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Abstract. We study the question of how much interaction is needed
for unconditionally secure multiparty computation. We first consider the
number of messages that need to be sent to compute a Boolean func-
tion with semi-honest security, where all n parties learn the result. We
consider two classes of functions called t-difficult and t-very difficult func-
tions, where t refers to the number of corrupted players. For instance,
the AND of an input bit from each player is t-very difficult while the
XOR is t-difficult but not t-very difficult. We show lower bounds on the
message complexity of both types of functions, considering two notions of
message complexity called conservative and liberal, where conservative is
the more standard one. In all cases the bounds are Ω(nt). We also show
(almost) matching upper bounds for t = 1 and functions in a rich class
PSMeff including non-deterministic log-space, as well as a stronger upper
bound for the XOR function. In particular, we find that the conservative
message complexity of 1-very difficult functions in PSMeff is 2n, while
the conservative message complexity for XOR (and t = 1) is 2n − 1.
Next, we consider round complexity. It is a long-standing open prob-
lem to determine whether all efficiently computable functions can also
be efficiently computed in constant-round with unconditional security.
Motivated by this, we consider the question of whether we can compute
any function securely, while minimizing the interaction of some of the
players? And if so, how many players can this apply to? Note that we
still want the standard security guarantees (correctness, privacy, termi-
nation) and we consider the standard communication model with secure
point-to-point channels. We answer the questions as follows: for passive
security, with n = 2t + 1 players and t corruptions, up to t players can
have minimal interaction, i.e., they send 1 message in the first round to
each of the t + 1 remaining players and receive one message from each
of them in the last round. Using our result on message complexity, we
show that this is (unconditionally) optimal. For malicious security with
n = 3t + 1 players and t corruptions, up to t players can have minimal
interaction, and we show that this is also optimal.

1 Introduction

In Multiparty Computation n players want to compute an agreed-upon function
on privately held inputs, such that the desired result is correctly computed and



is the only new information released. This should hold even if t players have
been actively or passively corrupted by an adversary.

If point-to-point secure channels between players are assumed, any function
can be computed with unconditional (perfect) security, against a passive adver-
sary if n ≥ 2t+ 1 and against an active adversary if n ≥ 3t+ 1.[BGW88,CCD87]
If we assume a broadcast channel and accept a small error probability, n ≥ 2t+1
is sufficient to get active security [RB89].

The protocols behind these results require a number of communication rounds
that is proportional to the depth of an (arithmetic) circuit computing the func-
tion. One would of course like to compute any function with unconditional secu-
rity, in constant rounds, and efficiently in terms of the circuit size of the function.
This is however a long-standing open problem (note that this is indeed possible
if one makes computational assumptions).

This is not only a theoretical question: the methods we typically use in in-
formation theoretically secure protocols tend to be computationally much more
efficient than the cryptographic machinery we need for computational security.
So unconditionally secure protocols are very attractive from a practical point of
view, except for the fact that they seem to require a lot of interaction.

It is therefore very natural to ask whether this state of affairs is inherent.
How much interaction do we actually need for unconditional security, and can
we reduce the interaction needed compared to existing protocols? This type of
question was studied in [FKN94,DPP14] in a specific 3-party model where 2
parties have input and a third gets the output. We further detail below some
previous work on secure addition, but in general very little is known on this
question.

In this paper, we make some progress with respect to two related but differ-
ent measures of interaction: message complexity and round complexity, in the
context of synchronous networks.

Message complexity seems like a very simple measure at first sight: simply
count how many messages are sent in the protocol. However, a moment’s thought
will show that things are a bit more tricky. For instance, what if the protocol
varies its communication pattern, so that Pi sometimes (but not always) sends
a message to Pj in a certain round? One way to handle this is to declare that
the absence of a message is also a signal. This leads to what we call conservative
message complexity, i.e., we say that if Pi sometimes sends a message to Pj in a
certain round, then we consider it to be the case that Pi always sends a message
to Pj in this round. This way, we force protocols to have a fixed communication
pattern.

However, considering only this measure is not completely satisfying. After all,
it could be that one could design protocols with a smaller number of messages by
using tricks such as waiting for a certain time before a message is sent, and using
the amount of elapsed time as an implicit signal. In real life such an approach
could be interesting, as there may be some cost involved in physically moving a
message, that is not incurred if one stays silent. Therefore, we also define liberal
message complexity, where the protocol is only charged for messages that are



explicitly sent, and where we consider the expected number of messages as well
the maximum. We discuss these measures in more detail later, when we define
them formally.

Our results are as follows: We consider n players and t semi-honest and static
corruptions. We look at statistically secure computation of Boolean functions,
where all parties learn the output. We assume secure point to point channels that
leak the length of the message sent to the adversary (as any implementation using
crypto would do). The ideal functionality for computing the function leaks the
output to the adversary only if some party is corrupted, so essentially we ask
that the adversary cannot learn anything by doing only traffic analysis.

We consider two classes of functions, called t-very difficult and a larger class
called t-difficult. The AND of an input bit from each player, and more generally
threshold functions are t-very difficult, whereas the XOR is t-difficult but not
t-very difficult.

We show lower bounds for all 4 cases that arise naturally. In all cases the
bounds are Ω(nt). Results are summarized in Figure 1.
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Fig. 1. Lower Bounds.

For the case of t = 1 we also show upper bounds using perfectly secure proto-
cols, for all functions in a class we call PSMeff which includes non-deterministic
log-space and more (see Definition 1 below), as well as a stronger upper bound
for the XOR function. Figures 2 and 3 show the lower bounds for t = 1 and
the upper bounds. We see that we have obtained the exact conservative mes-
sage complexity for all 1-very difficult functions in PSMeff . This includes, for
instance, the AND and thresholds functions in general. We have also obtained
the exact conservative and liberal message complexity for XOR (when t = 1).
Finally we have characterised the liberal message complexity of 1-very difficult
functions in PSMeff up to 1/2 message, the exact characterization is left as an
open problem.

Liberal Conservative

1-very difficult 3n/2 2n

1-difficult 3n/2− 1/2 2n− 1

Fig. 2. Lower Bounds for t = 1.



Liberal Conservative

PSMeff 3n/2 + 1/2 2n

XOR 3n/2− 1/2 2n− 1

Fig. 3. Upper Bounds for t = 1.

Some remarks on alternative models are in order: we insist that the number
of parties is considered to be constant, even if the security parameter grows.
This rules out tricks like secret sharing one’s input among a small subset of
parties, hoping they are not all corrupt [BGT13,GIPR] (which works for static
corruptions, but not for adaptive corruptions). If one is happy with statistical,
static, semi-honest security for a large number of parties, then this type of trick
can be used to compute simple operations with a poly-log (in n) number of
messages. If the communication pattern is fixed, than a quadratic number of
messages is required for addition protocols [CK93]. Note that our bounds hold
regardless of the number of parties if adaptive security or perfect security is
required (and our upper bounds yield perfect security). Therefore the only way
to circumvent our lower bounds is to settle for static and statistical security
and let the number of parties grow with the security parameter (for adaptive
adversary with setup assumptions, see further discussion in [CCG+15]).

Next, we consider round complexity: As mentioned, computing any function
with unconditional security, in constant rounds and efficiently in the circuit size
of the function is an open problem4, and providing a positive answer seems to
require completely new ideas for protocol design. Motivated by this, we consider
the question of whether we can minimize the interaction of some of the players?
And if so, how many players can this apply to? Note that we still want the
standard security guarantees (correctness, privacy, termination). We answer this
question as follows: for passive security, with n = 2t+1 players and t corruptions,
up to t players can have minimal interaction, i.e., they send 1 message in the
first round to each of the t+ 1 remaining players and receive one message from
each of them in the last round. Using our result on message complexity, we show
that this is (unconditionally) optimal. For malicious security with n = 3t + 1
players and t corruptions, up to t players can have minimal interaction, and we
show that this is also optimal.

For the purpose of proving the positive result for malicious security, we show a
result of independent interest: For the case n = 3t+1 and t malicious corruptions,
we design a broadcast protocol of the following special form: we can select any
subset of t players, who only need to send one message to the other n− t players.
After this point, we can do broadcast among the remaining n− t players. Note
that we are not guaranteed that we have at most a third corruptions among the
n − t players, so we cannot do broadcast from scratch in this set. We find it

4 Using randomizing polynomials [IK00] one can get unconditional security and con-
stant round efficiently in the branching program size of the function, but this does
not seem to help beyond NC1.



slightly surprising that we need so little involvement from the t selected players.
In particular, they might all be corrupt and hence send completely inconsistent
setup values – then, of course, we are saved by the fact that the remaining players
are all honest (but they do not know this yet).

2 Preliminaries

We use N to denote the non-negative integers. For n ∈ N we let [n] = {1, . . . , n}.
We prove security in the model from [Can00] with unconditional security

and a static adversary. We consider a synchronous model with point-to-point
perfectly secure channels between each pair of parties, where the length of each
message sent is leaked to the adversary. In one round, all parties may send mes-
sages to each other. We consider function evaluation between n parties P1, . . . ,Pn
with inputs x1, . . . , xn and common output y = f(x1, . . . , xn) for a poly-time
n-party function f . In the ideal model, we assume that nothing is leaked to the
adversary in case no one is corrupted. We refer to [Can00] for the details of the
model.

We say that a protocol has perfect correctness if it always computes the
correct result when all parties follow the protocol. We say that a protocol has
perfect privacy against t semi-honest corruptions if the ideal world and the real
world models have the same distributions even when t parties are passively
corrupted, i.e., they follow the protocol but might pool their views of the protocol
to learn more than they should. We say that a protocol has statistical privacy
against t semi-honest corruptions if the view of the corrupted parties in the ideal
world and the real world models have distributions that are statistically close
in some security parameter s even if t parties are passively corrupted. We say
that a protocol has perfect privacy against t malicious corruptions if the view
of the corrupted parties in the ideal world and the real world models have the
same distributions even when t parties might deviated from the protocol in a
coordinated manner. If the distributions are only statistically close we talk about
statistical security against t malicious corruptions.

As is well known, it is possible to implement secure function evaluation of any
poly-time n-party function with perfect correctness and perfect privacy against
t semi-honest corruptions when n ≥ 2t + 1. It is possible to implement se-
cure function evaluation of any poly-time n-party function with perfect correct-
ness and perfect privacy against t malicious corruptions when n ≥ 3t + 1, see
[BGW88,CCD87].

We will use secure function evaluation protocols for the so-called preprocess-
ing model as tools. In these protocols an incorruptible trusted third party will
sample a distribution D to get an n-tuple (d1, . . . , dn) ← D. Then it privately
gives di to Pi. After the setup phase, the n parties engage in a protocol where
they communicate over secure channels. In such pre-processing models there ex-
ist appropriate distributions D which will allow to get perfect correctness and
perfect privacy against t passive corruptions out of n = t + 1 parties. See, e.g.,
[DZ13] and the references therein.



We also use protocols for the private simultaneous message (PSM) model.
For this model an n-party protocol for an n-party function f is given by

(R,M1, . . . ,Mn, g) ,

where R is a distribution with finite support, each Mi is a function, called the
message function of party i, and g is function called the reconstruction function.

By perfect correctness of a PSM protocol for an n-party function f we mean
that for all r in the support of R and all inputs (x1, . . . , xn) for f it holds that
f(x1, . . . , xn) = g(M1(x1, r), . . . ,Mn(xn, r)).

By ε-privacy of a PSM we mean that there exists a poly-time simulator S
such that for all inputs (x1, . . . , xn) for f , y = f(x1, . . . , xn) and a random
sample r ← R it holds that (M1(x1, r), . . . ,Mn(xn, r)) and S(y) have statis-
tical distance at most ε. If ε = 0, then we talk about perfect privacy. If ε is
negligible we talk about statistical security. Privacy ensures that a party seeing
(M1(x1, r), . . . ,Mn(xn, r)) learns nothing extra to y = g(M1(x1, r), . . . ,Mn(xn, r)).

The PSM model is a generalization of [FKN94] and is defined in [IK97],
where they also gave perfectly secure and efficient (poly-time) PSM protocols
for a large class of functions including non-deterministic log-space, modp L and
]L. In [IK97] privacy is not formulated via poly-time simulation: the notion
only asks that (M1(x1, d1), . . . ,Mn(xn, dn)) depends only on f(x1, . . . , xn). We
need the simulation based notion here, as we prove security in [Can00], which
is phrased via efficient simulation. We note that if for a given function f it is
possible to compute in poly-time, from an output y = f(x1, . . . , xn), an input
(x′1, . . . , x

′
n) such that y = f(x′1, . . . , x

′
n) then the notions are equivalent for

f . The simulator will simply compute (x′1, . . . , x
′
n), sample r ← R and output

(M1(x1, r), . . . ,Mn(xn, r)). Of course, if inputs are single bits and the number
of parties is considered to be constant, such inversion can be done in constant
time by trying all possibilities.

In the following, when using PSM protocols, we will consider such efficiently
invertible functions f that also have an efficient PSM protocol:

Definition 1. We will use PSMeff to denote the class of functions that are
efficiently invertible as described above and can be computed by a polynomial
time PSM protocol.

We also use additive secret sharing of bits strings x ∈ {0, 1}m. An additive
secret sharings of x between P1, . . . ,Pn consists of sampling shares s1, . . . , sn ∈
({0, 1}m)n uniformly at random under the only restriction that x = ⊕ni=1si,
where ⊕ denote bit-wise exclusive or. It is easy to show that the distribution of
any n−1 of the shares is the uniform one on ({0, 1}m)n−1 and hence independent
of x.

3 Message Complexity

Defining the message complexity of a protocol for the synchronous model with
secure channels appropriately is slightly more tricky than one might expect at
first, so we address this issue in its own section.



We will first of all need to allow parties to not send a message to some party
in a given round. Since all parties send messages to all parties in all rounds in
[Can00], we need to hack the model a bit for this. We will say that if a party
sends the empty string then this counts as not having sent a message. Think of
receiving the empty string from Pi as meaning ”no message was received from
Pi in this round”.

This builds up to a subtler point that we demonstrate by an example. Con-
sider the problem where a dealer D is to deal an additive secret sharing of a bit
d between n parties P1, . . . ,Pn. What is the average message complexity of this
problem? It turns out that if we ignore security for a second, then it is at most
n/2 if one is not careful. The dealer samples a secret sharing d = d1 ⊕ · · · ⊕ dn.
Then for i = 1, . . . , n, if di = 0 he does not send a message to Pi. If di = 1,
then he sends 1 to Pi. Since di is uniformly random it follows from linearity of
expectation that he sends an expected n/2 messages.

If we consider security, the bound changes. It is the case in [Can00] that
the adversary can see the length of a message sent securely. This in particular
means that in our setting here, the adversary can see if a message was sent or
not between any two parties—it can see the communication pattern. This is a
reasonable model, as hiding the presence of a communication is not practical, in
particular when we actually do not want to transmit anything when there is no
message to be sent.

Of course seeing the communication pattern of the above protocol renders
it insecure, but this kind of contrived example shows that in some cases, if we
want a very precise measure of message complexity we need to consider protocols
with fixed communication patterns, i.e., if P1 sometimes sends a message to P2

in round 1, then we consider it the case that P1 always sends a message to P2

in round 1, as the absence of the message is a signal.

On the other hand, considering only this measure seems to be not entirely
satisfying. We should be intrigued whether or not using tricks as above will allow
more efficient protocols, so it makes sense to also consider a notion where we
only count messages that are explicitly sent.

This will mean that the number of messages may not be the same in all runs
of the protocol. When we prove lower bounds it will therefore not be meaningful
to consider conservative message complexity. For example, if we can prove that
all protocols must with some probability 2−s, where s is the security parameter,
send 240n message but that they in all other cases might have to send only 2n
messages, then we would not consider 240n a very meaningful lower bound for
the number of messages. When we prove lower bounds we would like to consider
expected message complexity, which would turn the lower bound in the just given
example into 2n, as 2−s240n is vanishing in s. We call this liberal communication
complexity. Another way to relax the conservative notion is to still only count
messages explicitly sent but look at the worst case number over the randomness
of the parties. We call this worst case communication complexity. It is obviously
in between the conservative and liberal notions and we will at some point only



be able to prove an upper bound for the worst case notion (as opposed to the
conservative one).

We therefore define three measures of message complexity, a conservative
one, a liberal one and a worst case one:

Definition 2 (Conservative Message Complexity). Let π be an n-party
protocol for a synchronous network. Let R be random tapes of all players. By
Msgcon(π) we denote the conservative message complexity of π. For all r ∈ N
and all i ∈ [n] and all j ∈ [n] \ {i} we define cr,i,j to be 1 if there exists an
input x for π and randomness R such that when π is run with that input and
that randomness, Pi will send a message to Pj in round r. We let cr,i,j = 0
otherwise. We let

Msgcon(π) =
∑
r,i,j

cr,i,j .

Note that in the conservative message complexity, even if some player flips
a fair coin and sends a message that is independent of it’s input, say ”hello” to
player one if the coin is zero and ”hello” to player two, three and four if the
coin is one, the conservative message complexity counts this as four messages.
A more liberal way to count messages in any specific protocol run and then
take expectation or worst case over the random tapes of the parties. We call
this liberal message complexity respectively worst case complexity. In the above
example, the liberal message complexity of the “hello” messages is two messages
and the worst case complexity is three message.

Definition 3 (Liberal Average/Worst-case Message Complexity). Let
π be an n-party protocol for a synchronous network. For a given run of π on
input x and some fixed random tapes R of the parties we define cr,i,j to be 1 if
Pi sent a message to Pj in round r. We let cr,i,j = 0 otherwise. We let

Msg(π,x, R) =
∑
r,i,j

cr,i,j

and

Msglib(π) = max
x

ER[Msg(π,x,R)] .

Msgwor(π) = max
x,R

[Msg(π,x,R)] .

It is easy to see that it is always the case that Msglib(π) ≤ Msgwor(π) ≤
Msgcon(π).

We extend the above notions to the statistical setting by defining them as
above for each fixed value of σ and then taking lim sup when this limit is defined.
If this limit is not defined, we define the message complexity to be ∞.



4 Lower Bounds

We now proceed to present and prove our lower bounds. We first prove a lower
bound on the message complexity of secure function evaluation in the face of
semi-honest corruptions. Then we give a lower bound on the individual round
complexity in the face of t semi-honest corruptions and then a lower bound on
the individual round complexity in the face of t malicious corruptions.

4.1 Message Complexity

We first prove a lower bound on the message complexity of secure function
evaluation secure against t semi-honest corruptions. We will prove the bound for
a large class of function that we will call t-difficult, and a slightly larger bound
for a smaller class called t-very difficult.

First some clarifications: even though we have defined two different ways
to count messages, where an empty message counts in one notion and not in
the other, in the following, when we say that a message is sent or received, or
messages are exchanged, we always refer to non-empty messages.

Very roughly, the intuition we will formalize is as follows: A player whose
input matters to the result must somehow communicate his input to the rest of
players, in order to enable correct computation of the result by all players. The
input cannot be encoded in the communication pattern which is public, so it must
follow from the content of messages this player exchanges with other players. On
the other hand, a player whose inputs matters has to exchange messages with at
least t+ 1 parties before his input becomes determined. Otherwise he may have
talked to only corrupted parties and the protocol would not be private. This
already indicates a lower bound of n(t + 1)/2 messages (we need to divide by
2 since a message counts as communication for both sender and receiver). But
we can do more: we show that after the inputs have been fixed, all players must
receive information allowing them to determine the result of the computation.
Under the liberal message complexity notion, this does not necessarily mean that
all players must receive another message, but we can show that in expectation
most players must receive a message half the time. So this indicates a lower
bound of n(t+ 2)/2 messages, which is (approximately) what we obtain.

We start with some notation: For an input vector x = (x1, . . . , xn) and a
subset D ⊆ {1, . . . , n} and inputs xD = {(j, x′j)}j∈D for the parties in D we use
x[xD] to denote the vector x with xj replaced by x′j for j ∈ D.

Definition 4. We say that a function f is t-difficult for Pi if the following holds:

influence There exists two inputs xi,0 and xi,1 such that xi,0j = xi,1j for all

Pj 6= Pi and such that f(xi,0) 6= f(xi,1).
uncertainty There exists an input x?i such that for all subsets C ⊂ {P1, . . . ,Pn}\
{Pi} with |C| = t and D = {P1, . . . ,Pn} \ ({Pi} ∪ C) and all inputs x for f
there exists xD = {x′j}j∈D such that f(x[(i, x?i )]) = f(x[xD]).

We say that f is t-difficult if f is t-difficult for all Pi.



Intuitively, if a party has influence, then the function – at least sometimes
– depends on the input of that party. If a party Pi has uncertainty, it means
that for some input, called x?i , of Pi, if subset C is corrupt, they will not be
able to figure out which input Pi has, no matter what the other inputs were: we
can switch Pi’s input to anything else and compensate for this by changing the
inputs of the other honest parties such that the output is the same. One may
think, for instance of the AND function: if Pi has input 0, the output is 0, but
the adversary cannot know if this is because Pi or another honest party has a 0.

As examples of t-difficult functions consider the functions where each party
has as input a bit and where the output is the AND or the XOR of these n bits.
Other examples are general threshold functions, which output 1 iff at least some
0 < t′ < n parties have input 1.

For a run of a protocol π and a given party Pi and a given point in the
protocol we keep track of a set Ni which can be thought of as the parties that
Pi has exchanged messages with, but it is defined with a slight twist. From the
beginning we set all Ni = ∅. Whenever Pi sends a message, we update Ni to be
the set of parties Pi has sent a message to or received a message from so far in
the protocol. The definition is important so let us elaborate:

1. The set Ni is not updated at the time a message is received.
2. The set Ni is updated at the time a message is sent.
3. When Ni is updated we add all the messages that were received since the last

time is was updated and we also add the outgoing message that triggered
the update.

We say that a protocol has t-floating input for Pi if at each point in the
protocol where |Ni| ≤ t it holds that Pi still did not read its input xi. More
formally, if we model Pi as an interactive Turing machine, it means that Pi did
not access its input tape. We say that π has t-floating input if it has t-floating
input for all parties.

For any run of a protocol we define a revelation message to be the message
(if it exists) where before the message is sent it holds for at least one Pi that
|Ni| ≤ t and after the message is received it holds for all Pi that |Ni| ≥ t + 1.
Notice that this implies that it is the size of the set Ni of the sender of the
revelation message that crosses the threshold t, as Ni is not updated in response
to receiving a message.

The communication pattern of an execution π(x;R) with input vector x and
random tape vector R is the transcript seen by the adversary when no parties
are corrupted, i.e., who sent a message to whom at which time and the length of
those messages, but no contents of the messages and no input or output of any
party. We assume that a communication pattern is encoded as a bit string. Let
Q : {0, 1}∗ → {0, 1}∗ be a function on communication patterns. We use Q(π(x))
to denote the random variable obtained by running π on the input distribution x
and uniformly random R and applying Q to the resulting communication pattern
and then outputting the output of Q.

Our proof strategy can be summarized as follows: we will first show that a
protocol with floating inputs must have a revelation message, and that further-



more, n − 1 players must receive a message after the revelation message was
sent, with probability at least 1/2. This is quite straightforward and implies
that floating input protocols must satisfy our lower bound. The second step is
to show that any secure protocol for a difficult function f can be converted to
a floating input protocol with the same message complexity. This is the most
complicated part and uses in an essential way that the function is difficult and
the assumption in our model that the number of parties does not grow with the
security parameter.

Lemma 1 (input-independent communication pattern). If π securely
implements f with statistical security for t semi-honest corruptions for some
t ≥ 0, then it holds for any two input distributions x0 and x1 and all functions
Q on communication patterns that Q(π(x0)) and Q(π(x1)) are statistically in-
distinguishable.

Proof. This follows from the fact that when no parties are corrupted, the ad-
versary still sees the communication pattern of π(x0) and π(x1) and hence can
compute and output Q(π(x0)) respectively Q(π(x1)). However, when no parties
are corrupted the simulator has the same view when x0 or x1 is used. The claim
then follows from security against 0 semi-honest corruptions. ut

Corollary 1 (input-independent communication complexity). If π se-
curely implements f with statistical security for t semi-honest corruptions for
some t ≥ 0, then it holds for any two input distributions x0 and x1 that Msg(x0)
and Msg(x1) are statistically indistinguishable. Here, Msg(x) is the random vari-
able that selects an input according to x, runs the protocol and outputs the num-
ber of non-empty messages sent.

Proof. Consider the function on communication patterns outputting the number
of non-empty messages sent and then apply Lemma 1. ut

Lemma 2 (revelation message). If π has t-floating input and securely imple-
ments f with statistical security for t semi-honest corruptions and f is t-difficult,
then it holds for all input distributions x that π has a t-revelation message except
with negligible probability.

Proof. If π does not have a t-revelation message for input distribution x, then
there exist a party Pi such that with non-negligible probability Pi exchanges
messages with at most t parties in π(x). From Lemma 1 it then follows that
it holds for the input distributions xi,0 and xi,1 from the definition of f being
t-difficult that with non-negligible probability Pi exchanges messages with at
most t parties in π(xi,0) and also in π(xi,1). But since π has t-floating inputs,
this implies that with non-negligible probability π(xi,0) = π(xi,1) as the output
cannot depend on the input of Pi when Pi did not read its input, and all other
parties have the same inputs in xi,0 and xi,1. However, by assumption f(xi,0) 6=
f(xi,1) and we have a contradiction with correctness of π. ut



Lemma 3 (another message after revelation message). If π has t-floating
input and securely implements f with statistical security for t semi-honest cor-
ruptions and f is t-difficult, then it holds for all input distributions and all pairs
of distinct parties Pj and Pk that in a random run of π(x) it holds except with
negligible probability that when Pk is the sender of the revelation message, then
the probability that Pj receives another message after Pk sent the revelation mes-
sage is at least 1

2 .

Proof. Assume for the sake of contradiction that there exist x and Pk and
Pj 6= Pk such that it happens with non-negligible probability that Pk is the
sender of the revelation message and that when this happens Pj will receive
another message after the revelation message is sent (but not received) with
probability at most 1

2 − c, where c is non-negligible. It is a predicate of the
communication pattern whether Pk sends the revelation message. It is also a
predicate of the communication pattern whether Pj receives another message
after the revelation message. Therefore it follows from Lemma 1 that it holds for
any input distribution x with non-negligible probability that Pk is the sender of
the revelation message and that when this happens then Pj will receive another
message after the revelation message is sent (but not received) with probability
at most 1

2 − c
′, where c′ = c− negl is non-negligible as c is non-negligible.

Consider now the particular input distribution which is xk,b for a uniformly
random bit b, where xk,0,xk,1 are the input vectors guaranteed by the definition
of f being t-difficult (Pk has influence). In this case the output of all parties
allow to determine the bit b, except with negligible probability. Assume without
loss of generality that f(xi,b) = b. Let y be the distribution of the output of Pj in
a random run on xi,b conditioned on Pj not receiving another message after the
revelation message. Notice that y can be sampled by Pj at the time right before
the revelation message is sent, by simply assuming that no more messages will be
received by Pj . However, at the point before the revelation message is sent Pk did
not read its input xk yet in the protocol, so y is perfectly independent of b. From
this it follows that Pr[y = 0 | b = 0] = Pr[y = 0 | b = 1] = 1−Pr[y = 1 | b = 1], so
either Pr[y = 0 | b = 0] ≤ 1

2 or Pr[y = 1 | b = 1] ≤ 1
2 . Assume that Pr[y = 0 | b =

0] ≤ 1
2 . Since b = 0 with probability 1

2 and Pj receives another message with
probability 1

2 − c it happens with non-negligible probability that b = 0 and at
the same time Pj does not receive another message and hence outputs according
to distribution y, which implies that it happens with non-negligible probability
that Pj does not output b, contradicting the correctness of the protocol. If we
assume that Pr[y = 1 | b = 1] ≤ 1

2 , then a violation of correctness is reached
using a symmetric argument. This concludes the proof. ut

Lemma 4 (floating input). Let f be a t-difficult n-party function and assume
that π is an n-party protocol securely implementing f with statistical correctness
and statistical privacy against t semi-honest corruptions. Then there exists a
protocol π′ with t-floating input which has the same security and is such that
for any input distribution, the resulting communication patterns of π and π′ are
identically distributed.



Proof. We prove the lemma by constructing π′ from π. We prove the lemma for
the weaker case where we construct π′ where only P1 has t-floating input. We
can then obtain the general case by symmetry and hybrid arguments.

All parties in π′ run as in π except P1 who runs as follows. Initially, run as
in π but with input β1 = x?1 and a uniformly random tape ρ1. Here, x?1 is the
input value that a exists since f is t-difficult (the uncertainty condition for P1).
If about to send a message which would result in |N1| ≥ t + 1, then first apply
the following input patching procedure: Read the input x1 and replace ρ1 with
a new random tape r1 consistent with input x1 and the communication so far.
Specifically, sample r1 using rejection sample as follows. Sample r1 uniformly at
random. Let T be the list of messages sent and received by P1 so far, including
who the message was exchanged with and in which round. Run the code of P1

from π with input x1 and random tape r1 and feed P1 the incoming message
from T in the round in which they occurred. If this makes P1 send the same
messages as in T to the same parties and in the same rounds, then accept r1,
otherwise try again. Use r1 = ⊥ to denote that no acceptable r1 exists. We now
prove that if π is secure, then π′ is secure.

We will actually prove something stronger, which implies that the correctness
and the distribution of the communication pattern is also maintained. Namely we
will prove that for all input distributions x it holds that the following distribu-
tions D0 and D1 are statistically indistinguishable: D0 is obtained by sampling
a random run of π on a random input sampled from x and then outputting
((x1, r1), (x2, r2), . . . , (xn, rn)), where xi is the input of Pi and ri is the random
tape used by Pi. D1 is obtained by sampling a random run of π′ on a random
input sampled from x and then outputting ((x1, r1), (x2, r2), . . . , (xn, rn)), where
for i = 2, . . . , n the value xi is the input of Pi and ri is the random tape used
by Pi and where x1 is the input of P1 and r1 is the random tape sampled in the
input patching procedure. From this it clearly follows that if π is correct, then
π′ is correct and it follows for all t′ ≤ n that if π is secure against t′ corruptions
then π′ is also secure against t′ corruptions. Notice that to prove the claim for
all distributions on x it is sufficient to prove that it holds for all fixed input
vectors x, so in the following we assume that x is a fixed value.

Let x = (x1, x2, . . . , xn). If x1 = x?i , then the input patching procedure
simply resamples r1 with the same distribution as β1 and hence D0 and D1 are
identical. So, assume that x1 6= x?1 and that D0 and D1 are not statistically close.
We show how to use this to break the t-security of π. Let x0 = (x?1, x2, . . . , xn)
and x1 = (x1, x2, . . . , xn) = x. We break the analysis into two cases. In case I we
assume that f(x1?, x2, . . . , xn) = f(x1, x2, . . . , xn). To avoid confusion, note that
the proof of case II in fact implies the result for case I. However, it is instructive
to first see the proof of case I as a mental warm-up.

In case I we will run π on x0 or x1 and show how to distinguish with non-
negligible advantage by corrupting just t parties which do not include P1. This
clearly demonstrates that π is not t-secure, as these t parties have the same
inputs and outputs in f(x0) and f(x1) as only the input of P1 differs and because
f(x0) = f(x1). So, assume that we attack a run of xb for uniformly random b.



The adversary will observe the communication pattern of the protocol. Consider
the point where P1 sends a message that would make |N1| > t for the first time,
and note that P1 has communicated with at most t parties up to now, call this
set of parties C. At this point the adversary corrupts the players in C5. Note
that all messages sent by P1 so far was sent to one of these parties. Use D to
denote the set of parties which is not in {P1} ∪ C. Now use rejection sampling
to sample a random tape r1 consistent with the communication between P1 and
the parties in C and input xi to P1. Note that if b = 1, this samples a string
having the same distribution as the random tape used by P1 in the protocol
π(x). If b = 0, then it samples a string having the same distribution as the
random tape r1 sampled by the input fixing procedure in π′(x). Note that the
parties in D have not communicated with P1, so all the communication leaving
the group D is with C. This means that the adversary knows all message going
in or out of the group D. It can therefore use rejection sampling to sample a
set of uniformly random tapes {(j, rj)}j∈D for the parties in D consistent with
the communication between C sand D and Pj for j ∈ D having input xj (where
xj is taken from x). This perfectly reconstructs the distribution of the state of
the parties in D. Then output ((x1, r1), (x2, r2), . . . , (xn, rn)). If b = 0, this is
exactly D0 and if b = 1 it is exactly D1. But we assumed that D0 and D1 are not
statistically close so we arrive at a contradiction with t-security of π: since the
output is the same in the two cases, a simulator would see no difference between
b = 0 and b = 1.

That brings us to case II. In this case, we can prove as above that if D0 and
D1 can be distinguished, then we can also distinguish between π(x0) and π(x1)
by just corrupting t parties at a point where |N1| ≤ t. The challenge is that
f(x0) 6= f(x1), so it does not follow easily from the definition of security that
an adversary should not be able to distinguish with just this information. We
now argue this in a more indirect way.

Consider the following experiment, which is parameterized by an (infinitely
powerful) adversary A that outputs one bit:

1. Sample b uniformly at random.
2. Run π(xb) until the point where it is about to happen that |N1| > t. If this

point does not occur, then perform the following at the end of the execution
of the protocol.

3. Let C be the set of at most t parties defined as in case I above. A corrupts
the parties in C. Let V be the joint view of these parties (their inputs, ran-
dom tapes and messages received). Output A(C, V ) (here we abuse notation
slightly by using A to denote both the adversary and the (arbitrary) function
it calculates on the views).

We now claim that for any A, Pr[A(C, V ) = b] − 1
2 is negligible. This will

imply what we want: Note that one possible choice of A is as follows: use rejection
sampling to produce a sample of Db, exactly as we described in case I above.

5 when we get to the actual proof in case II, we will construct a static adversary that
always corrupts the same set.



Then output the best guess at whether the sample came from D0 or from D1.
Since the claim holds for this particular A, D0 and D1 are statistically close.

So assume for the sake of contradiction that there existsA such that Pr[A(C, V ) =
b]− 1

2 is non-negligible.
Note that C may not be the same set in all runs of the protocol. Considering

C as a random variable, we have that

Pr[A(C, V ) = b]− 1

2

=
∑
C′

Pr[C = C ′] Pr[A(C, V ) = b|C = C ′]−

(∑
C′

Pr[C = C ′]

)
1

2

=
∑
C′

Pr[C = C ′]

(
Pr[A(C, V ) = b|C = C ′]− 1

2

)
.

Since the number of subsets of the parties is constant as a function of the security
parameter, it now follows that we can find a fixed set C ′ of size at most t such
that Pr[C = C ′] is non-negligible and such that Pr[A(C ′, V ) = b |C = C ′]− 1

2 is
non-negligible.

We can then construct a new adversary A′ which always corrupts C ′ and
still guesses b with non-negligible advantage: If the set C actually occurring in
the protocol equals C ′, it outputs A(C ′, V ), otherwise it outputs a uniformly
random bit. Note that A′ makes its guess at a point in time where N1 ⊆ C. A′’s
advantage is non-negligible because Pr[A′(C ′, V ) = b |C 6= C ′] − 1

2 is negligible
— we can only claim negligible here and not 0 as there might be a difference
between Pr[C 6= C ′ | b = 0] and Pr[C 6= C ′ | b = 1]. This difference, however, is
negligible by Lemma 1.

We now want to show that such A′ does not exist. To avoid ugly notation in
the following, we will now use C to denote the set that A′ always corrupts.

We start with some notation. Let D be the set of parties not in C∪{P1}. Let
x01 = x?1 and x11 = x1 let x1D be the inputs of the parties in D in x. Let x0D be the
inputs xD for the parties in D given by the definition of P1 having uncertainty.
We therefore have have by definition that f(x01, xC , x

1
D) = f(x11, xC , x

0
D).

In this notation we have that x0 = (x01, xC , x
1
D) and x1 = x = (x11, xC , x

1
D).

Therefore our job is to prove that A′ cannot distinguish π(x11, xC , x
1
D) from

π(x01, xC , x
1
D). In the following, for a subset S of the parties, we use [b, d]S to

denote the view of the parties S in an execution of π(xb1, xC , x
d
D). To complete

the proof we have to show that at any point in the protocol where N1 ⊆ C it
holds that [0, 1]C ≈ [1, 1]C .

For a subset S of the parties, let [b, d]cS denote the distribution of their views,
conditioned on the parties in S having received at most c messages.

Obviously [0, 1]0C ≈ [1, 1]0C , since before C communicated with any party the
view of players in C is just their own inputs and random tapes. We now prove
by induction that [0, 1]cC ≈ [1, 1]cC for all constants c, as long as N1 ⊆ C. The
latter condition is extremely important because it implies that in all cases we
consider, there is no communication between P1 and D.



We assume that [0, 1]cC ≈ [1, 1]cC and prove that [0, 1]c+1
C ≈ [1, 1]c+1

C . From
the communication pattern being known by the adversary and being indistin-
guishable in [0, 1]cC and [1, 1]cC by Lemma 1 we can assume that we know which
party Pj sends a message to C in round c+ 1.

Assume first that Pj 6= P1. Let RD be the procedure which gets input [b, 1]cC ,
and then from the view of the communication between C and D in [b, 1]C samples
a joint state of all parties in D consistent with inputs x1D and that communica-
tion and appends this state to [b, 1]C . We have that RD([b, 1]cC) = [b, 1]cC,D by
construction and it follows from the induction hypothesis [0, 1]cC ≈ [1, 1]cC that
RD([0, 1]cC) ≈ RD([1, 1]cC). So we conclude that in this case (where Pj ∈ D)
[0, 1]cC,D ≈ [1, 1]cC,D. Put another way, given the state of C one can perfectly
simulate the state of the parties in D since one knows their inputs and all com-
munication going in and out of D. From the state of the parties in D in [b, 1]cC,D
one can then sample a random run consistent with Pj being the next party
to send a message to a party in C. This gives a sample from [b, 1]c+1

C,D. Since
computation (in this case of the next message function) maintains statistical
indistinguishability it follows from [0, 1]cC,D ≈ [1, 1]cC,D that [0, 1]c+1

C,D ≈ [1, 1]c+1
C,D.

It clearly follows from [0, 1]c+1
C,D ≈ [1, 1]c+1

C,D that [0, 1]c+1
C ≈ [1, 1]c+1

C .
Assume then that Pj = P1. Again, by induction hypothesis we have [0, 1]cC ≈

[1, 1]cC . It follows from the security of the protocol that [0, 1]C ≈ [1, 0]C as
the inputs and outputs of the parties in C are the same in the two executions
considered and |C| ≤ t. So in particular we have [0, 1]cC ≈ [1, 0]cC . So we conclude
by transitivity that [1, 0]cC ≈ [1, 1]cC .

Since the next message comes from P1 we can argue [1, 0]c+1
C ≈ [1, 1]c+1

C as
we did for the above case, by sampling the state of P1 from its known input and
communication. As we noticed above we have [0, 1]C ≈ [1, 0]C and therefore in
particular [0, 1]c+1

C ≈ [1, 0]c+1
C . Combining these two we get [0, 1]c+1

C ≈ [1, 1]c+1
C

as desired. ut

Theorem 1. Let π be the n-party function which securely implements a function
f which is t-difficult, with statistical correctness and statistical privacy against t
semi-honest corruptions. Then

Msglib(π) ≥ d(n(t+ 1)− 1)/2e+ n/2− 1

2

and
Msgcon(π) ≥ d(n(t+ 1)− 1)/2e+ n− 1 .

Proof. We start by proving the bound for liberal communication complexity.
By Lemma 4 we can assume that π has t-floating inputs. From Lemma 2 we
then get that π has a revelation message for all input distributions, except with
negligible probability. We now want to count the number of send and receive
operations that have been executed just before the revelation message is sent.
Since |Nj | ≥ t+ 1 for all Pj after the revelation message is sent, it follows that
after it is sent

n∑
i=1

|Ni| ≥ n(t+ 1) .



Notice that in this sum the revelation message is counted only once, but all other
messages might be counted twice. Hence at least (n(t+ 1)− 1)/2 + 1 messages
were sent after the revelation message was sent. Therefore at least (n(t+1)−1)/2
messages were sent before the revelation message was sent. Since the number of
messages sent is an integer, it follows that at least d(n(t + 1) − 1)/2e messages
were sent. By Lemma 3, after the point where the revelation message is sent by
some Pk each other party receives at least one more message with probability
at least 1

2 − negl. By linearity of expectation, this gives at least an expected
(n − 1)( 1

2 − negl(s)) more messages. Since n is a constant in s we have that
nnegl(s) = negl(s), so lims→∞(n− 1)( 1

2 − negl(s)) = (n− 1) 1
2 = n/2− 1

2 . It is
easy to see that for conservative message complexity we get to add n−1 instead
of (n − 1)/2: when we consider conservative message complexity, receiving a
message with probability 1

2 counts as 1 towards the message complexity. ut

We say that a function f is t-very difficult if it is t-difficult and in addition
for Pi there exists Pj such that Pi and Pj has an embedded AND in the following
sense: There exists an input vector x and inputs x1i and x0i for Pi and inputs
x1j and x0j for Pj such that if we set yb,c = f(x[(i, xbi ), (j, x

c
j)] for b, c ∈ {0, 1},

then y0,0 6= y1,1 and y0,0 = y0,1 = y1,0. We note that the notion of an embedded
AND (or, equivalently, an embedded OR) has been extensively studied in other
settings, see [KKMO00] and references therein.) If f is t-very difficult we can
improve the lower bound by 1

2 message.

Theorem 2. Let π be the n-party function which securely implements a func-
tion f which is t-very difficult, with statistical correctness and statistical privacy
against t semi-honest corruptions. Then

Msglib(π) ≥ d(n(t+ 1)− 1)/2e+ n/2

and
Msgcon(π) ≥ d(n(t+ 1)− 1)/2e+ n .

Proof (sketch). We start by proving the bound for liberal communication com-
plexity. The proof follows the lines of the proof of Theorem 1, so we will only
give a sketch. The extra 1

2 message comes from the fact that we can now argue
that even the sender of the revelation message must receive another bit of infor-
mation after sending the revelation message and therefore must receive another
message with probability at least 1

2 . To see this, note that if this was not the
case, then it holds for all input distributions, by Lemma 1. Let Pk be the sender
of the revelation message and let Pj be the party with which Pk has an em-
bedded AND. Denote an execution of π(x[(j, xbj), (j, x

c
k)]) by [b, c]. Assume that

Pk receives a message after sending the revelation message with probability less
than 1

2 .
In [b, 0] it holds that the view of Pk is independent of b even at the end of the

execution as the output and input of Pk are the same in the two executions. That
implies that until Pk sends the revelation message it also holds in [b, 1] that the
view of Pk is independent of b, as [b, 0] and [b, 1] are perfectly indistinguishable



to Pk until Pk actually reads its input. From this it follows that it also holds
in [b, 1] that the view of Pk is independent of b after sending the revelation
message, as reading the input xcj = 1 cannot change that dependence on b as
1 is a constant and in particular independent of b and the view of Pk so far.
But in [b, 1] the output of Pk must be b by the correctness of π. Going from a
situation where the view of Pk is independent of b to learning b requires that Pk
receives a message with probability at least 1

2 . When we consider conservative
message complexity, receiving a message with probability 1

2 counts as 1 towards
the message complexity. ut

Lower bounds for Perfect Security and Adaptive Corruption. Our model assume
that the number of parties is constant as a function of the security parameter.
The only place in our lower bound proofs where we used this assumption is in
the proof of Lemma 4. If we consider perfect security, the proof simplifies greatly,
and we can easily prove the lemma for any number of parties. Alternatively, if
we consider adaptive security, note that the proof first constructs an adaptive
adversary that breaks the protocol if our result is false and then converts it
to an static adversary using the assumption on a constant number of parties.
Therefore it is immediate that the lemma also holds for any number of parties
and adaptive security. We conclude that all our lower bounds for this section
hold for any number of parties, if we consider perfect or adaptive security.

4.2 Individual Round Complexity

Consider now an n-player protocol π that is executed on a synchronous network.
We can define a (possibly empty) set Mπ of players with minimal interaction,
consisting of players whose only communication is to each send a message to a
subset of the parties not in Mπ and then later, after all parties in Mπ have sent
all their messages, each receive a message from a subset of the parties not in
Mπ.

Theorem 3. Assume n = 2t+ 1 parties, where each party Pi holds input bit bi.
A protocol π that computes b1 ∧ · · · ∧ bn with perfect correctness and statistical
privacy against t semi-honest corruptions must have |Mπ| ≤ t.

Proof. Assume for contradiction that Mπ has size t+ 1. Then we can construct
from π a 3-party protocol for players A, B and C, where player A emulates the
t players not in Mπ, B emulates t of the players in Mπ, and C emulates the last
player in Mπ. Each party will have a single bit as input and will use that bit
as input to each of the parties it is emulating. If π is secure, then clearly the
3-party protocol securely computes the AND of the inputs from the 3 players,
provided at most 1 is passively corrupt, as corrupting any of A, B and C will
corrupt at most t emulated parties. Moreover, the 3 party protocol will have
only 4 messages. Namely, the one party from Mπ emulated by C will send one
message to A and later receive exactly one message from A, as A emulated
exactly the parties not in Mπ. The same is true for all the emulated players in



B, they will all send exactly one message to a player in A and receive back one
message from a player in A. Furthermore, since they all send their messages to
the players in A before they received any messages from A, we can let B send
all the messages as one message. In the same way we can let A return all the
messages as one message. Since there is no communication between parties in
Mπ, there is no communication betweenB and C. Hence all other communication
takes place inside A. However, communicating just 4 message is in contradiction
to Theorem 2, which says that 6 messages are required.

Theorem 4. Assume n = 3t+ 1 parties, where each party Pi holds input bit bi.
A protocol π that computes b1∧· · ·∧bn with statistical correctness and statistical
privacy against t malicious corruptions must have |Mπ| ≤ t.

Proof. If we assume a contradiction we can as above reduce it to the case with
n = 4 and t = 1. We let A simulate t parties with optimal communication
complexity. We let B simulate the last party with optimal communication com-
plexity. We let C and D each simulate t of the remaining parties. We set the
input of D to be 1 and we denote the inputs of A, B and C by a, b and c. The
communication pattern is as follows. First A sends two messages to C and D.
Denote the message sent to C by g. At the same time B sends two messages to
C and D. Denote the message sent to C by h. By privacy against a semi-honest
corruption of C we know that g is independent of a. Clearly the message h is
independent of a. Furthermore, since g and h were computed by two different
parties which did not communicate before sending these messages, and the par-
ties do not have a source of correlated randomness, g and h are independent.
It follows that (g, h) is independent of a. However, by security of one malicious
corruption the protocol should still terminate with the correct result if at this
point D stops participating in which case C receives no further information.
Clearly C cannot always compute the correct result with good probability when
its view is independent of a. ut

5 Upper Bounds

In this section we give four constructive upper bounds, one for individual round
complexity of secure function evaluation in the face of semi-honest corruptions,
then one for individual round complexity of broadcast in the face of malicious
corruptions, one for individual round complexity of secure functional evaluation
in the face of malicious corruptions, and finally one for message complexity in
the face of semi-honest corruptions.

5.1 Individual Round Complexity, Semi-honest Security

We first give a construction with minimal individual round complexity for a
group of t < n/2 parties in the face of semi-honest corruption.



Theorem 5. For every poly-time n-party function f , there exists a poly-time
function evaluation protocol computing f between n = 2t+ 1 parties with perfect
correctness and perfect privacy against t semi-honest corruptions, where t parties
have round complexity two. Specifically, these t parties first in parallel each send
one message to the n− t other parties and then later each receives one message
from the same n− t parties.

Proof. We design a protocol where it is the parties I = {Pn−t+1, . . . ,Pn} which
have round complexity two. We denote each of the t parties in I generically by
Pi and we denote the parties in J = {P1, . . . ,Pn−t} generically by Pj .

Use D to denote the pre-processing distribution of a secure function evalu-
ation protocol for the pre-processing model with n′ = t + 1 parties and up to
t semi-honest corruptions. Let (D,πpre−pro) be a protocol for this model with
perfect correctness and perfect privacy for t semi-honest corruptions.

Let πhon−maj be a secure function evaluation protocol for the function f for
a model with n = 2t + 1 parties and assume that it has perfect correctness
and perfect privacy against t semi-honest corruptions. Assume that πhon−maj has
round complexity `. We can assume that πhon−maj runs as follows in round r:
first each party sends one message to each other party which adds this message
to its state. Then it applies a round function Ri,r which computes the new state
of party Pi. The initial state of a party is just its input xi.

Our protocol π proceeds as follows. First each Pi will additively secret share
its input xi among the parties Pj , i.e., it samples uniformly random shares xi,j
for which xi = xi,1⊕· · ·⊕xi,n−t and securely sends xi,j to Pj . At the same time

it will for r = 1, . . . , ` sample (di,r1 , . . . , di,rn−t) ← D and send di,rj to Pj . Notice
that at this point the initial state of each Pi is secret shared among the parties
in J . We will keep the invariant that at each round in the protocol πhon−maj the
state of Pi in πhon−maj is secret shared among the parties in J . Each round in
πhon−maj is emulated as follows.

1. If Pj ∈ J is to send a message m to Pk ∈ J , then it sends m over the secure
channel to Pk.

2. If Pj ∈ J is to send a message m to Pi ∈ I, then it additively secret shares
m among the parties J and this secret sharing is added to the secret shared
state of Pi.

3. If Pi ∈ I is to send a message m to Pk ∈ I, then m is by the invariant already
additively secret shared among the parties J . The parties in J can therefore
just add this secret sharing to the secret shared state of Pk.

4. If Pi ∈ I is to send a message m to Pj ∈ J , then m is additively secret shared
among the parties J as part of the secret shared state of Pi. The parties in
J can therefore reconstruct this message towards Pj .

5. If Pj ∈ J is to apply the round function Rj,r, then it simply applies it to its
state.

6. If Pi ∈ I is to apply the round function Ri,r, then the parties in J uses the
the preprocessed values (di,r1 , . . . , di,rn−t) to do secure function evaluation of
the augmented round function R̄i,r which reconstructs the state of Pi from



the secret sharing of the state held by the parties in J , then applies Ri,r and
outputs an additive secret sharing of the new state.

After all ` rounds of πhon−maj have been emulated, the secret-shared state of Pi
contains its output yi. The parties in J reconstructs this yi towards Pi. At this
point all n parties received their outputs.

It should be clear that this protocol has perfect correctness, as πpre−pro and
πhon−maj both have perfect correctness.

As for perfect privacy, note that if at most t parties are corrupted, then the
additive secret sharings among the t parties in J leaks no information, and can
indeed be efficiently simulated by just giving all corrupted parties uniformly
random shares.

Furthermore, if Pi ∈ I is honest, then the emulation of Pi in πhon−maj is
perfectly private, as Pi is perfectly acting as the trusted third party of the
preprocessing model. We can in particular replace the emulation of Pi by an
ideal function evaluation of the augmented round function.

Since the additive secret sharing of the inputs and outputs of the augmented
round function can be efficiently simulated towards the t corrupted parties with-
out knowing the inputs or outputs, we can replace the ideal evaluation of the
augmented round function by an ideal evaluation of the actual round function
on the actual state of Pi and then just simulate the secret sharing of the inputs
and outputs using uniformly random shares. But having an ideal evaluation of
the round function of an honest Pi is exactly the same as just having Pi partic-
ipate in the protocol. So at this point we have arrived at the protocol πhon−maj.
Since there are at most t corrupted parties we can then appeal to the security
of πhon−maj.

Constructing an explicit simulator of π from the simulators of πpre−pro and
πhon−maj along the lines of the above sketch is straight forward and we skip the
technical details. ut

5.2 Individual Round Complexity, Broadcast

We now turn our attention to the individual round complexity of secure broad-
cast. Secure broadcast from Pi to the parties P1, . . . ,Pn is defined to be the
secure function evaluation of the function xi = f(x1, . . . , xn) in the face of ma-
licious corruptions, i.e., Pi communicates xi to all parties and it is guaranteed
that all parties receive the same xi even if Pi and/or some of the other parties
are malicious. By secure broadcast we mean a protocol which allows any of the
n parties to broadcast to all the other parties.

It is possible to implement broadcast securely against t < n/3 maliciously
corrupted parties in a synchronous network with authenticated channels (note
that secure channels are not needed for broadcast). It is furthermore possible
to do so using a protocol where the honest parties are deterministic. See for
instance [BDGK91].

The above protocol is for the setting with t < n/3 maliciously corrupted
parties. We later need to do broadcast in a setting with t < n/2 maliciously



corrupted parties. It is actually known that broadcast is impossible in such a
setting. We can, however, implement broadcast if we assume t < n/3 for just
the first round. To show this we need the following lemma.

Lemma 5. Consider any protocol π for n parties which is perfectly correct
and has statistical privacy against t maliciously corrupted parties computing a
function f . Assume that Pn−t+1, . . . ,Pn have no inputs, i.e., f(x1, . . . , xn) =
g(x1, . . . , xn−t). Assume also that these parties are not to receive outputs. As-
sume furthermore that the protocol remains secure even if all messages sent and
received by Pn−t+1, . . . ,Pn are given to the adversary and assume that these par-
ties are deterministic. Then there also exists a protocol π′ which is statistically
correct and has statistical privacy against t maliciously corrupted parties com-
puting the function f in which Pn−t+1, . . . ,Pn each sends a message to each of
the parties P1, . . . ,Pn−t in the first round and then sends or receives no further
messages.

Proof. The parties I = {P1, . . . ,Pn−t} will simply emulate the parties J =
{Pn−t+1, . . . ,Pn}. Each Pi ∈ I will run a copy of each Pj ∈ J . Since Pj has no
input, the parties Pi will agree on the initial states of all Pj . Whenever Pj wants
to send a message, all Pi will know this message and the appropriate receiver
will just take that message as if having been sent by Pj . If the receiver is a party
Pj ∈ J all Pi ∈ I will input the message to their local copy of Pj . In each round
all parties Pi ∈ I apply the deterministic round function of each Pj to their own
local copy. This maintains agreement on the state of all the emulated Pj .

The only problematic case is when some Pi ∈ I wants to send a message m
to some Pj ∈ J . In that case Pi must send m to all parties in I such that they
can input m to Pj . We have to ensure that Pi sends the same m to all parties
in I, or they might end up with inconsistent versions of Pj . We ensure this by
letting Pi broadcast the message m. The only problem is that we do not have a
broadcast channel. We will therefore let Pj create one using pre-processing. This
will be done using the one round of messages that Pj sends in the first round,
as detailed now.

It is shown in [PW92] that there exists a protocol (P, π) for the pre-processing
model which implements broadcast between n′ parties secure against t mali-
cious corruptions for any t < n′. We can therefore let each Pj ∈ J sample
(pj,1, . . . , pj,n′)← P and send pj,i securely to Pi. Whenever Pi ∈ I is to send m
to all parties in I, the parties run π on the pre-processed values (pj,1, . . . , pj,n′)
and with Pi having input m. Note that each Pj ∈ J preprocessed his own broad-
cast channel. This is the broadcast channel that is to be used when message
are sent to Pj in the emulated protocol. If Pj is honest, the pre-processing is
computed as it should, and thus the broadcast protocol will indeed ensure that
m is delivered consistently, and hence the emulated Pj will be run correctly and
consistently by all honest parties in I. If Pj is corrupted, it might deliver incor-
rect pre-processed values. In that case the broadcast might not work correctly. In
that case the parties in I might get inconsistent views of Pj and might therefore
later see inconsistent values of what Pj is sending. This, however, is no worse



than the emulated Pj being corrupted and this case only happens when the ac-
tual Pj is maliciously corrupted, so the emulated protocol can tolerate this. ut

If we plug the protocol from [BDGK91] into the above lemma we get this
corollary.

Corollary 2. There exists a protocol πbroad for n parties which is statistically
correct and which allows any party Pi (with i ≤ n− t) to broadcast to the parties
P1, . . . ,Pn−t. It is secure against t malicious corruptions for t < n/3. The parties
Pn−t+1, . . . ,Pn each sends one message to each of the parties P1, . . . ,Pn−t in the
first round and otherwise has no communication.

5.3 Individual Round Complexity, Secure Function Evaluation

We now turn our attention to secure function evaluation in the face of malicious
corruptions.

Theorem 6. For every poly-time n-party function f , there exists a poly-time
function evaluation protocol computing f between n = 3t+ 1 parties with statis-
tical correctness and statistical privacy against t maliciously corrupted parties,
where t parties have round complexity two. Specifically, these t parties first each
sends one message to the n − t other parties in parallel and then later each
receives one message from the same n− t parties.

Proof. As usual, I = {P1, . . . ,Pn−t} and J = {Pn−t+1, . . . ,Pn}. In [RB89] a
statistically correct and statistically private protocol for secure function evalua-
tion of any function g is given for the setting with n′ parties of which at most
t < n′/2 parties are maliciously corrupted. The protocol is for the setting with
secure point-to-point channels plus a broadcast channel allowing any party to
broadcast to the other n′ parties. Denote this protocol by πRB. Set n′ = n−t. We
are going to let the parties I run πRB to compute a particular function g derived
from f . In doing that they will implement the broadcast channel using πbroad
from Corollary 2 with the parties in J providing the pre-processing.

We will use a robust secret sharing scheme (sha, rec) for n′ parties and t < n/2
corruptions to let the parties in J provide inputs. Such a scheme is trivial to
derive from, e.g., the verifiable secret sharing scheme constructed in [RB89], and
has the following properties:

Privacy The joined distribution of any t positions from a random sample (v1, . . . , vn′)←
sha(v) does not depend on the value v.

Robustness Sample (v1, . . . , vn′) ← sha(v) for a value v chosen by the adver-
sary. Now give t of the positions vi to the adversary and let it replace them
by v′i. The positions are chosen by the adversary. For the remaining n′ − t
positions, let v′i = vi. Then rec(v′1, . . . , v

′
n′) = v, except with probability 2−s,

where s is the statistical security parameter.



The function g takes n− t inputs, g(X1, . . . , Xn−t), where each Xi is of the form
(xi, xn−t+1,i, . . . , xn,i). It outputs

f(x1, . . . , xn−t, rec(xn−t+1,1, . . . , xn−t+1,n−t), . . . , rec(xn,1, . . . , xn,n−t)) .

The overall protocol then runs as follows.

1. Each Pj ∈ J sends the pre-processing needed for πbroad to the parties in I
and at the same time samples (xj,1, . . . , xj,n−t)← sha(xj) and sends xj,i to
Pi ∈ I.

2. Each Pi ∈ I computes Xi = (xi, xn−t+1,i, . . . , xn,i).
3. The parties in I use the pre-processing provided in Step 1 to run πbroad and

use the emulated broadcast channel to run πRB(X1, . . . , Xn−t).
4. When Pi ∈ I learns the output y = πRB(X1, . . . , Xn−t) it sends y to all

parties in J .
5. Each party Pj ∈ J receives an output yi from each Pi ∈ I and outputs the

value y which occurs most often in the list (y1, . . . , yn−t).

It follows directly from the security of (sha, rec), πbroad and πRB that the protocol
is private and that the honest parties in I learn the correct output y, except
with negligible probability. Since there are n′ ≥ 2t+ 1 parties in I and at most
t corrupted parties in I, it follows that there is a majority of honest parties in
I. Hence, the honest parties in J will also learn the correct output y. ut

5.4 Message Complexity, Semi-Honest Security

We now turn our attention to the message complexity of secure function evalu-
ation in the presence of semi-honest corruptions. We consider protocols with n
parties which are perfectly secure against t semi-honest corruptions. We present
an optimal construction for t = 1 for computing functions in PSMeff as defined
in Definition 1.

Theorem 7. For every poly-time n-party function f in PSMeff , there exists
a poly-time function evaluation protocol π computing f between n parties with
perfect correctness and perfect privacy against t = 1 semi-honest corruptions, for
which Msglib(π) = (3n+ 1)/2, Msgwor(π) ≤ d(3n+ 1)/2e, and Msgcon(π) = 2n.

Proof. We first look at the restricted setting where Pn has no input and is
the only player to learn the output, i.e., we look at secure function evaluation of
(ε, . . . , ε, y) = f(x1, . . . , xn), where ε is the empty string and y = h(x1, . . . , xn−1)
for an (n− 1)-party function h.

Let (R,M1, . . . ,Mn−1) be a PSM protocol for h and consider the following
protocol π1.

1. P1 samples r ← R.
2. P1 sends r to Pi for i = 2, . . . , n− 1.
3. For i = 1, . . . , n− 1, party Pi sends mi = Mi(xi, r) to Pn.
4. Pn outputs y = g(m1, . . . ,mn−1).



Assume that Pn is corrupted. The view of Pn in the real world is

(M1(x1, r), . . . ,Mn−1(xn−1, r))

for a random sample r ← R. The view of Pn in the ideal model is

y = f(x1, . . . , xn) = h(x1, . . . , xn−1) = g(M1(x1, r), . . . ,Mn−1(xn−1, r)) .

Privacy then follows from the security of the PSM protocol.

Assume that Pi 6= Pn is corrupted. The view of Pi in the real world is (xi, r).
The view of Pi in the ideal model is xi. We can simulate the real world view
from the ideal view simply by sampling r ← R and then outputting (xi, r).

We now extend the above protocol to a protocol π2 which allows Pn to have
an input and where all parties get the output, i.e., we look at secure function
evaluation of y = f(x1, . . . , xn). We first present and analyze a simple solution
and then later modify it slightly to reduce the number of messages sent. The
simple solution is to let Pn additively secret share xn as xn = s1 ⊕ s2 and send
s1 to P1 and send s2 to P2. Then apply protocol π1 to the function

h′((x1, s1), (x2, s2), x3, . . . , xn−1) = f(x1, . . . , xn−1, s1 ⊕ s2)

and let Pn send the output to all the other parties. We can do this as h′ clearly
is in non-deterministic log-space if f is in non-deterministic log-space. Note that
this simple protocol adds n+1 more message. Sending the output y to all parties
is obviously secure as this value is also in the view of all parties in the ideal model.
Only P1, P2 and Pn have any further extra values in the view. The extra values
of Pn are s1 and s2 such that xn = s1 ⊕ s2. These are easy to simulate from
the view of Pn in the ideal model which includes xn: simply sample an additive
secret sharing of xn. The extra value of P1 is s1. This value is uniformly random
and independent of xn, so it can be simulated by just sampling it uniformly at
random. Similarly for P2.

Since s1 is uniformly random and independent of xn, we can save one message
in the protocol by letting P1 pick s1 uniformly at random and send it to Pn along
with the message that it already sends to Pn. The view of all parties will be the
same in the modified protocol. The only difference is that the direction of one
message was flipped. This gives the following secure protocol.

Let (R,M1, . . . ,Mn−1) be a PSM protocol for the function h′ described
above.

1. P1 samples r ← R.

2. P1 sends m1 = M1(x1, r) to Pn along with a uniformly random share s1.

3. Pn sends s2 = xn ⊕ s1 to P2.

4. P1 sends r to Pi for i = 2, . . . , n− 1.

5. For i = 2, . . . , n− 1, party Pi sends mi = Mi(xi, r) to Pn.

6. Pn sends y = g(m1, . . . ,mn−1) to P1, . . . ,Pn−1.



To further reduce the message complexity, we will now apply two additional
message-reduction tricks. Using the first one we reduce the 2(n− 2) messages in
Steps 4 and 5 to just n − 1 messages: Instead of having all parties send to Pn,
we will let P1 send his “PSM-contribution” to P2, who appends his contribution
and sends a message to P3, etc. until Pn receives everything. In order to make
sure that only Pn learns all the contributions, P1 will send n− 1 one-time pads
to Pn and also pass them on to the other players who can use them to one-time
pad encrypt their contributions.

With the second trick we reduce the number of messages in Step 6 from
n − 1 to d(n − 1)/2e. We let P1 choose a random bit w which will be sent to
all other players appended to the “PSM-contributions”, thus not requiring addi-
tional message(s). Now, Pn can communicate the result, y, to the other players in
the following way: if y⊕w = 0 then Pn sends a bit 0 to players P1, . . . , Pd(n−1)/2e
and does not send any message to the players Pd(n−1)/2e+1, . . . Pn−1; otherwise
(if y ⊕ w = 1) then Pn sends a message 0 to the players Pd(n−1)/2e+1, . . . Pn−1
and does not send any message to the players P1, . . . , Pd(n−1)/2e. Observe that
all players can retrieve the computed value y, and that the number of messages
sent during that stage is at most d(n − 1)/2e. Both tricks can be implemented
as follows. We replace steps 4, 5 and 6 by the following procedure:

1. P1 samples uniformly random bit strings p2, . . . , pn−1 where pi has the same
length as mi. He also samples a uniformly distributed bit w. Then P1 sends
(p2, . . . , pn−1), w to Pn. This can be done in Step 2 above and therefore does
not add another message.

2. P1 sends (r, p2, . . . , pn−1), w to P2.
3. Then for i = 2, . . . , n−1 party Pi receives (r, c2, . . . , ci−1, pi, pi+1, . . . , pn−1), w

from Pi−1 and then sends (r, c2, . . . , ci−1, ci, pi+1, . . . , pn−1), w to Pi+1, where
ci = Mi(xi, r)⊕ pi, except that Pn−1 does not send r to Pn.

4. Then Pn receives (c2, . . . , cn−1) from Pr−1 and for i = 2, . . . , n− 1 computes
mi = ci ⊕ pi.

5. Pn computes the result y using the PSM protocol. Now, if y⊕w = 0 then it
sends 0 to all of players P1, . . . , Pd(n−1)/2e (and no message to the other play-
ers). Otherwise (if f⊕w = 1) it sends 0 to all of players Pd(n−1)/2e+1, . . . Pn−1
(and no message to the other players). Each Pi will observes if a message
was received from Pn, and, using its index and w, computes y.

It is easy to see that this is perfectly correct. As for perfect security against
one semi-honest corruption, consider the values ci seen by Pj for i < j < n. Since
Pj does not know pi, ci is a one-time pad encryption of mi. All other values seen
by a single party clearly leak no information on the input other than what is
implied by y. For a given input, the average number of messages sent by Pn in
Stage 5 is (1/2)(d(n− 1)/2e+ b(n− 1)/2c) = n/2− 1/2. (Whatever the value of
w is, at most d(n−1)/2e ≤ n/2 messages are sent by Pn at Step 5.) The average
number of messages sent by the protocol is therefore n+1+n/2−1/2 = 3n/2+1/2
(and in the worst case the number of message sent is n+1+d(n−1)/2e ≤ 3n/2+1,
if n is even.) However, since all parties except Pn may potentially receive a
message in the last step, the conservative message complexity is 2n. ut



If we set t = 1 in our previous lower bound for liberal message complexity, we
get 3n/2, matching the upper bound of Theorem 7 except for 1/2 a message. The
conservative message complexity of the protocol in Theorem 7 is clearly 2n which
matches the lower bound for conservative message complexity of 1-very difficult
functions. So we have matching upper and lower bounds for the conservative
message complexities of 1-very difficult functions in non-deterministic log space.
We leave it as an open problem to find matching bounds for any t > 1.

Finally, we consider computing the XOR of one input bit from each player.
This is the primary example of a function that is t-difficult but not t-very dif-
ficult. We can construct a protocol for this function, secure for t = 1 from the
proof of Theorem 7: We observe that there is no need for Pn to secret share his
input, instead we use the PSM protocol to let Pn learn b1 ⊕ · · · ⊕ bn−1. This is
secure because this value would anyway follow from the output and Pn’s own
input. Pn computes the output b1 ⊕ · · · ⊕ bn and sends it to the other players
in the randomised fashion described in the protocol. The liberal and conserva-
tive complexties of this protocol are 3n/2− 1/2 and 2n− 1, matching the lower
bounds we showed for 1-difficult functions.

6 Acknowledgements

Work done in part while some of the the authors visited Simons Institute. First
and second author acknowledge support from the Danish National Research
Foundation and The National Science Foundation of China (under the grant
61061130540) for the Sino-Danish Center for the Theory of Interactive Computa-
tion, within which part of this work was performed; and also from the CFEM re-
search center (supported by the Danish Strategic Research Council) within which
part of this work was performed. The second author was partially supported
by the European Research Council Starting Grant 279447, the second partially
supported by the European Research Council Advanced Grant MPCPRO. The
third author acknowledges partial support by NSF grants 09165174, 1065276,
1118126 and 1136174, US-Israel BSF grant 2008411, OKAWA Foundation Re-
search Award, IBM Faculty Research Award, Xerox Faculty Research Award,
B. John Garrick Foundation Award, Teradata Research Award, and Lockheed-
Martin Corporation Research Award. This material is also based upon work
supported in part by DARPA Safeware program. The views expressed are those
of the author and do not reflect the official policy or position of the Department
of Defense or the U.S. Government. Research by the fourth author partially
supported by ANR project RDAM.

References

[BDGK91] Amotz Bar-Noy, Xiaotie Deng, Juan A. Garay, and Tiko Kameda. Opti-
mal amortized distributed consensus (extended abstract). In Sam Toueg,
Paul G. Spirakis, and Lefteris M. Kirousis, editors, Distributed Algorithms,
5th International Workshop, WDAG ’91, Delphi, Greece, October 7-9,



1991, Proceedings, volume 579 of Lecture Notes in Computer Science, pages
95–107. Springer, 1991.

[BGT13] Elette Boyle, Shafi Goldwasser, and Stefano Tessaro. Communication lo-
cality in secure multi-party computation. In Theory of Cryptography, pages
356–376. Springer, 2013.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness the-
orems for non-cryptographic fault-tolerant distributed computation (ex-
tended abstract). In Janos Simon, editor, Proceedings of the 20th Annual
ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illi-
nois, USA, pages 1–10. ACM, 1988.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic proto-
cols. J. Cryptology, 13(1):143–202, 2000.
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