (roughly speaking), and we make it
depend on a control qubit in state |+〉 which execution is used. Then, in the case
where M contains only a single message, the control qubit stays unentangled
with the rest of the circuit. By measuring whether the qubit is still in state |+〉,
the half-collision resistance adversary can detect whether M contains one or
several messages. (It may err and incorrectly assume that M contains only one
message, but an error in that direction is permitted.) Thus we have constructed
an adversary against half-collision resistance.

Lemma 28. Assume |X| ≤ |Y |. Then H is collapsing with advantage O(q3/|Y |).

Proof sketch. Zhandry [24] shows that for |X| ≤ |Y |, H can be distinguished from
a random injection with probability at most O(q3/|Y |). An injection is collapsing
with advantage 0 (Lemma 21).

For the next lemma, we fix some notation first: [N ] := {1, . . . , N}. For
functions f : [M ] → [N ] and g : [M ′] → [N ], let f + g : [M +M ′] → [N ] be
defined via (f + g)(x) := f(x) for x = 1, . . . ,M and (f + g)(x) = g(x−M) for
x = M + 1, . . . ,M +M ′. For functions f : [M ] → [N ] and g : [M ′] → [N ′], let
f |g : [M +M ′]→ [N +N ′] be defined via (f |g)(x) := f(x) for x = 1, . . . ,M and
(f |g)(x) := g(x−M) +N for x =M + 1, . . . ,M +M ′.

Lemma 29. Assume that M ≥ N . Let f̂ , ĝ : [N ]→ [N ] and ĥ : [M ]→ [M ] and
ϕ̂ : [N +M ]→ [N +M ] be uniformly distributed permutations (all independent),
and let H : [2N +M ]→ [N +M ] be a uniformly distributed function.

Then for any q-query adversary A,∣∣Pr[AH = 1]− Pr[Aϕ̂◦((f̂+ĝ)|ĥ) = 1]
∣∣ ∈ O(q3/N).
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Proof sketch: We show this by rewriting ϕ̂ ◦
(
(f̂ + ĝ)|ĥ

)
step by step, till it

becomes H. In each step, the adversary distinguishes with probability O(q3/N)
(denoted ≈ below) or 0 (denoted ≡ below). For this we introduce additional func-
tions ϕ, v, w, v̂, â, b̂, ĉ of suitable domains/ranges, all independent and uniformly
random. The functions with a hat are injections. We compute:

ϕ̂ ◦ ((f̂ + ĝ)|ĥ) ≈ ϕ ◦ ((f̂ + ĝ)|ĥ) ≡ (v ◦ (f̂ + ĝ)) + (w ◦ ĥ) ≡ (v ◦ (f̂ + ĝ)) + w

≈ (v̂ ◦ (f̂ + ĝ)) + w ≡ (ĉ ◦ â ◦ (f̂ + ĝ)) + w ≈ (ĉ ◦ b̂) + w

≡ ĉ+ w ≈ c+ w ≡ H.

Most of these equivalences either have elementary proofs, or are reduced to the
fact that a random function and a random injection are indistinguishable. We
get H ≈ ϕ̂ ◦

(
(f̂ + ĝ)|ĥ

)
which is the claim of the lemma.

Lemma 30. Assume that |Y | =
⌈
2
3 |X|

⌉
. Then H is collapsing with advantage

O(
√
q3/|X|).

Proof sketch: For simplicity, we consider the case |Y | = 2N , |X| = 3N . Then,
by Lemma 29 with M := N , H is indistinguishable from H∗ := ϕ̂ ◦

(
(f̂ + ĝ)|ĥ

)
.

Furthermore, for a random permutation π, H and H◦π are identically distributed,
and H ◦ π is indistinguishable from H∗ ◦ π. Thus it is sufficient to show that
H∗ ◦ π is collapsing. In turn, by Lemma 27, it is sufficient to show that H∗ ◦ π is
half-collision resistant. To show that, observe that the half-collisions of H∗ are
the inputs 1, . . . , 2N , but not 2N + 1, . . . , 3N . Thus the half-collisions of H∗ ◦ π
are P := π−1({1, . . . , 2N}). So, the half-collision resistance adversary has to find
elements of P , without false positives, while given oracle access to H∗ ◦ π. But
H∗ ◦ π is indistinguishable from H ◦ π, so the adversary would also be able to
find elements in P given H ◦ π. Since H ◦ π is a random function, independent
of P , the adversary cannot do that without getting false positives. Hence H∗ ◦ π
is half-collision resistant and thus collapsing. Hence H is collapsing.

Theorem 31. Let Y be finite, and X ⊆ {0, 1}∗ (finite or infinite). Then H :
X → Y is collapsing with advantage O(

√
q3/|Y |).

Proof sketch: H is indistinguishable from a composition fn ◦ · · · ◦ f1 of random
functions fn : Xn → Yn with |Xn+1| = |Yn| = 2

3 |Xn|. By Lemma 30, each fn
is collapsing. Thus, by Theorem 23, fn ◦ · · · ◦ f1 is collapsing and hence H is
collapsing.

7 Zero-knowledge arguments of knowledge
In this section, we study the security of sigma-protocols. A sigma-protocol is a
specific kind three-round proof system in which the verifier’s message consists only
of random bits. Sigma-protocols play an important role in classical constructions
of zero-knowledge proof systems for two reasons: For a number of simple but
important languages, sigma-protocols exist. And given sigma-protocols for simple
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languages, there are efficient constructions for more complex languages. (There
are constructions for conjunctions and disjunctions of sigma-protocols, as well as
more complex threshold constructions [5].)

In the classical setting, it is relatively simple to give conditions under which
sigma-protocols are zero-knowledge proofs of knowledge. In the quantum setting,
however, analyzing the security of sigma-protocols turns out to be much harder.
Watrous [23] presented a rewinding technique for proving the zero-knowledge
property of sigma-protocols (see also Theorem 34 below). Unruh [19] showed
that sigma-protocols are quantum proofs of knowledge under a specific additional
condition called “strict soundness”. This condition requires that the third mes-
sage (“response”) in a valid interaction is uniquely determined by the first two.
However, strict soundness is a strong additional assumption. [19] showed how
to achieve strict soundness by committing to the response already in the first
message. However, the commitment scheme used for this needed to be perfectly-
binding (actually, it needed to satisfy a somewhat stronger property, called “strict
binding”). In particular, this implies that the commitment scheme cannot be
information-theoretically hiding (hence the resulting protocol cannot be statistical
zero-knowledge), and we cannot have short commitments (a perfectly-binding
commitment will always be at least as long as the message inside).

Furthermore, Ambainis, Rosmanis, and Unruh [1] showed that the condition of
strict soundness is necessary, at least relative to an oracle. They also showed that
even if we assume that strict soundness holds, but only against computationally
limited adversaries,9 the resulting sigma-protocol will, in general, not be a
quantum argument of knowledge.10 Even more, it might not even be a quantum
argument. That is, a computationally limited adversary can successfully prove a
wrong statement.

In this section we show how we can use collapse-binding commitments as a
drop-in replacement for the perfectly-binding commitments in the construction
from [19]. One particular consequence is that given collapse-binding hash functions
we can construct three-round statistical zero-knowledge quantum arguments of
knowledge from sigma-protocols (without using a common-reference string). This
assumes the sigma-protocol is statistical honest-verifier zero-knowledge and has
special soundness. And that the challenge space (the set from which the verifier
picks his random message) is polynomially-bounded. These properties, however,
are also needed in the classical setting.

7.1 Interactive proof systems

An interactive proof system (P,V) for some relation R consists of two interactive
quantum machines P and V that get classical inputs (x,w) ∈ R and x, respectively.
Afterwards, V outputs a bit. For formal definitions see [19]. (In general, P and V

9 I.e., it is hard to find two different valid interactions where the first two messages are
equal but the response is different.

10 Argument and argument of knowledge are the variants of proof and proof of knowledge
that consider a computationally limited malicious prover.
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can exchange quantum messages, but our concrete constructions below will be
classical.)

We consider two important properties of interactive proof systems: First, we
want them to be arguments of knowledge. Informally, they should convince the
verifier that the prover knows a witness w for the statement x (i.e., (x,w) ∈ R).
Second, we want them to be zero-knowledge. Informally, the proof should not
leaks anything about the witness besides its existence.

Quantum arguments of knowledge. The following definition of quantum
arguments of knowledge follows the definition from [22], with one difference:
we have formulated security against uniform malicious provers. That is, while
in [22] the statement x and the auxiliary input |Ψ〉 are all-quantified, in our
setting they are chosen by an quantum-polynomial-time algorithm Z. The reason
we consider only uniform malicious provers here is: A non-uniform adversary
can break any non-interactive commitment (with classical messages) that is
not already perfectly-binding. (Namely, the auxiliary input can simply contain
one commitment and two different openings.) Thus, since we consider only non-
interactive commitments in this paper, we need a uniform definition of quantum
arguments of knowledge. For a motivation of the remaining definitional choices,
see [22].

Definition 32 (Quantum Arguments of Knowledge). We call an interac-
tive proof system (P,V) for a relation R (uniformly) quantum-computationally
extractable with knowledge error κ if there exists a constant d > 0, a polynomially-
bounded function p > 0, and a quantum-polynomial-time oracle algorithm K such
that for any unitary quantum-polynomial-time algorithm P∗, for any polynomial
`, and for any quantum-polynomial-time algorithm Z (input generator), there
exists a negligible µ such that for any security parameter η ∈ N, we have that

Pr[〈P∗(1η, x, Z),V(1η, x)〉 = 1 : (x, Z)← Z(1η)] ≥ κ(η) =⇒
Pr[(x,w) ∈ R : (x, Z)← Z(1η), w ← KP∗(1η,x,Z)(1η, x)]

≥ 1
p(η)

(
Pr
[
〈P∗(1η, x, Z),V(1η, x)〉 = 1 : (x, Z)← Z(1η)

]
− κ(η)

)d
− µ(η).

Here 〈P∗(1η, x, Z),V(1η, x)〉 is the output of V after an interaction between P∗ and
V on the respective inputs x and Z. Z is a quantum register, x is classical, both
initialized using the algorithm Z. And KP∗(1η,x,Z) refers to an execution of K with
black-box access to P∗(1η, x, Z). That is, K can apply the unitary Ux describing
the prover P∗ and its inverse U†x. (See [19] for a more detailed description of that
black-box execution model.)

Quantum zero-knowledge. Roughly speaking, (P,V) is quantum-
computationally zero-knowledge iff for any quantum-polynomial-time malicious
verifier V∗, there exists a quantum-polynomial-time simulator S such that for any
(x,w) ∈ R, the output state of S is quantum computationally indistinguishable
from the from the output state of V∗ in an interaction with P(1η, x, w).
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Similarly, quantum statistical zero-knowledge is defined in the same way,
except that V∗ is not required to be quantum-polynomial-time.

We will not use the definition of quantum zero-knowledge directly, only the
imported Theorem 34 from [22] will refer to it. We therefore omit the formal
definition and refer to [22].

7.2 Sigma-protocols

We now introduce sigma-protocols (following [21] with modifications as mentioned
in the footnotes). The notions are like the standard classical definitions, all that
was done to adopt them to the quantum setting was to make the adversary
quantum-polynomial-time.

A sigma-protocol for a relation R is a three-message proof system. It is
described by its challenge space Nz (where |Nz| ≥ 2), a classical-polynomial-time
prover (P1, P2) and a deterministic classical-polynomial-time verifier V . The first
message from the prover is a ← P1(1

η, x, w) and is called the commitment , the
uniformly random reply from the verifier is z $← Nz (called challenge), and the
prover answers with r ← P2(1

η, x, w, z ) (the response). We assume P1, P2 to
share state. Finally V (1η, x, a, z , r) outputs whether the verifier accepts.

Definition 33 (Computational special soundness). There is a quantum-
polynomial-time algorithm EΣ (the extractor)11 such that for any quantum-
polynomial-time A, we have that

Pr[(x,w) /∈ R ∧ z 6= z ′ ∧ ok = ok ′ = 1 : (x, a, z , r , z ′, r ′)← A(1η),

ok ← V (1η, x, a, z , r), ok ′ ← V (1η, x, a, z ′, r ′), w ← EΣ(1
η, x, a, z , r , z ′, r ′)]

is negligible.

Note that the above is a standard condition expected from sigma-protocols in
the classical setting. In contrast, for a sigma-protocol to be a quantum proof of
knowledge, a much more restrictive condition is required, strict soundness [19,1].
We show below how to circumvent this necessity by adding collapse-binding
commitments to the sigma-protocol (at least when we only need a quantum
argument of knowledge).

We also use the standard properties of honest verifier zero-knowledge (HVZK)
and statistical honest-verifier zero-knowledge (SHVZK). They are of secondary
importance for the proofs shown in this section, we defer them to [20].

Remark 1. Any sigma-protocol (Nz, P1, P2, V ) can be seen as an interactive
proof (P,V) in a natural way: P sends the output a of P1 to V. V picks z $← Nz
and sends it to P. P sends the resulting output r of P2 to V. V checks the triple
(a, z , r) using V .

The following theorem is shown in [22]:
11 [21] requires a classical EΣ here. By allowing EΣ to be quantum here, we weaken the

notion of computational special soundness slightly, and thus strengthen our results
below.
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Theorem 34 (HVZK implies zero-knowledge [22]). Let Σ =
(Nz, P1, P2, V ) be a sigma-protocol. We consider Σ as an interactive proof (P,V),
see Remark 1.

If |Nz| is polynomially-bounded and is SHVZK, then Σ is quantum statistical
zero-knowledge. If |Nz| is polynomially-bounded and Σ is HVZK, then Σ is
quantum computational zero-knowledge.

Due to this theorem, it will be sufficient to verify that the sigma-protocols
we construct are HVZK/SHVZK. We will hence not need to use the definition of
quantum zero-knowledge explicitly in the following.

7.3 Constructing zero-knowledge arguments of knowledge

In [19], the following idea was used to construct quantum proofs of knowledge:
We assume a sigma-protocol with special soundness and with polynomial-size
|Nz|. We convert it into a sigma-protocol with strict soundness as follows: When
the prover sends his commitment a ← P1(x,w), he additionally sends com(rz )
for all z ∈ Nz where rz is the response to the challenge z. When the prover
receives the challenge z , he opens com(rz ) instead of sending rz . If the commit-
ment has the “strict binding” property, the resulting sigma-protocol has strict
soundness (without losing the special soundness or HVZK property).12 Strict
binding is a strengthening of perfect binding, it means that not only the message
in the commitment is information-theoretically determined, but also the opening
information.

Given a sigma-protocol with strict and special soundness, we can show that it
is a proof of knowledge. Basically, [19] runs the protocol twice (using the inverse
of the unitary malicious prover to rewind) to get two responses r , r ′ for different
challenges z 6= z ′. The difficulty here is that measuring r can disturb the state of
the malicious prover, leading to a corrupt value r ′. The trick here is that due to
the strict soundness, the value r is essentially uniquely determined, and therefore
the measurement does not introduce too much disturbance.13

Unfortunately, that technique needs commitments with the strict binding
property. First, it is easy to see that strict binding commitments must be longer
than the messages they contain. Short strict binding commitments are not possible.
Furthermore, the only known construction of strict binding commitments [19]
uses quantum 1-1 one-way functions. No candidates for those are known.

We show below that the same technique of committing to the responses works
with collapse-binding commitments. The crucial point in the analysis from [19]
was that measuring the committed response does not change the state. The
collapse-binding property guarantees something slightly weaker: when measuring
the committed response, the state may change, but this cannot be noticed by
a computationally limited adversary. So with collapse-binding commitments,

12 This part was done only implicitly in [19], in the analysis of the Hamiltonian cycle
proof system.

13 There is some disturbance due to the fact that it is not determined whether r is a
valid response or an invalid one.
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an analog reasoning as in [19] can be used, except that we get security only
against quantum-polynomial-time adversaries. I.e., we get a quantum argument
of knowledge. We will now describe this in more detail.

First, we formalize the sigma-protocol in which we commit to the responses:

Definition 35 (Sigma-protocol with committed responses). Let
(Nz, P1, P2, V ) be a sigma-protocol with polynomially-bounded |Nz|. Let
(com, verify) be a commitment scheme (with the responses of (Nz, P1, P2, V ) as
message space). We construct a sigma-protocol (Nz, P ′1, P ′2, V ′) as follows:
– P ′1(1

η, x, w) runs: a ← P1(1
η, x, w). For each z ∈ Nz: rz ← P2(1

η, x, w, z ) 14

and (cz , uz )← com(1η, rz ). Let a ′ := (a, (cz )z∈Nz ) and return a ′.
– P ′2(1

η, x, w, z ) returns r ′ := (rz , uz ).
– V ′(1η, x, a ′, z , r ′) with a ′ = (a, (cz )z∈Nz) and r ′ = (r , u): Check whether

verify(1η, cz , r , u) = 1 and V (1η, a, z , r) = 1. Iff so, return 1.

We show that the above construction is a quantum argument of knowledge:

Theorem 36 (Quantum argument of knowledge). If (Nz, P1, P2, V ) is
a sigma-protocol with computational special soundness for a relation R, and
(com, verify) is collapse-binding, then (Nz, P

′
1, P

′
2, V

′) from Definition 35 is com-
putationally quantum extractable for R with knowledge error 1/

√
|Nz|.

The proof of this theorem will rely on the following lemma from [19]. (That
lemma is the core lemma of the rewinding technique from [19].)

Lemma 37 (Extraction via quantum rewinding [19]). Let C be a set
with |C| = c. Let (Pi)i∈C be projectors. Let |Φ〉 be a unit vector. Let V :=∑

i∈C
1
c‖Pi|Φ〉‖

2 and E :=
∑
i,j∈C,i 6=j

1
c2 ‖PiPj |Φ〉‖

2. Then, if V ≥ 1√
c
, E ≥

V (V 2 − 1
c ).

Proof of Theorem 36. Recall that any sigma-protocol can be seen as an interactive
proof system by Remark 1. Let (P,V) denote the interactive proof system resulting
from the sigma-protocol (Nz, P ′1, P ′2, V ′). (In particular, the verifier V sends a
random z ∈ Nz, and in the end checks whether verify(1η, cz , r , u) = 1 and
V (1η, a, z , r) = 1.)

Let P∗ denote a malicious prover, i.e., a unitary quantum-polynomial-time
algorithm. Since P∗ attacks a sigma-protocol, it sends two messages. We can thus
assume that P∗ is of the following form:
– It operates on quantum registers Z,C,R,U . Here Z contains the internal

state of P∗ (initialized by algorithm Z). C is the register that will contain the
first message a ′ = (a, (cz )z ) sent by P∗. R,U contains the second message
r ′ = (r , u) sent by P∗. And C,R,U are initialized with |0〉.

– The unitary Ux describes the unitary operation of P∗ on Z,C during the
first invocation of P∗. Ux is parametrized by the classical input x of P∗. The
message a ′ = (a, (cz )z ) is obtained by measuring C in the computational
basis.

14 We can run P2 several times using the final state of P1 because P1 is classical.
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– The unitary Uz describes the unitary operation of P∗ on Z,R,U during
the second invocation of P∗. Uz is parametrized by the challenge z that P∗
receives. The message r′ = (r, u) is obtained by measuring R and U in the
computational basis.

We fix some additional notation for this proof:
– Vz : The projector on R,U onto the span of all |r , u〉 with verify(1η, cz , r , u) =

1. (That is, Vz measures whether measuring R,U would yield a valid opening
of cz .)

– Wz : The projector on R onto the span of all |r〉 with V (1η, a, z , r) = 1. (That
is, Wz measures whether measuring R yields a valid response r for challenge
z .)

– Pz := U†zWzVzUz . Since Vz and Wz are projectors and diagonal in the
computational basis, they commute and their product is a projector. And
since Uz is a unitary, Pz is a projector (acting on registers Z,R,U).

– x←M(X) denotes that x is assigned the result of measuring the register X
in the computational basis.

– ok ← P (X) means that ok is assigned 1 iff measuring the register X with
projector P succeeds. (With P being, e.g., one of Vz ,Wz , Pz .)

– We write U(X) or U(X) to mean that the unitary U is applied to the register
X. (With U being, e.g., one of Ux, Uz).

With that notation, we can rewrite the success probability of the malicious prover
as follows:

PrV := Pr[P∗(1η, x, Z),V(1η, x)〉 = 1 : (x, Z)← Z(1η)]

= Pr[ok c = okv = 1 : (x, Z)← Z(1η), Ux(ZC), (a, (cz )z )←M(C),

z
$← Nz, Uz (ZRU), r ←M(R), u←M(U),

ok c = verify(1η, cz , r , u), okv = V (1η, a, z , r)]

= Pr[ok = 1 : (x, Z)← Z(1η), Ux(ZC), (a, (cz )z )←M(C), z
$← Nz,

ok ← Pz (ZRU)].

We now construct the extractor KP∗(1η,x,Z)(1η, x) required by Definition 32.
It operates on quantum registers S,C,R,U as follows:

(x, Z)← Z(1η), Ux(ZC), (a, (cz )z )←M(C), z , z ′
$← Nz, Uz (ZRU),

ok c ← Vz (RU), r ←M(R), U†z (ZRU), Uz ′(ZRU), r′ ←M(R),

w ← EΣ(1
η, x, a, z , r , z ′, r ′), return w.

Here EΣ is the extractor of the sigma-protocol (Nz, P1, P2, V ). This extractor
exists because the sigma-protocol has computational special soundness (see
Definition 33). Note that K only uses black-box access to P (via the unitaries
Ux, Uz , Uz ′ and their inverses).
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We will now bound the success probability of the extractor

PrE := Pr[(x,w) ∈ R : w ← KP∗(1η,x,Z)(1η, x)]

= Pr[(x,w) ∈ R : (x, Z)← Z(1η), Ux(ZC), (a, (cz )z )←M(C), z , z ′
$← Nz,

Uz (ZRU), ok c ← Vz (RU), r ←M(R), U†z (ZRU), Uz ′(ZRU),

r ′ ←M(R), w ← EΣ(1
η, x, a, z , r , z ′, r ′)]

= Pr[(x,w) ∈ R : (x, Z)← Z(1η), Ux(ZC), (a, (cz )z )←M(C), z , z ′
$← Nz,

Uz (ZRU), ok c ← Vz (RU), r ←M(R), okv ← V (1η, x, a, z , r),

U†z (ZRU), Uz ′(ZRU), r ′ ←M(R), ok ′v ← V (1η, x, a, z ′, r ′),

w ← EΣ(1
η, x, a, z , r , z ′, r ′)].

Due to the computational special soundness of (Nz, P1, P2, V ), in the previous
game, with overwhelming probability, z 6= z ′ and okv = 1 and okv′ = 1 implies
(x,w) ∈ R. Thus there exists a negligible µ1 such that

PrE ≥ Pr[z 6= z ′ ∧ okv = ok ′v = 1 : (x, Z)← Z(1η), Ux(ZC), (a, (cz )z )←M(C),

z , z ′
$← Nz, Uz (ZRU), ok c ← Vz (RU), r ←M(R),

okv ← V (1η, x, a, z , r), U†z (ZRU), Uz ′(ZRU), r ′ ←M(R),

ok ′v ← V (1η, x, a, z ′, r ′)]− µ1 =: Pr′E −µ1.

Instead of computing okv ← V (1η, x, a, z , r) using the just measured r , we
can instead measure whether the register R contains a value r that would
make V (1η, x, a, z , r) = 1 true. I.e., we can replace okv ← V (1η, x, a, z , r) by a
measurement using the projector Wz . Since at that point, R was just measured in
the computational basis, the measurement using Wz does not disturb the state of
the system. Similarly, we can replace ok ′v ← V (1η, x, a, z ′, r ′) by a measurement
using Wz ′ . We get:

Pr′E = Pr[z 6= z ′ ∧ okv = ok ′v = 1 : (x, Z)← Z(1η), Ux(ZC), (a, (cz )z )←M(C),

z , z ′
$← Nz, Uz (ZRU), ok c ← Vz (RU), r ←M(R), okv ←Wz (R),

U†z (ZRU), Uz ′(ZRU), r′ ←M(R), ok ′v ←Wz ′(R)]

= Pr[z 6= z ′ ∧ okv = ok ′v = 1 : (x, Z)← Z(1η), Ux(ZC), (a, (cz )z )←M(C),

z , z ′
$← Nz, Uz (ZRU), ok c ← Vz (RU), r ←Mokc(R), okv ←Wz (R),

U†z (ZRU), Uz ′(ZRU), r′ ←M(R), ok ′v ←Wz ′(R)].

In the last probability, r ← Mokc(R) refers to a measurement on R that is
only executed if ok c = 1. (And r := ⊥ otherwise.) The last two probabilities
are equal because M(R) and Mokc(R) only differ if ok c = 0, in which case
“z 6= z ′ ∧ okv = ok ′v = 1” is false anyway.

Since Vz measures whether R,U contains |r , u〉 with verify(1η, cz , r , u) = 1,
and since (com, verify) is collapse-binding, and since the outcome r is never used,
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we have that no quantum-polynomial-time adversary can distinguish between
“ok c ← Vz (RU), r ← M(R)” and “ok c ← Vz (RU)”, except with negligible
probability. (Cf. Definition 12.) Thus there is a negligible µ2 such that

Pr′E ≥ Pr[z 6= z ′ ∧ okv = ok ′v = 1 : (x, Z)← Z(1η), Ux(ZC), (a, (cz )z )←M(C),

z , z ′
$← Nz, Uz (ZRU), ok c ← Vz (RU), okv ←Wz (R), U

†
z (ZRU),

Uz ′(ZRU), r′ ←M(R), ok ′v ←Wz ′(R)]− µ2 =: Pr′′E −µ2.

Since M(R) and Wz ′(R) and Vz ′(RU) commute, and since adding addi-
tional/removing operations after all values z , z ′, okv, ok ′v are fixed does not change
the distribution of those values, we have that “r ′ ←M(R), ok ′v ←Wz ′(R)” and
“ok ′c ← Vz ′(RU), ok

′
v ← Wz (R), U

†
z ′(ZRU)” lead to the same distribution of

z, z′, okv, ok
′
v. This justifies (∗) in the following calculation:

Pr′′E
(∗)
= Pr[z 6= z ′ ∧ okv = ok ′v = 1 : (x, Z)← Z(1η), Ux(ZC), (a, (cz )z )←M(C),

z , z ′
$← Nz, Uz (ZRU), ok c ← Vz (RU), okv ←Wz (R), U

†
z (ZRU),

Uz ′(ZRU), ok ′c ← Vz ′(RU), ok ′v ←Wz ′(R), U
†
z ′(ZRU)]

≥ Pr[z 6= z ′ ∧ ok c = okv = 1 ∧ ok ′c = ok ′v = 1 : (x, Z)← Z(1η), Ux(ZC),

(a, (cz )z )←M(C), z , z ′
$← Nz, Uz (ZRU), ok c ← Vz (RU), okv ←Wz (R),

U†z (ZRU), Uz ′(ZRU), ok ′c ← Vz ′(RU), ok ′v ←Wz ′(R), U
†
z ′(ZRU)]

= Pr[z 6= z ′ ∧ ok = 1 ∧ ok = 1 : (x, Z)← Z(1η), Ux(ZC), (a, (cz )z )←M(C),

z , z ′
$← Nz, ok ← Pz (ZRU), ok ← Pz ′(ZRU)].

Let αa′ := Pr[a′ = (a, (cz )z )] in the previous game, and let |ψa′〉 denote the post-
measurement-state of registers Z,R,U after the measurement (a, (cz )z )←M(C).
Then

Pr′′E =
∑
a′

αa′

∑
z ,z ′

z 6=z ′

1

|Nz|2
∥∥∥Pz ′Pz |ψa′〉

∥∥∥2︸ ︷︷ ︸
=:Ea′

.

Furthermore, note that

PrV =
∑
a′

αa′

∑
z

1

|Nz|

∥∥∥Pz |ψa′〉
∥∥∥2︸ ︷︷ ︸

=:Va′

.

Lemma 37 implies that if Va′ ≥ 1/
√
|Nz|, then Ea′ ≥ Va′(V

2
a′ − 1/|Nz|). Or

stated differently: Ea′ ≥ ϕ(Va′) where ϕ(x) := 0 for x < 1/
√
|Nz| and ϕ(x) :=

x(x2−1/|Nz|) for x ≥ 1/
√
|Nz|. Since ϕ is convex on [0, 1], by Jensen’s inequality

we get Pr′′E ≥ ϕ(PrV ). In other words Pr′′E ≥ PrV (Pr
2
V −1/|Nz|) whenever

PrV ≥ 1/
√
|Nz|. Furthermore, the inequalities derived above give PrE ≥ Pr′′E −µ

for µ := µ1 + µ2. And µ is negligible. It follows that:

PrV ≥
1√
Nz

=⇒ PrE ≥ PrV

(
Pr2V −

1

|Nz|

)
− µ ≥

(
PrV −

1√
|Nz|

)3
− µ.
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Thus (P,V) is quantum-computationally extractable for R with knowledge error
κ := 1/

√
|Nz|. �

In [20], we additionally show that the resulting protocol is also zero-knowledge.
(This only uses the hiding property, and is hence independent of our new defini-
tions.)

Theorem 38 (Zero-knowledge). If |Nz| is polynomially-bounded, and
(Nz, P1, P2, V ) is HVZK and (com, verify) is computationally hiding, and com is a
polynomial-time algorithm, then (Nz, P

′
1, P

′
2, V

′) is computational zero-knowledge.
If |Nz| is polynomially-bounded, and (Nz, P1, P2, V ) is SHVZK and

(com, verify) is statistically hiding, and com is a polynomial-time algorithm,
then (Nz, P

′
1, P

′
2, V

′) is statistical zero-knowledge.

8 Open problems

We list some questions for future research:
– We have constructed quantum arguments of knowledge from sigma-protocols

by using collapse-binding commitments. However, our construction requires
the challenge space Nz of the sigma-protocol to be of polynomially-bounded
size. As a consequence, the resulting argument of knowledge will have a
noticeable knowledge error; for a negligible knowledge error we need to use
sequential repetition, resulting in a proof system with non-constant round
complexity. Are there general constructions of arguments of knowledge from
sigma-protocols that do not require the challenge space to be polynomially-
bounded?

– Can we use collapse-binding commitments to construct a quantum OT
protocol? For example, using the construction from [2] or a variation thereof?

– How are the various definitions of computationally binding commitments
related? That is, which implications and separations exist between sum-
binding, CDMS-binding, collapse-binding, and UC-secure commitments?
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