
Online/Offline OR Composition of Sigma
Protocols

Michele Ciampi1, Giuseppe Persiano2, Alessandra Scafuro3, Luisa Siniscalchi1, and
Ivan Visconti1

1 DIEM, University of Salerno, ITALY
{mciampi,lsiniscalchi,visconti}@unisa.it

2 DISA-MIS, University of Salerno, ITALY
giuper@gmail.com

3 Boston University and Northeastern University, USA
scafuro@bu.edu

Abstract. Proofs of partial knowledge allow a prover to prove knowl-
edge of witnesses for k out of n instances of NP languages. Cramer,
Schoenmakers and Damg̊ard [10] provided an efficient construction of
a 3-round public-coin witness-indistinguishable (k, n)-proof of partial
knowledge for any NP language, by cleverly combining n executions of Σ-
protocols for that language. This transform assumes that all n instances
are fully specified before the proof starts, and thus directly rules out the
possibility of choosing some of the instances after the first round.
Very recently, Ciampi et al. [6] provided an improved transform where
one of the instances can be specified in the last round. They focus on
(1, 2)-proofs of partial knowledge with the additional feature that one
instance is defined in the last round, and could be adaptively chosen
by the verifier. They left as an open question the existence of an effi-
cient (1, 2)-proof of partial knowledge where no instance is known in the
first round. More in general, they left open the question of constructing
an efficient (k, n)-proof of partial knowledge where knowledge of all n
instances can be postponed. Indeed, this property is achieved only by
inefficient constructions requiring NP reductions [19].
In this paper we focus on the question of achieving adaptive-input proofs
of partial knowledge. We provide through a transform the first efficient
construction of a 3-round public-coin witness-indistinguishable (k, n)-
proof of partial knowledge where all instances can be decided in the third
round. Our construction enjoys adaptive-input witness indistinguishabil-
ity. Additionally, the proof of knowledge property remains also if the
adversarial prover selects instances adaptively at last round as long as
our transform is applied to a proof of knowledge belonging to the widely
used class of proofs of knowledge described in [21,9]. Since knowledge of
instances and witnesses is not needed before the last round, we have that
the first round can be precomputed and in the online/offline setting our
performance is similar to the one of [10].
Our new transform relies on the DDH assumption (in contrast to the
transforms of [10,6] that are unconditional).

Keywords: Σ-protocols, WI, PoKs, delayed and adaptive input.

2 M. Ciampi, G. Persiano, A. Scafuro, L. Siniscalchi and I. Visconti

1 Introduction

Proofs of knowledge (PoKs) are ubiquitous in cryptographic protocols. When
enjoying additional features such as honest-verifier zero knowledge (HVZK), wit-
ness indistinguishability (WI) or zero knowledge (ZK), they are used as building
blocks in basically any protocol for secure computation. As such, the degree of
security and efficiency achieved by the underlying PoKs directly (and dramati-
cally) impacts on the security and efficiency of the larger protocol. For instance,
very efficient WI PoKs for specific languages, such as Discrete Log and DDH,
have been instrumental for constructing efficient maliciously secure two-party
computation (see [17] and references within). Furthermore, stronger security no-
tions of PoKs, such as soundness, WI and ZK in presence of adaptive-input
selection, are useful for constructing round-efficient protocols ([25,18]).

Proofs of partial knowledge. In [10], Cramer et al. showed how to construct effi-
cient PoKs for compound statements starting from Σ-protocols. More precisely,
the compound statement consists of n instances, and the goal is to prove knowl-
edge of witnesses for at least k of the n instances. As such, these proofs are
named “proofs of partial knowledge” in [10]. The transform of [10] cleverly com-
bines n parallel executions of PoKs that are Σ-protocols in an efficient 3-round
public-coin perfect WI (k, n)-proof of partial knowledge. A similar result was
given in [26].

Note that, if efficiency is not a concern, proofs of partial knowledge were
already possible (with computational WI, though) thanks to the general con-
struction of Lapidot and Shamir (LaSh) [19]. Proving compound statements
via LaSh constructions however requires expensive NP reductions. On the other
hand, LaSh PoKs provide a stronger security guarantee: honest players use the
instances specified in the statements only in the last round, and security holds
even if the adversarial verifier (resp., prover) chooses the instances adaptively
after having seen the first (resp., second) round. LaSh’s construction is there-
fore an adaptive-input WI proof of partial knowledge for all NP. As mentioned
above, this property can be instrumental to save at least one round of commu-
nication, when the proof of partial knowledge is used in a larger protocol. The
construction shown in [10], instead, although efficient, does not provide any form
of adaptivity, as all the n instances must be fully specified before the protocols
starts. As a consequence, the better efficiency of [10] can be paid in additional
rounds compared to [19] when the construction is used in larger applications.

The proof of partial knowledge of [6]. A very recent work by Ciampi et al. [6]
makes a first preliminary step towards closing the gap between [19] and [10]. [6]
proposes a different transform for WI proofs of partial knowledge that gives some
adaptiveness at the price of generality. Namely, their technique yields to a (1, 2)-
proof of partial knowledge where the knowledge of one of the two instances can
be postponed to the last round. In more details, they show a PoK for a statement
“x0 ∈ L0∨x1 ∈ L1” such that x0 and x1 are not immediately needed (in contrast
to [10]). The honest prover needs x0 to run the 1st round while x1 is needed only

Online/Offline OR Composition of Sigma Protocols 3

in the 3rd round along with a witness for either x0 or x1. The verifier needs to
see x0 and x1 only at the end, in order to accept/reject the proof. Ciampi et
al. [6] defined the property of delayed input requiring that the honest prover
does not need to know the instance to start the protocol. In other words, the
need of the input is delayed to the very last round. For clarity, we stress that
a delayed-input protocol is not necessarily secure against inputs that have been
adaptively chosen. Indeed, their technique yields a proof of partial knowledge
that is delayed input for one of the instances but is not adaptively secure against
malicious provers (although it is adaptive-input WI). The security achieved by
their transform is sufficient for their target applications.

The open question and its importance. The above preliminary progress leaves
open the following fascinating question: can we design an efficient transform
that yields an adaptive-input WI (k, n)-proof of partial knowledge where all n
instances are known only in the last round?

Previous efficient transforms require the a-priori knowledge of all instances or
of one out of two instances, even if the corresponding languages admit efficient
delayed-input Σ-protocols. For the sake of concreteness, assume one wants to
prove knowledge of the discrete logarithm of at least one of gx0 or gx1 . There
exists a very efficient Σ-protocol Σdl due to Schnorr [27], for proving knowledge
of one discrete log and that also enjoys the delayed-input property, i.e., the
prover can compute the first round without knowing the instance gx. However,
when we apply known transforms to combine Σdl, the resulting protocol loses
the delayed-input property, as it will still need either both instances gx0 and gx1 ,
if using [10], or at least one gx0 , to be specified in advance if using [6].

1.1 Our Results

In this work we study the above open question and give various positive answers.

Σ-Protocols and adaptive-input selection. We shed light on the relation be-
tween delayed-input Σ-protocols and adaptive-input Σ-protocols. Recall that
a Σ-protocols enjoys a special soundness4 property, which means that given two
accepting transcripts for the same statement having the same first round, one
can efficiently extract a witness for that statement.

We show that in general Σ-protocols are delayed-input but are not adaptive-
input sound; that is, they are not sound if the malicious prover can choose the
statements adaptively. Indeed, in Section 4.1 we show how a malicious prover,
based on the second round played by the verifier, can craft a false statement that
will make the verifier accept (and the extractor of special soundness fail even
when the statement is true). The attack applies to very popular Σ-protocols
like Schnorr’s protocol for discrete logarithm (DLog), the protocol for proving
equality of DLogs for Diffie-Hellman (DH) tuples and the protocol of [22] for

4 In literature special soundness is often generalized to ` > 2 accepting transcripts
with the bound of ` being polynomial in the security parameter.

4 M. Ciampi, G. Persiano, A. Scafuro, L. Siniscalchi and I. Visconti

proving knowledge of committed messages. These protocols all fall into a well
known class of protocols studied by Cramer in [9] and Maurer in [21].

The above issue was already noticed in [1] for the case of non-interactive zero-
knowledge arguments obtained from Σ-protocols by applying the Fiat-Shamir
transform [14]. Indeed there are in literature some incorrect use of the Fiat-
Shamir transform where the instance is not given in input to the random oracle.
As a consequence an adversarial prover can first create a transcript and then can
try to find an instance not in the language such that the transcript is accepting.
Of course in the random-oracle model the above issue has the trivial fix consisting
of giving the instance as input to the random oracle to generate the challenge.
This fix is meaningless in the standard model that is the focus of our work.

We then analyze the transform of [6], that is delayed-input with respect to
one instance only. We observe that when [6] combines protocols belonging to the
class of [9,21], it also suffers from the same attack, when the malicious prover
is allowed to adaptively choose his input. Therefore the transform of [6] is not
adaptive-input sound. We stress however, that in the applications targeted in [6]
the input that is specified only in the last round is chosen by the verifier. As such,
for their applications they do not need any form of adaptive-input soundness,
but only adaptive-input witness-indistinguishability (which they achieve). More-
over, the special soundness of their transform preserves security w.r.t. adaptive-
input selection. Summing up, [6] correctly defines and achieves delayed-input
Σ-protocols and adaptive-input WI and uses it in the applications. However
adaptive-input special soundness is not defined and not achieved in their work.

Adaptive-input special-sound Σ-protocols. In light of the above discussion, a nat-
ural question is whether we can upgrade the security of the class of Σ-protocols
that are delayed input, but not adaptive-input sound. Towards this, we first clar-
ify the conceptual gap between adaptive-input selection and the adaptiveness
considered in [6] by defining formally adaptive-input special soundness. Then
we show a compiler that takes as input any delayed-input Σ-protocol belonging
to the class specified in [9,21], and outputs a Σ-protocol, that is adaptive-input
sound, i.e., it is sound even when the malicious prover adaptively chooses his
input in the last round. The main idea behind this compiler is to force the prover
to send correctly the first round of the Σ-protocol through another parallel run
of the Σ-protocol. This allows for the extraction of any witness in the proof of
knowledge. The compiler is shown in Section 4.2. We also show (in Section 5)
that nevertheless, [6]’s transform preserves the adaptivity of the Σ-protocols
that are combined. Namely, on input Σ-protocols that are already adaptive-
input special sound and WI, the [6]’s transform outputs a (1, 2)-proof of partial
knowledge that is an adaptive-input proof of knowledge as well.

Adaptive-input (k, n)-proofs of partial knowledge. The main contribution of this
paper is a new transform that yields the first efficient (k, n)-proofs of partial
knowledge where all n instances can be specified in the last round.

Our new transform takes as input a delayed-input Σ-protocol for a relation
R, and outputs a 3-round public-coin WI special-sound (k, n)-proof of partial

Online/Offline OR Composition of Sigma Protocols 5

knowledge for the relation (R ∨ · · · ∨ R) where no instance is known at the
beginning. The security of our transform is based on the DDH assumption. The
WI property of the resulting protocol holds also with respect to adaptive-input
selection, while the PoK property holds also in case of adaptive-input selection
only if the underlying Σ-protocol is adaptive-input special sound.

We also show a transform that admits instances taken from different relations.
Interestingly, this construction makes use as subprotocol of the first construction
where instances are taken from the same relation.

1.2 Our Technique

We provide a technique for composing a delayed-input Σ-protocol for a relation
R into a delayed-input Σ-protocol for the (k, n)-proof of partial knowledge for
relation (R∨. . .∨R). For a better understanding of our technique, it is instructive
to see why the transform of [10] (resp., [6]) requires that all n (resp., 1 out of 2)
instances are specified before the protocol starts.

Limitations of previous transforms. Let ΣR be a delayed-input Σ-protocol, and
let (R∨ . . .∨R) be the relation for which we would like to have a (k, n)-proof of
partial knowledge. The technique of [10] works as follows. The prover P , on input
the instances (x1 ∈ R∨ . . .∨ xn ∈ R), runs protocols ΣR, . . . , ΣR in parallel. P
gets only k witnesses for k different instances but it needs to somehow generate
an accepting transcript for all instances. How to prove the remaining n − k
instances without having the witness? The idea of [10] consists simply in letting
the prover generate the n − k transcripts (corresponding to the instances for
which he did not get the witnesses) using the HVZK simulator S associated to
the Σ-protocol. Additionally [10] introduces a mechanism that allows the prover
to control the value of exactly (n− k) of the challenges played by V , so that the
prover can force the transcripts computed by the simulator in (n− k) positions.

So, why does the transform of [10] need all instances to be known already in
the 1st round? The answer is that P needs to run S already in the 1st round, and
S expects the instance as input. Similar arguments apply for [6] as it requires
that 1 instance out of 2 is known already in the 1st round.

The core idea of our technique. Previous transforms fail because the prover runs
the HVZK simulator to compute the 1st round of some of the transcripts of ΣR.
Our core idea is to provide mechanisms allowing P to postpone the use of the
simulator to the 3rd round. The main challenge is to implement mechanisms that
are very efficient and preserve soundness and WI of the composed Σ-protocol.
We stress that we want to solve the open problems in full, and thus none of the
instances are known at the beginning of the protocol. To be more explicit, in the
1st round, the prover starts with the following statement (? ∈ LR∨. . .∨? ∈ LR).

Assume we have a (k, n)-equivocal commitment scheme that allows the prover
to compute n commitments such that k of them are binding and the remaining
n− k are equivocal, and the verifier cannot distinguish between the two types of
commitment, where the k positions that are binding must be chosen already in

6 M. Ciampi, G. Persiano, A. Scafuro, L. Siniscalchi and I. Visconti

the commitment phase (a similar tool is constructed in [24]). With this gadget
in hand, we can construct a delayed-input (k, n)-proof of partial knowledge ΣOR

k,n

as follows. Let (a, c, z) denote generically the 3 messages exchanged during the
execution of a Σ-protocol ΣR.

In the 1st round, P honestly computes ai for the i-th execution of ΣR. Here
we are using the fact that ΣR is delayed-input, and thus ai can be computed
without using the instance. Then he commits to a1, . . . , an using the (k, n)-
equivocal commitment scheme discussed above, where the k binding positions
are randomly chosen. Thus, the 1st round of protocol ΣOR

k,n consists of n com-
mitments. In the 2nd round V simply sends a single challenge c according to
ΣR. In the 3rd round, P obtains the n instances x1, . . . , xn and k witnesses. At
this point, for the instances xi for which he did not receive the witness, he will
use the HVZK simulator to compute an accepting transcript (ãi, c, z̃i) and then
equivocate the (n − k) equivocal commitments so that they decommit to the
new generated ãi. For the k remaining instances he will honestly compute the
3rd round using the committed input ai. Intuitively, soundness follows from the
fact that k commitments are binding, and from the soundness of ΣR. WI follows
from the hiding of the equivocal commitment scheme and the HVZK property
of ΣR. Note that in this solution we are crucially using the fact that we are
composing the same Σ-protocol so that P can use any of the ai committed in
the 1st round to compute an honest transcript. This technique thus falls short as
soon as we want to compose arbitrary Σ-protocols together. Nevertheless, this
transformation turns to be useful for the case of different Σ-protocols.

(k, n)-equivocal commitment scheme. A (k, n)-equivocal commitment scheme al-
lows a sender to compute n commitments com1, . . . , comn such that k of them
are binding and n − k are equivocal. We will use the language DH of DH tu-
ples and we will call non-DH a tuple that is not a DH tuple. We will imple-
ment a (k, n)-equivocal commitment scheme very efficiently under the DDH
assumption as follows. In the commitment phase, the sender computes n tuples
T1 = (g1, A1, B1, X1), . . . , Tn = (gn, An, Bn, Xn) and proves that k out of n tu-
ples are not in DH (i.e., they are non-DH tuples). We show that this can be done
using the classical [10] (k, n)-proof of partial knowledge that can be obtained
starting with a Σ-protocol Σddh for DH. We then use the well known [12,4,5,17]
fact that Σ-protocols can be used to construct an instance-dependent trapdoor
commitment scheme, where the sender can equivocate if he knows the witness for
the instance. Thus, each tuple Ti can be used to compute an instance-dependent
trapdoor commitment comi using Σddh. comi will be equivocal if Ti was indeed a
DH tuple, it will be binding otherwise. Because the sender proves that k tuples
are not in DH, it holds that there are at least k binding commitment. Hiding
follows from the WI property of [10] and the HVZK of Σddh. Commitment and
decommitment can be completed in 3 rounds.

The case of different Σ-protocols. We now consider the case where we want to
compose Σ1, . . . , Σn for possibly different relations. Our (k, n)-equivocal com-

Online/Offline OR Composition of Sigma Protocols 7

mitment does not help here because each ai is specific to protocol Σi, and cannot
be arbitrarily mixed and matched once the k witnesses are known.

For this case we thus use a different trick. We ask the prover to commit to
each ai twice, once using a binding commitment and once using an equivocal
commitment. This again can be very efficiently implemented from the DDH as-
sumption as follows. For each i, P generates tuples T 0

i and T 1
i , that are such that

at most one can be a DH tuple. It then commits to ai twice using the instance-
dependent trapdoor commitment associated to tuple T 0

i and tuple T 1
i . Because

at most one of the two tuples is a DH tuple, at most one of the commitments of
ai can be later equivocated. Thus the 1st round of our transformation consists of
2 commitments of ai for 1 ≤ i ≤ n. In the 3rd round, when P receives instances
x1, . . . , xn and k witnesses, he proceeds at follows. For each i, if P knows the
witness for xi, he will open the binding commitment for position i, and compute
zi using the honest prover procedure of Σi. Instead, if P does not have a witness
for xi, he will compute a new ãi, zi using the simulator on input xi, c and open
the equivocal commitment in position i. At the end, for each position i, one
commitment has remained unopened.

This mechanism allows an honest prover to complete the proof with the
knowledge of only k witnesses. However, what stops a malicious prover to always
open the equivocal commitments and thus complete the proof without knowing
any of the witnesses? We avoid this problem by requiring P to prove that, among
the n tuples corresponding to the unopened commitments, at least k out of n
tuples are DH tuples. This directly means that k of the opened commitments
were constructed over non-DH tuples, and therefore are binding.

Now note that proving this theorem requires an (k, n)-proof of partial knowl-
edge in order to implement Σddh, where the instance to prove, i.e., the tuple that
will be unopened, is known only in the 3rd round when P knows for which in-
stances he is able to open a binding commitment. Here we crucially use the
(k, n)-proof of partial knowledge for the same Σ-protocol developed above mak-
ing sure to first run our compiler that strengthen Σddh with respect to statements
adaptively selected by a malicious prover.

1.3 Comparison with the State of the Art

In Table 1 we compare our results with the relevant related work. We con-
sider [19], a 3-round public-coin WIPoK that is fully adaptive-input and that
works for any NP language. We also consider [10] that proposed efficient 3-
round public-coin WI proofs of partial knowledge (though, without supporting
any adaptivity). Finally, we consider [6] since it was the only work that faced
the problem of combining together efficiency and some form of delayed-input in-
stances. The last row refers to our main result that allows to postpone knowledge
of all the instances to the last round. The 2nd column refers to the computa-
tional assumptions needed by [19] (i.e., one-way permutations) and our main
result (i.e., DDH assumption). The 3rd column specifies the type of WI depend-
ing on the adaptive selection of the instances from the adversarial verifier. The

8 M. Ciampi, G. Persiano, A. Scafuro, L. Siniscalchi and I. Visconti

4th column specifies the soundness depending on the adaptive selection of the
instances from the adversarial prover.

Assumption Adaptive WI Adaptive PoK NP Reduction

LaSh90 [19] OWP
k out of n

(all adaptive)
k out of n

(all adaptive)
Yes

CDS94 [10] / / / No

CPSSV16 [6] /
1 out of 2

(1 adaptive)
/ No

This Work
(main result)

DDH
k out of n

(all adaptive)
k out of n

(all adaptive)
No

Table 1: Comparison with previous work.

1.4 Online/Offline Computations

Our result has the advantage that the prover can compute the first round without
knowing instances and witnesses. The first round is therefore an offline phase.
When the prover interacts with the verifier (online phase) he sends the first
round precomputed and computes only the third round of the protocol. We
stress that [10] requires to know the instances already to compute the first round.
Furthermore the work of [19] allows the prover to compute the first round offline
but in the online phase the prover must perform an NP reduction.

In Table 25 we compare the effort of the prover in the online phase in our work
and in [10,19]. We consider a prover that proves knowledge of discrete logarithms
for 1 instance out of 2 instances (1st column) and a prover that proves knowledge
of discrete logarithms for k instances out of n instances (2nd column). As we
noted, above in the online phase of [19] the prover computes an NP reduction
(2nd row). For our construction and the one of [10] we count the number of
modular6 exponentiations that are computed in the online phase (3rd and 4th
rows). Below we briefly describe how we have computed the above costs. In [10]
the number of exponentiations is 2n− k. This comes from the fact that the first
round of Schnorr’s Σ-protocol requires one exponentiation while the simulator
requires two exponentiations. In [10] the simulator is executed 2(n−k) times and
moreover k exponentiations are needed to run the prover of Schnorr’s protocol.

In the (1,2)-proof of partial knowledge of [6], the 1st round requires 3 expo-
nentiations. Indeed, in the 1st round of [6] the prover runs Schnorr’s simulator
and computes the 1st round of Schnorr’s Σ-protocol. The 3rd round of [6] has
a different analysis depending on which witness is used. When the prover of [6]

5 The actual amount of computations significantly depends on the precise versions of
the subprotocols used in the construction. The adaptive-input special-sound versions
of the subprotocols are more expensive than their non-adaptive counterparts.

6 We will omit the word modular from now on.

Online/Offline OR Composition of Sigma Protocols 9

(1, 2) DLogs (k, n) DLogs

LaSh90 [19] NP-reduction NP-reduction

CDS94 [10] 3 exps 2n− k exps

CPSSV16 [6] 4 exps /

This Work
(main result)

2 exps
[4 exps]

2(n− k) exps
[4(n− k) exps]

Table 2: Comparison with previous work proving knowledge of discrete loga-
rithms. The table illustrates the computations of the prover in the online phase.

uses the witness for an adaptively chosen instance, then there is no addition
exponentiation. Otherwise, another execution of Schnorr’s simulator is required.
For this reason, in the worst case the 3rd round of [6] costs two exponentiations.
Note that in the execution of the construction of [6] 4 exponentiations are per-
formed in the online phase, since only the 1st round of Schnorr’s Σ-protocol can
be precomputed.

The final row corresponds to our main result and shows the general case
of k instances out of n. Our construction involves 10n − k exponentiations.
Indeed a commitment computed according to the commitment scheme described
previously based on DH tuples costs 4 exponentiations. In our construction in
the 1st round we sample n−k DH tuples and k non-DH, sampling a DH/non-DH
tuple costs 3 exponentiations, so this operation costs 3n. Also in the 1st round
we compute n−k equivocal commitments and k binding commitments, and this
sums up to 2n+ 2k modular exponentiations. Furthermore the prover computes
the 1st round of Schnorr’s Σ-protocol n times and this costs n exponentiations.
Moreover it has to run [10] to prove knowledge of witnesses for k instances
out of n instances, and this costs 2n − k exponentiations. The only operations
that involve exponentiations at the third round are the n− k executions of the
simulator of Schnorr’s Σ-protocol. Therefore the online phase costs 2(n− k).

The adaptive-input special-sound version of our construction costs 13n− 3k
exponentiations. Consider that in the adaptive-input special-sound version of
Schnorr’s Σ-protocol an execution of the simulator costs 4 exponentiations.
Moreover computing the 1st round involves 2 exponentiations. Hence the first
round of our adaptive-input special-sound construction involves 6n+k exponen-
tiations and the online phase costs 4(n− k) exponentiations.

The exponentiations in square brackets specify the cost of our main result
when Schnorr’s Σ-protocol is transformed into an adaptive-input special-sound
Σ-protocol. The analysis for the case of 1 out of 2 is similar with k = 1 and
n = 2 but in this case, in the offline phase, we do not consider the cost of [10]
since the correctness of the pair of tuples can be self-verified.

2 Preliminaries

We use λ as security parameter. A(x) denotes the probability distribution of the
output of a probabilistic algorithm A when running with x as input. We will

10 M. Ciampi, G. Persiano, A. Scafuro, L. Siniscalchi and I. Visconti

use A(x; r) to denote the randomness r used by A. PPT stands for probabilistic
polynomial time.

If R is a subset of {0, 1}? × {0, 1}? for which membership of (x,w) to R
can be decided in time polynomial in |x| then we say that R is a polynomial-
time relation and w is a witness for the instance x. Given a polynomial-time
relation R, LR defined as LR = {x|∃w : (x,w) ∈ R} is an NP language. For
generality, we define L̂R to be the input language that includes both LR and
all well formed instances that do not have a witness, as already done in [15]. It
follows that LR ⊆ L̂R and membership in L̂R can be tested in polynomial time.
In proof systems for relation R, the verifier runs the protocol only if the common
input x belongs to L̂R, while it rejects immediately common inputs not in L̂R.

Given two interactive machinesM0 andM1, we denote by 〈M0(x0),M1(x1)〉(x2)
the output of M1 when running on input x1 with M0 running on input x0, both
running on common input x2.

Definition 1. A pair (P,V) of PPT interactive machines is a complete protocol
for an NP-language L with relation R if the following property holds:

– Completeness. For every common input x ∈ L and witness w such that
(x,w) ∈ R, it holds that Prob [〈P(w),V〉(x) = 1] = 1.

Definition 2. a complete protocol (P,V) is a proof system for an NP-language
L with relation R if the following property holds:

– Soundness. For every interactive machine P? there exists a negligible func-
tion ν such that for every x /∈ L: Prob [〈P?,V〉(x) = 1] ≤ ν(|x|).

A proof system (P,V) is public coin if V sends only random bits.

Definition 3 ([11]). Let k : {0, 1}∗ → [0, 1] be a function. A protocol (P,V) is
a proof of knowledge for the relation R with knowledge error k if the following
properties are satisfied:

– Completeness: if P and V follow the protocol on input x and private input
w to P where (x,w) ∈ R, then V always accepts.

– Knowledge soundness: there exists a constant c > 0 and a probabilistic oracle
machine Extract, called the extractor, such that for every interactive prover
P? and every input x, the machine Extract satisfies the following condition.
Let ε(x) be the probability that V accepts on input x after interacting with
P?. If ε(x) > k(x), then upon input x and oracle access to P?, the machine
Extract outputs a string w such that (x,w) ∈ R within an expected number
of steps bounded by |x|c/(ε(x)− k(x)).

A transcript τ of an execution of a public-coin protocol Π = (P,V) for
statement x consists of the sequence of messages exchanged P and V. We say that
τ is accepting if V outputs 1. Two accepting transcripts (a, c, z) and (a′, c′, z′)
for a 3-round public coin proof system with the same common input constitute
a collision iff a = a′ and c 6= c′. The one message sent by the verifier V in a
3-round public coin proof system is called the challenge.

Online/Offline OR Composition of Sigma Protocols 11

Σ-protocols. The most common form of proof system used in practice consists of
3-round protocols referred to as Σ-protocols. For several useful languages there
exist efficient Σ-protocols, and they are easy to work with as already shown in
many transforms [12,22,28,3,2,29,23,20,8].

Definition 4. A 3-round public-coin protocol Π = (P,V) is a Σ-protocol for
an NP-language L with polynomial-time relation R iff the following additional
properties are satisfied:

– Completeness. When P,V execute the protocol on input x and private input
w to P where (x,w) ∈ R, the verifier V always accepts.

– Special Soundness. There exists an efficient algorithm Extract that, on input
x and a collision for x, outputs a witness w such that (x,w) ∈ R.

– Special Honest Verifier Zero Knowledge (special HVZK, SHVZK). There ex-
ists a PPT simulator algorithm S that, on input an instance x ∈ L and
challenge c, outputs (a, z) such that (a, c, z) is an accepting w.r.t. x. More-
over, the distribution of the output of S on input (x, c) is perfectly7 indis-
tinguishable from the distribution of the transcript obtained when V sends c
as challenge and P runs on common input x and any private input w such
that (x,w) ∈ R.

A security parameter 1λ for a Σ-protocol represents challenge length. Therefore
we have that a Σ-protocol with a sufficiently large security parameter 1λ is also
a proof system.

Theorem 1 ([10]). Every Σ-protocol is Perfect WI.

Theorem 2 ([11]). Let Π be a Σ-protocol for a relation R with security pa-
rameter λ. Then Π is a proof of knowledge with knowledge error 2−λ.

From the above theorem we have that every Σ-protocol with a sufficiently
long challenge is a proof of knowledge with negligible knowledge error. We ob-
serve that in the proof of the above theorem only completeness and special sound-
ness of the Σ-protocol are used. Therefore the theorem regardless of HVZK.
Furthermore, using the same proof approach used in the security proof of this
theorem we can consider a relaxed notion of special soundness, t-special sound-
ness, requiring t ≥ 2 transcripts to extract the witness, with t = poly(λ). This
is still sufficient to obtain a proof of knowledge with negligible soundness error
when the challenge is sufficiently long.

Therefore in this work when interested in proving the proof of knowledge
property we will without loss of generality just prove t-special soundness for a
polynomially bounded t and completeness.

Definition 5 (Delayed-Input Σ-protocol [6]). A Σ-protocol Π = (P,V) for
a relation R is delayed-input if P computes the first round having as input only
the security parameter 1λ and ` = |x|.8

7 In this work we stick with the requirement of perfect SHVZK forΣ-protocols. Various
other papers in literature considered also special computational HVZK.

8 For simplicity in the rest of the paper we do not specify anymore that the algorithms
P,V take as input ` when the instance x is not known.

12 M. Ciampi, G. Persiano, A. Scafuro, L. Siniscalchi and I. Visconti

2.1 Adaptive-Input Special Soundness and Proof of Knowledge

The special soundness of a Σ-protocol strictly requires the statement x ∈ L to be
unchanged in the 2 accepting transcripts. We introduce a stronger notion referred
to as adaptive-input special soundness. Roughly speaking, we require that it is
possible to extract witnesses from a collision even if the two accepting 3-round
transcripts are for two different instances. It is easy to see that adaptive-input
special soundness implies extraction against provers that choose the theorem to
be proved after seeing the challenge.

Definition 6. A Σ-protocol Π for relation R enjoys adaptive-input special
soundness if there exists an efficient algorithm AExtract that, on input accepting
3-round transcripts (a, c1, z1) for input x1 and (a, c2, z2) for input x2, outputs
witnesses w1 and w2 such that (x1, w1) ∈ R and (x2, w2) ∈ R.

In this work we also define a protocol Π = (P,V) that is adaptive-input proof
of knowledge. The adaptive-input proof of knowledge property is the same as
the proof of knowledge property, with the difference that the adversarial prover
P? can choose the statement when the last round is played. We require that
the instance x given in output by AExtract must be perfect indistinguishable
from an instance x′ given in output by P? in an execution of Π with V. The
previous discussion about proving the proof of knowledge property from `-special
soundness also applies when proving adaptive-input proof of knowledge from
adaptive-input `-special soundness.

2.2 Adaptive-Input Witness Indistinguishability

The notion of adaptive-input WI formalizes security of the prover with respect
to an adversarial verifier A that adaptively chooses the input instance to the
protocol; that is, after seeing the first message of the prover. More specifically,
for a delayed-input 3-round complete protocol Π, we consider game ExpAWIΠ,A
between a challenger C and an adversary A in which the instance x and two
witnesses w0 and w1 for x are chosen by A after seeing the first message of the
protocol played by the challenger. The challenger then continues the game by
randomly selecting one of the two witnesses, wb, and by computing the third
message by running the prover’s algorithm on input the instance x, the selected
witness wb and the challenge received from the adversary. The adversary wins
the game if she can guess which of the two witnesses was used by the challenger.

We now define the adaptive-input WI experiment ExpAWIΠ,A(λ, aux). This
experiment is parameterized by a delayed-input 3-round complete protocol Π =
(P,V) for a relation R and by PPT adversary A. The experiment has as input
the security parameter λ and auxiliary information aux for A.

ExpAWIΠ,A(λ, aux):

1. C randomly selects coin tosses r and runs P on input (1λ; r) to obtain a;
2. A, on input a and aux, outputs instance x, witnesses w0 and w1 such that

(x,w0), (x,w1) ∈ R, challenge c and internal state state;

Online/Offline OR Composition of Sigma Protocols 13

3. C randomly selects b← {0, 1} and runs P on input (x,wb, c) to obtain z;
4. b′ ← A((a, c, z), aux, state);
5. if b = b′ then output 1 else output 0.

We set AdvAWIΠ,A(λ, aux) =
∣∣Prob

[
ExpAWIΠ,A(λ, aux) = 1

]
− 1

2

∣∣ .
Definition 7 (Adaptive-Input Witness Indistinguishability). A delayed-
input 3-round complete protocol Π is adaptive-input WI if for any PPT adver-
sary A there exists a negligible function ν such that for any aux ∈ {0, 1}∗ it holds
that AdvAWIΠ,A(λ, aux) ≤ ν(λ).

About DDH. The DDH assumption posits the hardness of distinguishing a ran-
domly selected DH tuple from a randomly selected non-DH tuple with respect to
a group generator algorithm IG. For sake of concreteness, we consider a specific
group generator that, on input 1λ, randomly selects a λ-bit prime p such that
q = (p− 1)/2 is also prime and outputs the (description of the) order q group G
of the quadratic residues modulo p along with a random generator g of G.

2.3 A Σ-Protocol for Partial Knowledge of DH/Non-DH Tuples

Let G be a cyclic group of order p. We say that T = (g,A,B,X) ∈ G4 is oneNDH
if there exits α, β ∈ Zp such that A = gα, B = gβ , X = gαβ+1. In this section we
describe a Σ-protocol for proving that at least k out of n tuples are oneNDH.
The Σ-protocol is based on the one of [10] and we stress that, just as in [10],
the Σ-protocol is perfect WI.

Formally, for 1 ≤ k ≤ n − 1, we construct Σ-protocol Πnddh
k,n = (Pk,n,Vk,n)

for the polynomial-time relation

NDHk,n =
{((

(g1, A1, B1, X1), . . . , (gn, An, Bn, Xn)
)
, (αi1 , . . . , αik , βi1 , . . . , βik)

)
:

1 ≤ i1 < · · · < ik ≤ n ∧ Aij = g
αij

ij
∧Bij = g

βij

ij
∧Xij = g

αij
βij

+1

ij
, for j = 1, . . . , k

}
of the sequences of the n-tuples such that at least k of them are oneNDH. The
prover Pk,n and the verifier Vk,n of Πnddh

k,n , on input n tuples (g1, A1, B1, X1), . . .
. . . , (gn, An, Bn, Xn) constructs tuples (gi, Ai, Bi, Yi) setting Yi = Xi/gi,
for i = 1, . . . , n.

Then prover and verifier start Σ-protocol Σddh of [10] for proving that at
least k of n constructed tuples are DH.

Theorem 3. For every n and 1 ≤ k ≤ n − 1, Πddh
k,n is a Σ-protocol for the

polynomial-time relation NDHk,n with perfect WI.

Proof. The perfect WI property follows from the perfect WI of [10]. The proof
is then completed by the following two simple observations. If at least k of the
input tuples are oneNDH then at least k of the constructed tuples (gi, Ai, Bi, Yi)
are DH and the prover has a witness of this fact. On the other hand, if fewer
than k of the input tuples are oneNDH then the transformed tuples contain
fewer than k DH tuples.

14 M. Ciampi, G. Persiano, A. Scafuro, L. Siniscalchi and I. Visconti

2.4 Commitments from Σ-protocols

We define the notion of an Instance-Dependent Trapdoor Commitment scheme
associated with a polynomial-time relation R and show a construction that uses
Σ-protocols and fits this definition.

Definition 8 (Instance-Dependent Trapdoor Commitment scheme). Let
R be a polynomial-time relation. An Instance-Dependent Trapdoor Commitment
(a IDTC, in short) scheme for R with message space M is a quadruple of PPT
algorithms (Com,Dec, (Fake1,Fake2)) where Com is the randomized commitment
algorithm that takes as input an instance x ∈ L̂R (with |x| = poly(λ)) and a
message m ∈ M and outputs commitment com and decommitment dec. Dec is
the verification algorithm that takes as input (x, com, dec,m) and decides whether
m is the decommitment of com.

(Fake1,Fake2) are randomized algorithms. Fake1 takes as input an instance
x, a witness w s.t. (x,w) ∈ R (|x| = poly(λ)) and outputs commitment com,
and equivocation information rand. Fake2 takes as input x, w, m, and rand,
and outputs dec s.t. Dec, on input (x, com, dec,m), accepts m as decommitment
of com.

An Instance-Dependent Trapdoor Commitment scheme has the following prop-
erties:

– Correctness: for all x ∈ L̂R, all m ∈M , it holds that

Prob [(com, dec)← Com(x,m) : Dec(x, com, dec,m) = 1] = 1.

– Binding: if x /∈ L then for every commitment com there exists at most one
message m s.t. Dec(x, com, dec,m) = 1 for any value dec.

– Hiding: for every receiver A, for every auxiliary information aux, for all
x ∈ LR and all for m0,m1 ∈M , it holds that

Prob
[
b← {0, 1}; (com, dec)← Com(1λ, x,mb) : b = A(aux, x, com,m0,m1)

]
≤ 1

2
.

– Trapdoorness: the following two families of probability distributions are
perfect indistinguishable (namely the two probability distributions coincide
for all (x,w,m) such that (x,w) ∈ R and m ∈M):

{(com, rand)← Fake1(x,w); dec← Fake2(x,w,m, rand) : (com, dec)}

{(com, dec)← Com(x,m) : (com, dec)}.

IDTC from Σ-protocol. Our construction follows similar constructions of [11,17,13].
Let Π = (P,V) be a Σ-protocol for polynomial-time relation R with the asso-
ciated NP-language LR and challenge length λ. Let S be the special HVZK
simulator for Π and let (x,w) be s.t. (x,w) ∈ R. Now we show an IDTC
CSΠ = (ComΠ ,DecΠ , (FakeΠ1 ,FakeΠ2)).

– ComΠ takes as input instance x and message m ∈ {0, 1}λ, sets (com, dec)←
S(x,m) and outputs (com, dec).

Online/Offline OR Composition of Sigma Protocols 15

– DecΠ takes as input instance x and transcript (com,m, dec), runs V on input
the instance and the transcript and returns V’s output.

– FakeΠ1 takes as input instance x and witness w, samples random string ρ
and runs P on input (1λ, x, w; ρ) to get the 1st message a of Π. FakeΠ1 sets
rand = ρ, com = a and outputs (com, rand).

– FakeΠ2 takes as input x,w,m, rand and runs P on input (1λ, x, w,m, rand)
to get the 3rd message z of Π. FakeΠ1 sets dec = z and outputs dec.

Theorem 4. CSΠ is an IDTC.

Proof. The security proof relies only on the properties of Π. Correctness follows
from the completeness of Π. Binding follows from the special soundness of Π.
Hiding and Trapdoorness follow from the SHVZK and the completeness of Π.

3 Adaptive-Input (k, n)-Proof of Partial Knowledge

In this section we describe in details our new transform for compound statements.
For the high-level overview the reader is referred to Sec. 1.2.

Let R be a polynomial-time relation admitting a delayed-input Σ-protocol
Π = (P,V). Recall that delayed-input means that the prover does not need the
instances of the statement to play the 1st round.

We describe a compiler that on input Π for R outputs a delayed-input
WIPoK Πk = (Pk,Vk) for the (k, n)-threshold relation Rk defined as follows

Rk =
{((

x1, . . . , xn
)
,
(
wi1 , . . . wik

))
: 1 ≤ i1 < · · · < ik ≤ n

and (xij , wij) ∈ R, for j = 1, . . . , k and xj ∈ L̂R, for j = 1, . . . , n
}
.

The main tools involved in our construction are the protocol Πnddh
k,n described

in Section 2.3, and an IDTC scheme described in Section 2.4. More precisely the
IDTC scheme is constructed using a Σ-protocol for DDH. Therefore given a
tuple T = (g,A,B,X) (either DH or non-DH), a message m and a randomness
r, we can compute (com, dec) using the scheme described in Section 2.4. If T is
a DH tuple, with A = gα, then α represents the trapdoor for the commitment
com and dec is equal to ⊥. In this case given a randomness r, com, the tuple T
and α for every message m it is possible to compute dec such that a receiver
accepts com as a commitment of the message m.

1st round. Pk ⇒ Vk:
1. Set (G, p, g)← IG(1λ).
2. Randomly choose tuples T1 = (g1, A1, B1, X1), . . . , Tn = (gn, An, Bn, Xn)

of elements of G under the constraint that exactly k are oneNDH and
n−k are DH, along with α1, . . . , αn such that Ai = gαi

i , for i = 1, . . . , n.

3. Let b1, . . . , bk denote the indices of the k oneNDH tuples and b̃1, . . . , b̃n−k
denote the indices of the n− k DH tuples.

4. Run the prover ofΠnddh
k,n on input T = (T1, . . . , Tn), witnesses (αb1 , . . . , αbk)

and randomness rk,n thus obtaining message ak,n. Send ak,n to Vk.

16 M. Ciampi, G. Persiano, A. Scafuro, L. Siniscalchi and I. Visconti

5. For i = 1, . . . , n:
Compute the first round ai of Π by running P with randomness ri.
Compute pair (comi, deci) of commitment and decommitment
of ai using Ti.
Send (Ti, comi) to Vk.

2nd round. Vk ⇒ Pk: randomly select a challenge c and send it to Pk.
3rd round. Pk ⇒ Vk:

1. Receive inputs (x1, . . . , xn) and witnesses (wd1 , . . . , wdk) for inputs

xd1 , . . . , xdk (we denote by d̃1, . . . , d̃n−k the indices of the inputs for
which no witness has been provided).

2. Compute the third round of Πnddh
k,n using c as challenge to get zn,k and

send it to Vk.
3. Pick a random permutation σ of {1, . . . , k} to associate each of the k

oneNDH tuples Tb1 , . . . , Tbk with one of the k inputs xd1 , . . . , xdk for
which a witness is available.

4. For i = 1, . . . , k:
Set j = dσ(i) and tj = bi.
Compute zj by running P on input (xj , wj), atj , randomness rtj
and challenge c.
Set Mj = (j, tj , dectj , atj , zj).

5. Pick a random permutation τ of {1, . . . , n− k} to associate each of the
n− k DH tuples Tb̃1 , . . . , Tb̃n−k

to one of the k inputs xd̃1 , . . . , xd̃n−k
for

which no witness is available.
6. For i = 1, . . . , n− k:

Set j = d̃τ(i) and tj = b̃i.
Run simulator S on input xj and c obtaining (aj , zj).
Use trapdoor αtj to compute decommitment dectj of comtj as aj .
Set Mj = (j, tj , dectj , aj , zj).

7. For j = 1, . . . , n: send Mj to Vk.
Vk accepts if and only if all the following conditions are satisfied:

1. (an,k, c, zn,k) is an accepting transcript for Vnddhk,n with input T .
2. All tj ’s are distinct.
3. For j = 1, . . . , n: dectj is a valid decommitment of comtj with respect to
Ttj .

4. For j = 1, . . . , n: (aj , c, zj) is accepting for V with input xj .

We will show now that Πk is a (adaptive-Input) PoK and is adaptive-input
WI for the relation Rk.

3.1 (Adaptive-Input) Proof of Knowledge

Theorem 5. Protocol Πk is a proof of knowledge for Rk.

Proof. The completeness property follows from the completeness of protocols
Πnddh
k,n andΠ, and from the correctness and trapdorness property of the Instance-

Dependent Trapdoor Commitment scheme used.

Online/Offline OR Composition of Sigma Protocols 17

Now we proceed by proving that our protocol is ((n − 1) · k + 2)-special
sound and then, using the arguments of Section 2 about the proof of knowledge
property of protocols that enjoy t-special soundness, we can conclude the proof
claiming that Πk is a proof of knowledge. There exists an efficient extractor that,
for any sequence (x1, . . . , xn) of n inputs and for any set of N = (n− 1) · k + 2
accepting transcripts of Πk that share the same first message and have different
challenges, outputs the witnesses of k of the n inputs. The extractor is based on
the following observations.

First of all, observe that, by the special soundness of Πn,k, it is possible to
extract the witness that k of the tuple T1, . . . , Tn appearing in the first message
are oneNDH. Let us denote by b1, . . . , bk the indices of the oneNDH tuples. This
implies that commitments comb1 , . . . , combk that appear in the shared first round
of the N transcripts will be opened to the same strings ab1 , . . . , abk . We also
observe that if two transcripts use the same input xi with the same oneNDH
tuple Tbi then we can extract two transcripts of the Σ-protocol Π that share the
same first message and have two different challenges. By the special soundness
of Π there exists an extractor that efficiently extracts a witness. In other words,
in order to be able to extract a witness for xi, xi has to be associated with the
same oneNDH tuple in two distinct transcripts.

The extractor willing to get k witnesses considers the N transcripts one
at the time and stops as soon as it reaches a special transcript Cl in which,
for j = 1, . . . , k, tuple Tbj is associated with input xdj in Cl and in at least a
transcript Clj with lj < l. Clearly, once such a transcript is reached the extractor
has obtained k witnesses. Now observe that a pair (oneNDH tuple, input xi) can
be used to eliminate at most one transcript. Moreover, there are n · k such pairs
and the first transcript exhibits exactly k of these pairs. Therefore the set of N
input transcripts contains at least one special transcript.

Theorem 6. If Π is adaptive-input special sound then Πk is an adaptive-input
proof of knowledge for Rk.

Proof. We prove the following stronger statement. There exists an efficient al-
gorithm that on input 2 accepting transcripts (a, c1, z1) (a, c2, z2) for Πk, where

– the first one is accepting with respect to a sequence of n theorems (x11, . . . , x
1
n),

– the second one is accepting with respect to a sequence of n (potentially
different from the previous one) theorems (x21, . . . , x

2
n),

– share the same first round and
– have different challenges,

outputs, for each of the two sequence, k witnesses (for a total of 2·k witnesses).
The extractor is based on the following observations.
First of all, observe that, by the special soundness of protocol Πn,k, it is

possible to extract the witness certifying that k of the tuple T1, . . . , Tn appearing
in the first message are oneNDH let us denote by b1, . . . , bk the indices of the
oneNDH tuples. This implies that commitments comb1 , . . . , combk that appear in
the common first round of the N transcripts will be opened to the same strings
ab1 , . . . , abk .

18 M. Ciampi, G. Persiano, A. Scafuro, L. Siniscalchi and I. Visconti

To conclude the proof we observe that if two transcripts use the same oneNDH
tuple Tbi then we can obtain two transcripts of Σ-protocol Π that share the same
first message and have two different challenges. By the adaptive-input special-
soundness property of Π there exists an extractor that outputs a witness.

3.2 Adaptive-Input Witness Indistinguishability

Here we prove that Πk is WI even when A can select instances and witnesses
adaptively after receiving the first round. We have the following theorem.

Theorem 7. Under the DDH assumption, if Π is SHVZK for R then Πk is
adaptive-input WI for relation Rk.

Proof. Let us fix a PPT adversary A and let us denote by X and W 0 and W 1

the instance and the witnesses of Πk output by A at Step 2 of ExpAWIΠk,A.
More precisely, we let X = (x1, . . . , xn) be the sequence of n instances output
by A and W 0 = ((w0

1, d
0
1), . . . (w0

k, d
0
k)) and W 1 = ((w1

1, d
1
1), . . . (w1

k, d
1
k)) the

two sequences of witnesses. We remark that (xdbi , w
b
i) ∈ R for i = 1, . . . , k and

b = 0, 1 and that i 6= j implies that d0i 6= d0j and d1i 6= d1j .

Let m ≤ k be the number of instances of Π in X for which W 1 contains a
witness but W 0 does not. Obviously, since W 0 and W 1 contain witnesses for the
same number k of instances of Π in X, it must be the case that m is also the
number of instances of Π in X for which W 0 contains a witness and W 1 does
not. We can rename the instances of X, so that W 0 and W 1 can be written as

W 0 =
(
(w0

1,m+ 1), . . . , (w0
m, 2m), (w0

m+1, 2m+ 1), (w0
k,m+ k)

)
and

W 1 =
(
(w1

1, 1), . . . , (w1
m,m), (w1

m+1, 2m+ 1), . . . , (w1
k,m+ k)

)
.

For our proof we now consider the case in which m = 0 and m 6= 0. When
m = 0 we have that W 1 and W 0 contains witnesses for the same theorems (for
Π). Therefore by the perfect-WI property of Π9 we can claim that if m = 0
then AdvAWIΠk,A(λ, aux) = 0. Now we consider the more interesting case where
m 6= 0.

We define the intermediate sequences of witnesses W1, . . . ,Wk in the follow-
ing way.

1. For i = 0, . . . ,m: Wi consists of witnesses

Wi =
(
(w1

1, 1), . . . , (w1
i , i), (w

0
i+1,m+ i+ 1), . . .

. . . , (w0
m, 2m), (w0

m+1, 2m+ 1), . . . , (w0
m+k,m+ k)

)
.

Note that Wi contains witnesses for (x1, . . . , xi, xm+1+i, . . . , x2m). Moreover,
W0 coincides with W 0 and in Wm the first m witnesses are from W 1 and
the remaining are from W 0.

9 We observe that Σ-protocols enjoy SHVZK and therefore by Theorem 1 we can
claim that every Σ-protocol is also perfect WI.

Online/Offline OR Composition of Sigma Protocols 19

2. For i = m+ 1, . . . , k: Wi consists of witnesses

Wi =
(
(w1

1, 1), . . . , (w1
m,m), (w1

m+1, 2m+ 1), . . .

. . . , (w1
m+i,m+ i), (w0

m+i+1,m+ i+ 1), . . . , (w0
m+k,m+ k)

)
.

It is easy to see that Wk coincides with W 1.

For i = 0, . . . , k, we define hybrid experiment Hi as the experiment in which
the challenger C uses sequence of witnesses Wi to complete the third step of
the experiment ExpAWIΠk,A. Clearly, H0 is the experiment ExpAWIΠk,A when C
picks b = 0 and Hk is the same experiment when C picks b = 1. We conclude the
proof by showing that, for i = 0, . . . , k − 1, Hi and Hi+1 are indistinguishable.

We start by proving indistinguishability of Hi and Hi+1 for i = 0, . . . ,m−1.
We remind the reader that, in Hi and Hi+1, the challenger C uses witnesses for
the following k inputs:

Hi x1 · · · xi xm+i+1 xm+i+2 · · ·x2m x2m+1 · · · xm+k

Hi+1 x1 · · · xi xi+1 xm+i+2 · · ·x2m x2m+1 · · · xm+k

To prove indistinguishability of Hi and Hi+1 we consider six intermediate hy-
brids: H1

i , . . . ,H6
i .

1. H1
i (λ, aux) differs from Hi(λ, aux) in the way that the accepting tran-

script for the theorem xi+1 is computed. More precisely in Hi(λ, aux) the
SHVZK simulator of Π was used to compute the transcript for xi+1 while
in H1

i (λ, aux) the transcript for xi+1 is computed using the honest-prover
procedure that has also wi+1 as input. To prove the indistinguishability of
the hybrids we can easily invoke the SHVZK property of Π. We remark that
this is possible only because the commitment of the first round of Π with
respect to the theorem xi+1 is hiding.

2. H2
i (λ, aux) differs from H1

i (λ, aux) in the way the tuples used to compute
the commitments are chosen. More precisely k tuples oneNDH are chosen,
n − k − 1 tuple DH are chosen and the last tuple is chosen non-DH. The
additional non-DH tuple is used to compute the commitment of the first
message of Π that will be associated to the theorem xi+1 in the third round.
Even in this case is possible to compute an accepting transcript for Πk

because k + 1 witnesses are used instead of k, therefore there is no problem
if k+ 1 commitments are binding. The indistinguishability between the two
hybrids is ensured by the DDH-assumption.

3. H3
i (λ, aux) the only difference between this hybrid experiment andH2

i (λ, aux)
is that instead of a non-DH tuple, a oneNDH tuple is chosen. As in the pre-
vious hybrid experiment the considered tuple is used to compute the com-
mitment of the first message of Π that will be associated to the theorem
xi+1 in the third round. The indistinguishability between the two hybrids is
ensured by the DDH-assumption.

4. H4
i (λ, aux). The differences between this hybrid and H3

i (λ, aux) are that we
use k tuples oneNDH n − k − 1 tuples DH and one tuple non-DH. In this

20 M. Ciampi, G. Persiano, A. Scafuro, L. Siniscalchi and I. Visconti

case the additional non-DH tuple is used to commit the first round of Π
that will be use as the first round of the accepting transcript with respect to
xm+i+1. By the DDH-assumption and perfect WI property of Πn,k we can
claim that this hybrid is indistinguishable from the previous one.

5. H5
i (λ, aux). The differences between this hybrid and H4

i (λ, aux) are that
we again use k oneNDH and n − k DH tuples. In this case the additional
DH tuple is used to commit to the first round of Π that will be used as
the first round of the accepting transcript with respect to xm+i+1. By the
DDH-assumption we can claim that this hybrid is indistinguishable from the
previous one.

6. H6
i (λ, aux) differs from H5

i (λ, aux) in the way that the accepting tran-
script for the theorem xm+i+1 is computed. More precisely in H5

i (λ, aux)
the honest-prover procedure of Π was used to compute the accepting tran-
script for xm+i+1. In H5

i (λ, aux) the transcript for xm+i+1 is computed using
the SHVZK simulator of Π. To prove the indistinguishability of this hybrid
we invoke the SHVZK property of Π. We remark that this is possible only
because the commitment of the first round of Π with respect to the theorem
xm+i+1 is hiding. We observe that this hybrid is equal to Hi+1(λ, aux).

Now we are able to complete the first part of the proof observing that 10.

Hi(λ, aux) ≈ H1
i (λ, aux) ≈ · · · ≈ H6

i (λ, aux) = Hi+1(λ, aux).

We have thus proved that H0 and Hm are indistinguishable. To complete the
proof, we need to prove that Hm+i and Hm+i+1 are indistinguishable for i =
0, . . . , k − 1. This follows directly from the observation that Hm+i and Hm+i+1

only differ in the witness used for x2m+i+1 as in Hm+i the witness from W 0 is
used by C whereas in Hm+i+1 C uses the witness from W 1. Indistinguishability
follows directly from the Perfect WI of Π.

4 On Adaptive-Input Special-Soundness of Σ-Protocols

In this section we show that Σ-Protocols are not secure when the adversarial
prover can choose the statement adaptively, when playing the 3rd round. These
issues for the case of the Fiat-Shamir transform were noted in [1].

We then show an efficient compiler that on input a Σ-protocol belonging to
the general class considered in [21,9], outputs a Σ-protocol that is secure against
adaptively chosen statements.

4.1 Soundness Issues in Delayed-Input Σ-Protocols

We start by showing that the notion of adaptive-input special soundness is non-
trivial in the sense that there are Σ-protocols that are not special sound when
the statement is chosen adaptively at the 3rd round.

10 See the full version of this work [7] for a formal description of the hybrid experiments.

Online/Offline OR Composition of Sigma Protocols 21

Issues with soundness. Let us consider the following well-known Σ-protocol ΠDH

for relation DH. On common input T = (g,A,B,X) and private input α such
that A = gα and X = Bα for the prover, the following steps are executed. We
denote by q the size of the group G.

1. P picks r ∈ Zq at random and computes and sends a = gr, x = Br to V;
2. V chooses a random challenge c ∈ Zq and sends it to P;
3. P computes and sends z = r + cα to V;
4. V accepts if and only if: gz = a ·Ac and Bz = x ·Xc.

We now show that the above Σ-protocol is not special sound when an adver-
sarial prover selects X adaptively.

Consider the following two conversations ((a = gr, x = Bs), c1, z1 = r+α ·c1)
and ((a = gr, x = Bs), c2, z2 = r+α ·c2) respectively for tuples (g,A,B,X1) and
(g,A,B,X2) where A = gα, X1 = gγ1 and X2 = gγ2 and γi = zi−s

ci
= α + r−s

ci
,

for i = 1, 2. It is easy to see that both conversations are accepting (for their
respective inputs) and that, if r 6= s, neither tuple is a DH tuple and therefore
no witness can be extracted. Notice that this is a very strong soundness attack
since the adversarial prover can succeed in convincing the verifier even though
the statement is false. A similar argument can be used to prove that the Σ-
protocol of [22] for relation Com = {((g, h,G,H,m), r) : G = gr and H = hr+m}
does not enjoy adaptive-input special soundness.

Issues with special soundness. Let us now consider the case of Schnorr’s Σ-
protocol [27] for relation DLog = {((G, g, Y), y) : gy = Y }. Clearly, this is a
different case since there is no false theorem to prove, but the attack can only
consist in proving a statement violating special soundness (i.e., even though
there are two accepting transcripts with the same first message no witness can
be extracted).

In Schnorr’s protocol, the prover on input (Y, y) ∈ DLog starts by sending
a = gr, for a randomly chosen r ∈ Zq. Upon receiving challenge c, P replies by
computing z = r + yc. V accepts (a, c, z) if gz = a · Y c.

Consider now accepting transcripts (a, ci, zi) with respect to inputs Yi, i =
1, 2. In this case, to extract witnesses yi s.t. ((G, g, Yi), yi) ∈ DLog one has to
solve the following system with unknowns r, y1, and y2.{

z1 = r + c1 · y1
z2 = r + c2 · y2

Clearly the system above has q solutions and thus it gives no information on any
of the two witnesses.

4.2 A Compiler for Adaptive-Input Special Soundness

In this section we show how to upgrade special soundness to adaptive-input
special-soundness in all Σ-protocols belonging to the interesting class of Σ-
protocols proposed in [9,21].

22 M. Ciampi, G. Persiano, A. Scafuro, L. Siniscalchi and I. Visconti

We show a compiler that obtains a Σ-protocol Πa
f for proving knowledge

of the pre-image of a homomorphic function. Our compiler takes as input a Σ-
protocol Πf = (Pf ,Vf) for the same generic relation that includes Schnorr’s [27],
Guillou-Quisquater [16] and the Σ-protocol for DH tuples as special cases [9,21].

Let (G, ?) and (H,⊗) be two groups with efficient operations and let f : G →
H be a one-way homomorphism from G to H. That is, for all x, y ∈ G, we have
that f(x ? y) = f(x) ⊗ f(y) and it is infeasible to compute w from f(w) for
a randomly chosen w. In protocol Πf for relation Rf = {(x,w) : x = f(w)},
prover and verifier receive as input a description of the groups G and H and
x ∈ H. The prover receives w such that x = f(w) as a private input. The prover
and verifier execute the following steps:

1. Pf picks r ← G, sets a← f(r) and sends a to Vf ;
2. Vf randomly selects a challenge c and sends it to Pf ;
3. Pf on input r, x, w and c computes z = r ? wc and sends it to Vf ;
4. Vf accepts if and only if f(z) = a⊗ xc.

It is easy to see that this protocol can be instantiated to give Schnorr’s [27] and
Guillou-Quisquater [16] Σ-protocols as special cases. Theorem 3 of [21] describes
necessary conditions for Πf to be special sound. Specifically, given a collision
(a, c1, z1) and (a, c2, z2) for common input x, it is possible to extract w such that
x = f(w) if integer y and element u ∈ G are known and it holds that

1. gcd(c1 − c2, y) = 1;
2. f(u) = xy.

It is not difficult to see that this is the case when the protocol is instantiated for
all the relations described above. We also observe that, since Schnorr’s protocol
is a special case of this protocol, protocol Πf does not enjoy adaptive-input
special soundness.

From Πf to Πa
f . We next show how to efficiently transform this Σ-protocol into

one that enjoys adaptive-input special soundness. The underlying idea is that
an adaptive attack against such protocol consists in misbehaving when playing
the first round. For instance, in the case of the Σ-protocol for DH, P∗ has to
send a non-DH tuple in the 1st round while instead the protocol asks for a
DH tuple. We therefore can convert Πf into Πa

f by asking the prover to also
give an auxiliary proof where it proves knowledge of the randomness used to
correctly compute the first round of Πf . Notice that on this auxiliary proof an
adaptive-input selection attack can not take place since the adversarial prover
is stuck with the content of the 1st round of Πf that therefore specifies already
the statement to prove. We now show that special soundness allows to get the
randomness used to compute the first round of Πf . Then the same argument
shown in Theorem 3 of [21] allows to extract the witness from a single transcript.

We now discuss the compiler and why it works more formally.
Let us start with the following observation. Consider an accepting transcript

(a, c, z) of Πf for input x. If r such that f(r) = a is available, then it is possible to

Online/Offline OR Composition of Sigma Protocols 23

compute a witness w for x. Indeed, from Theorem 3 of [21] it follows that we can
compute w as w = uα ? (z ?r−1)β , where α and β are such that y ·α+c ·β = 111.
We use an argument already used in Theorem 3 of [21] in order to prove that
f(w) = x, where w = uα ? (z ? r−1)β . First we observe that f(z) = a ⊗ xc and
this implies that f(z ? r−1) = xc. Then we observe (like in [21]) that f(w) =
f(uα ? (z ? r−1)β) = f(u)α ⊗ f(z ? r−1)β = xyα + xβc = x that proves that
f(w) = x.

Consider protocol Πa
f consisting of the parallel execution of two instances of

Πf . For common input x, the first instance of Πf is executed on common input
x, whereas in the second instance the common input is the first message a of the
first instance. The verifier of Πa

f sends the same challenge to both instances and
accepts if and only if it accepts in both instances. Since in a collision the first
message is fixed, both transcripts have the same first message a and therefore we
can invoke special soundness to extract r such that f(r) = a. Once r is available,
we apply the observation above and extract witnesses for x1 and x2 (the two
inputs of the two 3-round transcripts constituting the collision). We have thus
the following theorem.

Theorem 8. If there exists a Σ-protocol Πf for Rf , then there exists a Σ-
protocol Πa

f for Rf that enjoys adaptive-input special soundness.

5 On the Adaptive-Input Soundness of [6]’s Transform

Ciampi et al. in [6] show a compiler that takes as input two Σ-protocols, Π0 and
Π1 for languages L0 and L1, and outputs a new Σ-protocol ΠOR for L0 ∨ L1

in which the instance for the language L1 is required by the prover only in the
3rd round. The compiler requires that Π1 be delayed input and they show that
the output of the compiler is a Σ-protocol, therefore it enjoys special soundness.
In this section we assume that Π1 is adaptive-input special sound, and we will
show that ΠOR enjoys also adaptive-input special soundness.

5.1 Overview of the Construction of [6]

We start with a succinct description of the main building block used in of [6].

t-instance-dependent trapdoor commitment. Ciampi et al. in [6] define the no-
tion of a t-Instance-Dependent Trapdoor Commitment (t-IDTC) scheme. Such
a scheme works with respect to an polynomial-time relation R. More formally,
given the pair x,w s.t. (x,w) ∈ R, it is possible to compute a commitment (with
respect to some massage space M) using only the instance x, and the message.
After that it is possible to open the commitment if one knows the randomness
used in the commitment phase, or it is possible to equivocate the commitment
using the witness w.

11 By the first condition of Theorem 3 of [21] we have that gcd(c, y) = 1 and thus α
and β can be computed by using the extended Euclidean gcd algorithm.

24 M. Ciampi, G. Persiano, A. Scafuro, L. Siniscalchi and I. Visconti

The t-IDTC scheme is defined by a triple of PPT algorithm (TCom, TDec,
TFake) where TCom, TDec are the honest commitment and decommitment pro-
cedures and TFake is the equivocation procedure that, given a witness for an
instance x, equivocates any commitment computed using x as input of TCom.
The properties of a t-IDTC scheme are: correctness, hiding, trapdoor and t-
Special Extractability. The property of t-Special Extractability informally says
that if the sender opens the same commitment in t different ways, then it is
possible to efficiently extract the witness w. For more details see [6].

The authors of [6] show how to construct a 2-IDTC schemes are perfect hiding,
perfect trapdoor and 2-Special Extractable from Σ-protocols.

In the rest of this section when a player runs the algorithm TCom on input
x,m, obtains the pair (com, dec) where com is the commitment of the message
m, and dec is the decommitment value. To check if dec is a valid decommitment
of com with respect to the message m, we use the algorithm TDec. To compute a
fake opening of the commitment com with respect to a message m′ 6= m a player
can use the algorithm TFake using as input (com, dec).

The Construction of [6] Let R0 be a relation admitting a t-IDTC scheme,
with t = 2 or t = 3. Let R1 be a relation admitting an delayed-input Σ-protocol
Π1 with associated simulator S1.

We show a Σ-protocol ΠOR = (POR,VOR) for the OR relation:

ROR =
{

((x0, x1), w) : ((x0, w) ∈ R0 ∧ x1 ∈ L̂R1
) OR ((x1, w) ∈ R1 ∧ x0 ∈ L̂R0

)
}
.

The initial common input is x0 and the other input x1 and the witness w for
(x0, x1) are available to the prover only at the 3rd round. We let b ∈ {0, 1} be
such that (xb, w) ∈ Rb. The construction of [6] is described below.

Common input: (x0, 1
λ), where λ is the length of the instance of L̂R1

.

1. POR executes the following steps:
1.1. pick random r1 and compute the 1st round a1 of the delayed-input Σ-

protocol Π1;
1.2. compute a pair (com, dec1) of commitment and decommitment of a1;
1.3. send com to VOR.

2. VOR sends a random challenge c.
3. POR on input ((x0, x1), c, (w, b)) s.t. (xb, w) ∈ Rb executes the following

steps:
3.1. If b = 1,

compute the 3rd round of Π1, z1, using as input (x1, w, c);
3.2. send (dec1, a1, z1) to VORr;
3.3. If b = 0,

run simulator S1 on input x1 and c obtaining (a2, z2);
use trapdoor to compute decommitment dec2 of com as a2;

3.4. send (dec2, a2, z2) to VOR.
4. VOR accepts if and only if the following conditions are satisfied:

4.1. (a, c, z) is an accepting conversation for x1;
4.2. dec is a valid decommitment of com for a message a.

Online/Offline OR Composition of Sigma Protocols 25

5.2 Adaptive-Input Security of ΠOR

We now show that ΠOR preserves the adaptive-input special soundness of the
underlying Σ-protocol.

Theorem 9. If R0 admits a 2-IDTC and R1 admits a delayed-input adaptive-
input special-sound Σ-protocol, then ΠOR is an adaptive-input special-sound Σ-
protocol.

Proof. The claim follows from the adaptive-input special soundness of the un-
derlying Σ-protocol Π1 and from the 2-Special Extractability property of the 2-
IDTC scheme. More formally, consider an accepting transcript (com, c, (z, a, dec))
for input (x0, x1) and an accepting transcript (com, c′, (z′, a′, dec′)) for input
(x0, x

′
1), where c′ 6= c and x1 is potentially different from x′1. We observe that:

– if a = a′ then by the property of adaptive-input special soundness of Π1

there exists an efficient extractor AExtract that, given as input ((a, c, z), x1)
and ((a′, c′, z′), x′1), outputs w1 and w′1 s.t. (x1, w1) ∈ R1 and (x′1, w

′
1) ∈ R1;

– if a 6= a′, then dec and dec′ are two openings of com with respect to x0
for messages a 6= a′; then we can obtain a witness w0 by the 2-Special
Extractability of the 2-IDTC scheme.

A similar arguments can be used to show that if R0 admits a 3-IDTC and R1

admits a delayed-input Σ-protocol with adaptive-input special soundness, then
ΠOR enjoys the adaptive-input proof of knowledge property.

6 Extension to Multiple Relations

In this section, we generalize the result of Section 3 to the case of different rela-
tions. More specifically, given delayed-inputΣ-protocolsΠ1, . . . ,Πn for polynomial-
time relations R1, . . . ,Rn, we construct, for some positive constant k, Adaptive-
Input Proof of Partial Knowledge Γ for the threshold polynomial-time relation

Rthres =

{((
x1, . . . , xn, k

)
,
(
(w1, d1) . . . , (wk, dk)

))
: 1 ≤ d1 < · · · < dk ≤ n

and (xdi , wi) ∈ Ri for i = 1, . . . , k and x1 ∈ L̂1, . . . , xn ∈ L̂n
}
.

We remind the reader that L̂1, . . . , L̂n are the input languages associated with
the polynomial-time relations R1, . . . ,Rn.

Protocol Γ uses delayed-input protocol Πk, in the adaptive-input special-
soundness version, presented in Section 3 for relation NDHk,n. We remark that
protocol Πddh

k,n of Section 2.3 would not work here since the prover of Γ learns
the actual statement to be proved just before the third round.

1st round. Γ.Prover⇒ Γ.Verifier:
Γ.Prover receives as unary inputs the security parameter λ, the number n
of theorems that will be given as input at the beginning of the third round,
and the number k of witnesses that will be provided.

26 M. Ciampi, G. Persiano, A. Scafuro, L. Siniscalchi and I. Visconti

1. Set (G, p, g)← IG(1λ).
2. For j = 1, . . . , n

2.1. Randomly sample a non-DH tuple T 0
j = (gj , Aj , Bj , Xj) over G,

along with αj such that Aj = g
αj

j .

2.2. Set Yj = B
αj

j and T 1
j = (gj , Aj , Bj , Yj)

(note that the quadruple T 1
j is by construction a DH tuple).

3. Select a random stringRk,n and use it to compute the first round message
ak,n of Πk by running prover Pk.
Send ak,n to Γ.Verifier.

4. For j = 1, . . . , n
4.1. Select random strings R0

j and R1
j and use them to compute the first

rounds a0j and a1j of Πj by running prover Pj .
4.2. Compute the pair (com0j , dec

0
j) of commitment and decommitment

of the message a0j using non-DH tuple T 0
j .

4.3. Compute the commitment com1j (of the message a1j) using the DH

tuple T 1
j .

4.4. Send pairs (T 0
j , com

0
j) and (T 1

j , com
1
j) in random order to Γ.Verifier.

2nd round. Γ.Verifier⇒ Γ.Prover: Γ.Verifier randomly selects a challenge c and
sends it to Γ.Prover.

3rd round. Γ.Prover⇒ Γ.Verifier:
Γ.Prover receives theorems x1, . . . , xn and, for d1 < . . . < dk, witnesses
w1, . . . , wk for theorems xd1 , . . . , xdk , respectively. We let d̃1 < . . . < d̃n−k
denote the indices of the theorems for which no witness has been provided.

1. For l = 1, . . . , k
1.1. Use j as a shorthand for dl.
1.2. Set Uj = T 1

j and Ûj = T 0
j .

1.3. Compute third round zj ofΠj by running prover Pj on input (xj , wi),
randomness R0

j used to compute the first round a0j , and a challenge
c.

1.4. Set Mj = (a0j , zj , dec
0
j , Ûj).

2. For l = 1, . . . , n− k
2.1. Set j = d̃l.
2.2. Set Uj = T 0

j and Ûj = T 1
j .

2.3. Run the simulator Sj of Πj on input xj and c therefore obtaining
(ã1j , zj).

2.4. Use the trapdoor αj to compute the decommitment dec1j of com1j as

ã1j .

2.5. Set Mj = (ã1j , zj , dec
1
j , Ûj).

3. For l = 1, . . . , n send Ml to Γ.Verifier.
4. Compute the third round zk,n of Πk by running prover Pk of Πk on

input tuples (U1, . . . , Un), witnesses αd1 , . . . , αdk and randomness Rk,n
used to compute the first round ak,n.

Γ.Verifier accepts if and only if the following conditions are satisfied.
1. Check that (an,k, c, zn,k) is an accepting conversation for Vk for input
U1, . . . , Un.

Online/Offline OR Composition of Sigma Protocols 27

2. For i = 1 . . . n
Check that tuples T 0

i and T 1
i differ only in the last component.

Check that {Ui, Ûi} = {T 0
i , T

1
i }.

Write Mi as Mi = (ai, zi, deci, Ûi).
Check that deci is a decommitment of one of com0i and com1i as ai with

respect to tuple Ûi.
Check that (ai, c, zi) is an accepting conversation for Πi on input xi.

Theorem 10. Γ is a proof of knowledge.

Proof. The completeness property follows from the completeness of protocols Πk

and Πi, for i ∈ {1, . . . , n}, and from the correctness and trapdoorness property
of the Instance-Dependent Trapdoor Commitment scheme used.

Now we proceed by proving that our protocol is (2n+ k)-special sound and
then, using the arguments of Section 2 about the proof of knowledge property
of protocols that enjoy t-special soundness, we can conclude the proof claiming
that Γ is a proof of knowledge. In more details, we prove that there exists an
efficient extractor which, for any sequence (x1, . . . , xn) of n inputs and for any
set of 2n+ k accepting conversations of Γ that share the same first message and
have different challenges, outputs the witness of wi s.t. (xi, wi) ∈ Ri for some
i ∈ {1, . . . , n}. The extractor considers a set of 2n + k accepting conversations
a, cj , zj (with j = 1, . . . , 2n+k) such that they share the same first message and
have different challenges. For each a, cj , zj (with j = 1, . . . , 2n+ k) processed by
the extractor one of the following two cases is possible.

1. There are two conversations of Σ-protocol Πi for theorem xi that share the
same first message ai and have two different challenges. Then by the special
soundness property of Πi one can efficiently get a witness wi for theorem xi.

2. If the new accepting transcript a, cj , zj does not allow the extractor to obtain
the witness then a new non-DH tuple is used for the first time in the accepting
conversation a, cj , zj .

The proof ends with the observation that the algorithm stops after k times
that the first case occurs, while the second case occurs at most 2n times.

Theorem 11. Under the DDH assumption, if Πi is SHVZK for Ri, for i ∈
{1, . . . , n}, then Γ is adaptive-input WI for Rthres, for a constant k.

Proof sketch. The definition of adaptive-input WI gives to the adversary
A the power to choose both theorems and witnesses upon receiving the first
message from the challenger. This implies that in Γ the first round should be
computed without knowing which witnesses will be chosen by A, and without
knowing for what instances the witnesses will be available in the third round. It
is easy to see that the first round of Γ is independent from the A could have.
Unfortunately if we follow the same proof of Theorem 7, considering a similar
sequence of hybrids experiments, we will have to define hybrid experiments in
which the first round depends on which witnesses will be received from A at

28 M. Ciampi, G. Persiano, A. Scafuro, L. Siniscalchi and I. Visconti

the second round. This implies that the only way for the challenger to complete
these hybrid experiments consists in guessing the instances that correspond to
the witnesses that will be received. This explains why k is a constant.

We now explain with more details the differences between the security proof
of Theorem 7 and the one needed for protocol Γ . The security proof of Theorem 7
works for every k because the n instances x1, . . . , xn that will be sent by A in
the protocol Πk belong to the same NP-language L. Furthermore the Σ-protocol
Π used in Πk is delayed input. Hence for a first round ai of Π it is possible to
create an accepting transcript (ai, c, z) for a theorem xj , for i, j ∈ {1, . . . , n} (if
one has the witness wj clearly). Therefore the assignment of the values a1, . . . , an
committed in the first round with the theorems x1, . . . , xn is made only at the
third round. This property holds in all hybrid experiments. Now we consider the
protocol Γ . The arguments described above are clearly not applicable to prove
that Γ is adaptive-input WI.

More in details, during the first round of Γ , for each language Li we compute
the first message of protocol Πi and commit to it twice using the instance-
dependent trapdoor commitment associated to a DH tuple and to a non-DH
tuple, for i ∈ {1, . . . , n}. Hence for each ai we compute an equivocal commitment
and a binding commitment. First note that these two commitments are linked to
a fixed language Li (in contrast to the first round of Πk). When in the security
proof we need to consider the hybrid experiment in which n+ 1 non-DH tuples
(one non-DH tuple per pair except one pair where both tuples are non-DH)
are used (as in the proof of Theorem 7), we have to commit the first round of
ai, for some i ∈ {1, . . . , n}, using two commitments that are perfectly binding.
Therefore the only way that we have to compute an accepting transcript with
respect to the language Li consists in using the witness for the instance xi that
will be sent by A. Unfortunately we have no guarantee that A will send wi, and
thus the experiment will have to try again. For lack of space, further details can
be found in the full version of this work.

7 Acknowledgments

We thank the anonymous reviewers of Eurocrypt 2016 for many insightful com-
ments and suggestions. This work has been supported in part by “GNCS - IN-
dAM” and in part by the EU COST Action IC1306.

References

1. Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: Pitfalls of
the fiat-shamir heuristic and applications to helios. In: Advances in Cryptology -
ASIACRYPT 2012 - 18th International Conference on the Theory and Applica-
tion of Cryptology and Information Security, Beijing, China, December 2-6, 2012.
Proceedings. pp. 626–643 (2012)

2. Blundo, C., Persiano, G., Sadeghi, A., Visconti, I.: Improved security notions and
protocols for non-transferable identification. In: Computer Security - ESORICS

Online/Offline OR Composition of Sigma Protocols 29

2008, 13th European Symposium on Research in Computer Security, Málaga,
Spain, October 6-8, 2008. Proceedings. pp. 364–378 (2008)

3. Catalano, D., Dodis, Y., Visconti, I.: Mercurial commitments: Minimal assump-
tions and efficient constructions. In: Theory of Cryptography, Third Theory of
Cryptography Conference, TCC 2006, New York, NY, USA, March 4-7, 2006, Pro-
ceedings. pp. 120–144 (2006)

4. Catalano, D., Visconti, I.: Hybrid trapdoor commitments and their applications. In:
Automata, Languages and Programming, 32nd International Colloquium, ICALP
2005, Lisbon, Portugal, July 11-15, 2005, Proceedings. pp. 298–310 (2005)

5. Catalano, D., Visconti, I.: Hybrid commitments and their applications to zero-
knowledge proof systems. Theor. Comput. Sci. 374(1-3), 229–260 (2007)

6. Ciampi, M., Persiano, G., Scafuro, A., Siniscalchi, L., Visconti, I.: Improved or-
composition of sigma-protocols. In: Theory of Cryptography - 13th International
Conference, TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings, Part
II. pp. 112–141 (2016)

7. Ciampi, M., Persiano, G., Scafuro, A., Siniscalchi, L., Visconti, I.: Online/offline
or composition of sigma protocols. Cryptology ePrint Archive, Report 2016/175
(2016), http://eprint.iacr.org/

8. Ciampi, M., Persiano, G., Siniscalchi, L., Visconti, I.: A transform for NIZK almost
as efficient and general as the fiat-shamir transform without programmable random
oracles. In: Theory of Cryptography - 13th International Conference, TCC 2016-A,
Tel Aviv, Israel, January 10-13, 2016, Proceedings, Part II. pp. 83–111 (2016)

9. Cramer, R., Damg̊ard, I.: Zero-knowledge proofs for finite field arithmetic; or:
Can zero-knowledge be for free? In: Krawczyk, H. (ed.) Advances in Cryptology -
CRYPTO ’98, 18th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 23-27, 1998, Proceedings. Lecture Notes in Computer
Science, vol. 1462, pp. 424–441. Springer (1998)

10. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y. (ed.) Advances in Cryp-
tology — CRYPTO ’94, Lecture Notes in Computer Science, vol. 839, pp. 174–187.
Springer Berlin Heidelberg (1994)

11. Damg̊ard, I.: On Σ-protocol. http://www.cs.au.dk/~ivan/Sigma.pdf (2010)
12. Damg̊ard, I., Groth, J.: Non-interactive and reusable non-malleable commitment

schemes. In: Proceedings of the 35th Annual ACM Symposium on Theory of Com-
puting, June 9-11, 2003, San Diego, CA, USA. pp. 426–437 (2003)

13. Damg̊ard, I., Nielsen, J.B.: Perfect hiding and perfect binding universally compos-
able commitment schemes with constant expansion factor. In: Advances in Cryp-
tology - CRYPTO 2002, 22nd Annual International Cryptology Conference, Santa
Barbara, California, USA, August 18-22, 2002, Proceedings. pp. 581–596 (2002)

14. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and
signature problems. In: Advances in Cryptology - CRYPTO ’86, Santa Barbara,
California, USA, 1986, Proceedings. pp. 186–194 (1986)

15. Garay, J.A., MacKenzie, P., Yang, K.: Strengthening zero-knowledge protocols
using signatures. Journal of Cryptology 19(2), 169–209 (2006)

16. Guillou, L.C., Quisquater, J.: A practical zero-knowledge protocol fitted to secu-
rity microprocessor minimizing both transmission and memory. In: Günther, C.G.
(ed.) Advances in Cryptology - EUROCRYPT ’88, Workshop on the Theory and
Application of of Cryptographic Techniques, Davos, Switzerland, May 25-27, 1988,
Proceedings. Lecture Notes in Computer Science, vol. 330, pp. 123–128. Springer
(1988)

http://eprint.iacr.org/
http://www.cs.au.dk/~ivan/Sigma.pdf

30 M. Ciampi, G. Persiano, A. Scafuro, L. Siniscalchi and I. Visconti

17. Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols - Techniques and
Constructions. Information Security and Cryptography, Springer (2010)

18. Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In: Ad-
vances in Cryptology - CRYPTO 2004, 24th Annual International Cryptology-
Conference, Santa Barbara, California, USA, August 15-19, 2004, Proceedings.
pp. 335–354 (2004)

19. Lapidot, D., Shamir, A.: Publicly verifiable non-interactive zero-knowledge proofs.
In: Advances in Cryptology - CRYPTO (1990)

20. Lindell, Y.: An efficient transform from sigma protocols to NIZK with a CRS and
non-programmable random oracle. In: Theory of Cryptography - 12th Theory of
Cryptography Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Pro-
ceedings, Part I. pp. 93–109 (2015)

21. Maurer, U.: Zero-knowledge proofs of knowledge for group homomorphisms. De-
signs, Codes and Cryptography pp. 1–14 (2015)

22. Micciancio, D., Petrank, E.: Simulatable commitments and efficient concurrent
zero-knowledge. In: Advances in Cryptology - EUROCRYPT 2003, International
Conference on the Theory and Applications of Cryptographic Techniques, Warsaw,
Poland, May 4-8, 2003, Proceedings. pp. 140–159 (2003)

23. Ostrovsky, R., Pandey, O., Visconti, I.: Efficiency preserving transformations for
concurrent non-malleable zero knowledge. In: Theory of Cryptography, 7th Theory
of Cryptography Conference, TCC 2010, Zurich, Switzerland, February 9-11, 2010.
Proceedings. pp. 535–552 (2010)

24. Ostrovsky, R., Richelson, S., Scafuro, A.: Round-optimal black-box two-party com-
putation. In: Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II.
pp. 339–358 (2015)

25. Pass, R.: Simulation in quasi-polynomial time, and its application to protocol com-
position. In: Biham, E. (ed.) Advances in Cryptology - EUROCRYPT 2003, Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
Warsaw, Poland, May 4-8, 2003, Proceedings. Lecture Notes in Computer Science,
vol. 2656, pp. 160–176. Springer (2003)

26. Santis, A.D., Crescenzo, G.D., Persiano, G., Yung, M.: On monotone formula clo-
sure of SZK. In: 35th Annual Symposium on Foundations of Computer Science,
Santa Fe, New Mexico, USA, 20-22 November 1994. pp. 454–465 (1994)

27. Schnorr, C.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) Advances in Cryptology — CRYPTO’ 89 Proceedings, Lecture Notes in
Computer Science, vol. 435, pp. 239–252. Springer New York (1989)

28. Visconti, I.: Efficient zero knowledge on the internet. In: Automata, Languages and
Programming, 33rd International Colloquium, ICALP 2006, Venice, Italy, July 10-
14, 2006, Proceedings, Part II. pp. 22–33 (2006)

29. Yung, M., Zhao, Y.: Generic and practical resettable zero-knowledge in the bare
public-key model. In: Advances in Cryptology - EUROCRYPT 2007, 26th An-
nual International Conference on the Theory and Applications of Cryptographic
Techniques, Barcelona, Spain, May 20-24, 2007, Proceedings. pp. 129–147 (2007)

	Online/Offline OR Composition of Sigma Protocols

