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Abstract. This paper studies how to build a 2n-bit block cipher which
is hard to distinguish from a truly random permutation against attacks
with q ≈ 2n/2 queries, i.e., birthday attacks. Unlike previous approaches
using pseudorandom functions, we present a simple and efficient proposal
using a tweakable block cipher as an internal module. Our proposal is
provably secure against birthday attacks, if underlying tweakable block
cipher is also secure against birthday attacks. We also study how to build
such tweakable block ciphers from ordinary block ciphers, which may
be of independent interest. keywords: Block Cipher Mode, Birthday
Bound, Tweakable Block Cipher.

1 Introduction

A double-block-length cipher (DBLC), i.e. a 2n-bit block cipher made from n-bit
block components, has been one of the main research topics in the symmetric
cryptography. In particular, a seminal work of Luby and Rackoff [17] proved
that a 4-round Feistel permutation is computationally hard to distinguish from
a truly random permutation if each round function is an n-bit pseudorandom
function [11]. The proof of [17] is valid for chosen-ciphertext attacks (CCAs) us-
ing q ≪ 2n/2 queries, and is called a proof of O(2n/2)-security. As 2n/2 is related
to the birthday paradox for n-bit variables, it is also called the security up to the
birthday bound (for n). Then, building a DBLC having beyond-birthday-bound
security, i.e., O(2ω+n/2)-security for some ω > 0, is an interesting research topic
from theoretical and practical aspects. In particular, such a DBLC can improve
the security of any block cipher mode that has O(2n/2)-security with an n-bit
block cipher1. However, achieving O(2ω+n/2)-security is generally difficult, even
for a small ω. We have very few known DBLC proposals having this property.
All of them were based on Feistel permutations using pseudorandom functions
[22][18][20]. Although these studies indicated the great potential of Feistel per-
mutation, we wondered if using Feistel was the only solution.

In this paper, we demonstrate how this problem can be solved using a tweak-
able block cipher, defined by Liskov et al.[16]. In particular, we present how to
build a DBLC based on a tweakable block cipher Ẽ with n-bit block and m-bit
1 For some specific applications, such as stateful encryption and stateful authentica-

tion, block cipher modes with beyond-birthday-bound security are known [15][5].



tweak for any 1 ≤ m ≤ n, and prove O(2(n+m)/2)-security against CCAs. One
significant fact is that it is optimally efficient, as it requires only two Ê calls
(independently of m) and some universal hash functions. Thus, assuming very
fast universal hash functions (e.g., [25]), our DBLC will have almost the same
throughput as that of a tweakable block cipher. This means that, the task of
building a secure 2n-bit block cipher can be efficiently reduced to that of build-
ing a secure n-bit block tweakable block cipher. We think this is an interesting
application of tweakable block cipher, that has not been mentioned before. As
a by-product, we provide some variants such as a pseudorandom function with
2n-bit input and n-bit output. All variants are optimally efficient in the sense
defined above.

We have to emphasize that the birthday bound here is with respect to n,
and not to n+m. The security of our scheme is still up to the birthday bound
of input length of the cryptographic primitive (as with Yasuda [28]). Although
this makes the problem much easier in general, our result is still non-trivial and
highly optimized as a solution to beyond-birthday-bound security for n.

As our DBLC requires a tweakable block cipher with beyond-birthday-bound
security, we also discuss how to realize it. Specifically, we focus on construc-
tions using n-bit block ciphers. Although known constructions [16][24] are only
O(2n/2)-secure, we provide a simple solution using tweak-dependent key changes
with a concrete security proof. Unfortunately, this scheme is only the first step:
it can be very slow and has some severe theoretical limitations, thus is far from
being perfect. Building a better scheme remains an interesting future direction
of research.

2 Preliminaries

2.1 Basic Notations

A random variable will be written in capital letters and its sampled value will
be written in the corresponding small letters. Let Σn denote {0, 1}n. The bit
length of a binary sequence x is denoted by |x|, and x[i,j] denotes a subsequence
of x from i-th to j-th bit, for 1 ≤ i < j ≤ |x|. A uniform random function (URF)
with n-bit input and ℓ-bit output, denoted by Rn,ℓ, is a random variable uni-
formly distributed over {f : Σn → Σℓ}. Similarly, a random variable uniformly
distributed over all n-bit permutations is an n-bit block uniform random permu-
tation (URP) and is denoted by Pn. If FK : X → Y is a keyed function, then FK
is a random variable (not necessarily uniformly) distributed over {f : X → Y}.
If FK is a keyed permutation, F−1

K will denote its inversion. We will omit K and
write F : X → Y, when K is clear from the context.

A tweakable block cipher [16] is a keyed permutation with auxiliary input
called tweak. Formally, a ciphertext of a tweakable blockcipher, Ẽ : M×T → M,
is C = Ẽ(M,T ), where M ∈ M is a plaintext and T ∈ T is the tweak. The
encryption, Ẽ, must be a keyed permutation over M for every T ∈ T , and the
decryption is defined as Ẽ−1(C, T ) = M with Ẽ−1 : M×T → M. If Ẽ has n-bit



block and m-bit tweak, we say it is an (n,m)-bit tweakable cipher. An (n,m)-bit
tweakable URP is the set of 2m independent URPs (i.e., an n-bit URP is used
for each m-bit tweak) and is denoted by P̃n,m. We write P̃n if m is clear from
the context.

2.2 Security Notion

Consider the game in which we want to distinguish two keyed functions, G
and G′, using a black-box access to them. We define classes of attacks: chosen-
plaintext attack (CPA), and chosen-ciphertext attack (CCA), and their tweaked
versions, i.e., a tweak and a plaintext (or ciphertext) can be arbitrarily chosen.
Here, (tweaked) CCA can be defined when G and G′ are (tweakable) permu-
tations. Let atk ∈ {cpa, cca, c̃pa, c̃ca}, where c̃pa (c̃ca) denotes tweaked CPA
(CCA). The maximum advantage of adversary using atk in distinguishing G and
G′ is:

AdvatkG,G′(θ)
def= max

D:θ−atk

∣∣ Pr[DG = 1] − Pr[DG′
= 1]

∣∣, (1)

where DG = 1 denotes that D’s guess is 1, which indicates G or G′. The pa-
rameter θ denotes the attack resource, such as the number of queries, q, and
time complexity [11], τ . If θ does not contain τ , the adversary has no computa-
tional restriction. The maximum is taken for all atk-adversaries having θ. For
G : Σn → Σm, we have

AdvprfG (θ) def= AdvcpaG,Rn,m
(θ), AdvsprpG (θ) def= AdvccaG,Pn

(θ), AdvprpG (θ) def= AdvcpaG,Pn
(θ),

where the last two equations are defined if G is an n-bit permutation, Moreover,
if G is an (n,m)-bit tweakable cipher, we define

Advs̃prpG (θ) def= Advc̃ca
G,P̃n,m

(θ), and Advp̃rpG (θ) def= Advc̃pa
G,P̃n,m

(θ).

If AdvprfG (θ) is negligibly small for all practical θ (the definition of “practical
θ” depends on users.), G is a pseudorandom function (PRF)[11]. If G is in-
vertible, it is also called a pseudorandom permutation (PRP). In addition, if
AdvsprpG (θ) is negligibly small, G is a strong pseudorandom permutation (SPRP).
If G is a tweakable cipher, tweakable SPRP and PRP are similarly defined using
Advs̃prpG (θ) and Advp̃rpG (θ). Generally, we say G is secure if Advs̃prpG (θ) is negligibly
small.
CCA-CPA conversion. In our security proof, it is convenient to use a conver-
sion from a cca-advantage into a cpa-advantage. For this purpose, we introduce
a subclass of cpa called cpa′, which is as follows. First, for any keyed permu-
tation G over M, let ⟨G⟩ : M × Σ → M be the equivalent representation
of G, where ⟨G⟩(x, 0) = G(x) and ⟨G⟩(x, 1) = G−1(x). This expression also
holds true for tweakable permutations, i.e., for any tweakable permutation G̃
with message space M and tweak space T , ⟨G̃⟩ is an equivalent keyed function
: M×T ×Σ → M. The LSB of a query to ⟨G⟩ is called a operation indicator.
Consider F : M × Σ → M and a cpa-adversary D interacting with F . Let



Xi = (Mi,Wi) ∈ M × Σ be the i-th query of D and let Yi ∈ M be the i-th
answer. For any D, we assume Mi ̸= Mj always holds when Wi = Wj with
i < j. Moreover, if Yi ̸= Mj holds whenever Wi ̸= Wj holds with i < j, D is said
to follow the invertibility condition. A cpa-adversary following the invertibility
condition is called a cpa′-adversary. If F corresponds to ⟨G⟩ for a keyed permu-
tation G, violating the invertibility condition is clearly pointless, as outputs are
predictable. Thus any cca-adversary avoiding useless queries for G can be sim-
ulated by a cpa′-adversary interacting with ⟨G⟩. In other words, for any keyed
permutations, E and G, we have

AdvccaE,G(q, τ) = Advcpa⟨E⟩,⟨G⟩(q, τ) = Advcpa
′

⟨E⟩,⟨G⟩(q, τ). (2)

In general, cpa′ is weaker than cpa when at least one of two target functions is
not invertible. Note that, following the invertibility condition does not exclude
all collisions that can not be happened for permutations. For example, if a cpa′-
adversary is interacting with F = ⟨G⟩ for some keyed permutation G, Mi ̸= Yj
holds true for all i < j with Wi ̸= Wj (in addition to Yi ̸= Mj , which is
guaranteed from the invertibility condition). However Mi = Yj can happen when
(e.g.) F is a URF, as Yj is uniform and independent of Xi for all i < j.

2.3 Maurer’s Methodology

Our security proof will be based on a methodology developed by Maurer [19].
Here, we briefly describe it. See Maurer [19] for a more detailed description.
Consider a binary random variable Ai as a (non-deterministic) function of i in-
put/output pairs (and internal variables) of a keyed function. We denote the
event Ai = 1 by ai, and denote Ai = 0 by ai. We assume ai is monotone; i.e., ai
never occurs if ai−1 occurs. For instance, ai is monotone if it indicates that all
i outputs are distinct. An infinite sequence A = a0a1 . . . is called a monotone
event sequence (MES). Here, a0 is some tautological event (i.e. A0 = 1 with prob-
ability 1). Note that A∧B = (a0∧b0)(a1∧b1) . . . is an MES if A = a0a1 . . . and
B = b0b1 . . . are both MESs. For any sequence of random variables, X1, X2, . . . ,
let Xi denote (X1, . . . , Xi). Let MESs A and B be defined for two keyed func-
tions, F : X → Y and G : X → Y, respectively. Let Xi ∈ X and Yi ∈ Y
be the i-th input and output. Let PF be the probability space defined by F .
For example, PFYi|XiY i−1(yi, xi, yi−1) means Pr[Yi = yi|Xi = xi, Y i−1 = yi−1]
where Yj = F (Xj) for j ≥ 1. If PFYi|XiY i−1(yi, xi, yi−1) = PGYi|XiY i−1(yi, xi, yi−1)
for all possible (xi, yi−1), then we write PFYi|XiY i−1 = PGYi|XiY i−1 and denote
it by F ≡ G. Here, note that the definitions of X and Y, and the set of
possible (xi, yi−1) may depend on the target attack class. Inequalities such as
PFYi|XiY i−1 ≤ PGYi|XiY i−1 are similarly defined.



Definition 1. We write FA ≡ GB if PFYiai|XiY i−1ai−1
= PGYibi|XiY i−1bi−1

holds2

for all i ≥ 1. Moreover, we write F |A ≡ G|B if PFYi|XiY i−1ai
= PGYi|XiY i−1bi

holds for all i ≥ 1.

Definition 2. For MES A defined for F , νatk(F, aq) denotes3 the maximal prob-
ability of aq for any atk-adversary using q queries (and infinite computational
power) that interacts with F .

The equivalences defined by Definition 1 are crucial to information-theoretic
security proofs. For example, the following theorem holds true.

Theorem 1. (Theorem 1 (i) of [19]) If FA ≡ GB or F |A ≡ G holds for an
attack class atk, then AdvatkF,G(q) ≤ νatk(F, aq).

We will use some of Maurer’s results including Theorem 1 to make simple
and intuitive proofs . For completeness, these results are cited in Appendix A.

3 Previous Constructions of DBLC

There are many O(2n/2)-secure DBLC proposals. Luby and Rackoff proved that
the 4-round random Feistel cipher (denoted by ψ4) is O(2n/2)-secure. Here, “ran-
dom” means that each round function is an independent n-bit block PRFs. Later,
Naor and Reingold [22] proved that the first and last round functions of ψ4 need
not necessarily be pseudorandom, but only required to be ϵ-almost XOR uniform
(ϵ-AXU) for sufficiently small ϵ. Here, if H is a keyed function being ϵ-AXU, we
have Pr[H(x)⊕H(x′) = δ] ≤ ϵ for any x ̸= x and δ. The result of [22] stimulated
many related works, e.g., [23][13][26], to name a few. Above all, what inspired
us was another proposal of Naor and Reingold [22], which is so-called NR mode.
Basically it is an mn-bit block cipher for arbitrarily large m, using n-bit block
cipher, E. When m = 2, NR mode encrypts a plaintext M ∈ Σ2n as:

C = G−1
2 ◦ ECB[E] ◦G1(M), (3)

where ECB[E] is the 2n-bit permutation from ECB mode of E. G1 and G2

are keyed permutations called pairwise independent permutations [22]. That is,
Pr[Gi(x) = y,Gi(x′) = y′] = 1/(2n · (2n − 1)) for any x ̸= x′ and y ̸= y′, where
probability is defined by the distribution of Gi’s key for i = 1, 2.

Compared to the vast amount of O(2n/2)-secure proposals, we have very few
schemes achieving better security. A scheme of Aiello and Venkatesan [1] has
some beyond-birthday-bound security but not invertible. A proposal of [22] was
based on unbalanced Feistel round, where each round function has inputs longer
than n-bit. The O(2n/2)-security of ψ6 was proved by Patarin [18] and another
proof of ψr for r → ∞ was given by Maurer and Pietrzak [20], though we omit
the details here.
2 As ai denotes Ai = 1, this equality means P F

YiAi|XiY i−1Ai−1
(yi, 1, xi, yi−1, 1)

equals to P G
YiBi|XiY i−1Bi−1

(yi, 1, xi, yi−1, 1) for all (xi, yi−1) such that both

P F
Ai−1XiY i−1(1, xi, yi−1) and P G

Bi−1XiY i−1(1, xi, yi−1) are positive.
3 The original definition does not contain atk; this is for readability.



4 Building a DBLC with Beyond-birthday-bound
Security

4.1 Extending Naor-Reingold Approach

Our goal is to build a O(2ω+n/2)-secure DBLC, i.e., an 2n-bit keyed permutation
which is hard to be distinguished from P2n against any practical CCA using q ≪
2ω+n/2 queries for some ω > 0 (a large ω indicates a strong security). Our initial
question is if we can adopt a Mix-Encrypt-Mix structure4 similar to Eq. (3). In
the following, we provide a novel solution using tweakable block ciphers. The
scheme has Mix-Encrypt-Mix structure similar to NR mode, thus we call our
scheme Extended Naor-Reingold (ENR)5. It has a parameter m ∈ {1, . . . , n},
and we will prove O(2(n+m)/2)-security.

For convenience, for any random variable X, we abbreviate X[1,m] to X̂ (i.e.,
X̂ is the first m-bit of X). If |X| = m, we have X̂ = X. Let Ẽ be an (n,m)-bit
tweakable cipher, and let ẼL and ẼR denote two independently-keyed instances
of Ẽ. ENR consists of ẼL, ẼR, and a 2n-bit keyed permutation, G. For plaintext
(Ml,Mr) ∈ Σn × Σn and ciphertext (Cl, Cr) ∈ Σn × Σn, the encryption and
decryption of ENR are defined as Fig. 1.

Algorithm 4.1: ENR[G, Ẽ](Ml, Mr)

(S, T )← G(Ml, Mr)

U ← ẼL(S, T̂ ), V ← ẼR(T, Û)
(Cl, Cr)← G−1

rev(U, V )
return ((Cl, Cr))

Algorithm 4.2: ENR[G, Ẽ]−1(Cl, Cr)

(U, V )← Grev(Cl, Cr)

T ← Ẽ−1
R (V, Û), S ← Ẽ−1

L (U, T̂ )
(Ml, Mr)← G−1(S, T )
return ((Ml, Mr))

Fig. 1. Encryption (left) and decryption (right) procedures of ENR.

Here, Grev denotes the mirrored image of G, i.e., Grev(x) = rev(G(rev(x)))
with rev(x1, . . . , x2n) = (x2n, . . . , x1). We assume Grev and G use the same key.
Basically, we can prove the security of ENR for a more general setting where the
second mixing layer is not restricted to Grev. We here focus on the use of Grev

because it allows us to reuse the key and implementation of G.

4 Naor and Reingold’s unbalanced Feistel cipher is based on Mix-Encrypt-Mix struc-
ture and achieves O(2ω+n/2)-security. However, as it uses PRFs with input longer
than n-bit, it is not comparable to ours. Moreover, an important difference is that
the number of round of their scheme is depending on the security parameter (for
higher security more rounds are needed), while that of ours is constant.

5 If our scheme is realized with non-tweakable permutation (by setting m = 0), it will
be very close to NR mode.



4.2 Security Proof of ENR

To prove the security of ENR[G, Ẽ], we first introduce a condition for G.

Definition 3. Let G be a 2n-bit keyed permutation. Let m ∈ {1, . . . , n} be a
parameter. If G is (ϵ, γ, ρ)-almost uniform ((ϵ, γ, ρ)-AU), we have

Pr[G(x)[1,n+m] = G(x′)[1,n+m]] ≤ ϵ, and
Pr[G(x)[n+1,2n] = G(x′)[n+1,2n]] ≤ γ, and

Pr[G(x)[n+1,n+m] = G(x′)[n+1,n+m]] ≤ ρ, for any distinct x, x′ ∈ Σ2n.

A 2n-bit pairwise independent permutation is (2−(n+m), 2−n, 2−m)-AU. Even
a more efficient construction is possible by using Feistel permutation (see Corol-
laries 1 and 2). The security proof of general ENR is as follows.

Theorem 2. If G is (ϵ, γ, ρ)-AU for m ∈ {1, . . . , n} and Ẽ is an (n,m)-bit
tweakable cipher, we have

Advsprp
ENR[G,Ẽ]

(q, τ)

≤ 2Advs̃prp
Ẽ

(q, τ +O(q)) + q2
(

3ϵ+
2γ
2m

+
ρ

2n
+ max

{ γ

2m
,
ρ

2n
}

+
1

2n+m

)
.

We also provide two instantiations of ENR with Feistel-based implementa-
tions of G.

Corollary 1. Let m = n and ψ[H] be a balanced 2n-bit (left-to-right, see the
left of Fig. 2) Feistel using a round function H : Σn → Σn. H is defined as
H(x) = K ·x, where multiplication is defined over GF(2n) and key K is uniformly
random over GF(2n). Then we have

Advsprp
ENR[ψ[H],Ẽ]

(q, τ) ≤ 2Advs̃prp
Ẽ

(q, τ +O(q)) +
5q2

22n
.

Proof. When m = n, every 2n-bit keyed permutation is (0, γ, ρ)-AU for some
γ = ρ. The probability of ψ[H](x)[n+1,...,2n] = ψ[H](x′)[n+1,...,2n] is at most γ for
any x ̸= x′, if H is γ-AXU. Here, our H is 2−n-AXU, thus ψ[H] is (0, 2−n, 2−n)-
AU. Combining this fact and Theorem 2 proves the corollary.

Corollary 2. Let m < n, and K1, K2, and K3 be independent and uniform
over GF(2n) (represented as n-bit values). We define H1 : Σn → Σn as H1(x) =
K1 · x, and define H2 : Σn−m → Σn+m as H2(x) = (K2 · x́∥K3 · x́)[1,...,n+m],
where x́ = x∥0m. Then,

Advsprp
ENR[ψ[H1,H2],Ẽ]

(q, τ) ≤ 2Advs̃prp
Ẽ

(q, τ +O(q)) + q2
(

8
2n+m

+
2

22n

)
,

where ψ[H1,H2] is a 2-round Feistel permutation with i-th round function Hi

(the first round is balanced and the second is unbalanced, see the right of Fig. 2).



Proof. We show that ψ[H1,H2] is (ϵ, γ, ρ)-AU with ϵ = 2−(n+m), γ = 2−n, and
ρ = 2−n + 2−m. The proofs for ϵ and γ are easy, as H2 is 2−(n+m)-AXU and H1

is 2−n-AXU. To prove ρ, let E1 denote the collision event on ψ[H1](x)[1,...,n] and
let E2 denote the collision event on ψ[H1,H2](x)[n+1,...,n+m]. Here, ρ is obtained
by bounding Pr(E2) for any two distinct inputs to ψ[H1,H2], which is as follows.

Pr(E2) = Pr(E1)·Pr(E2|E1)+Pr(E1)·Pr(E2|E1) ≤ Pr(E1)+Pr(E2|E1) ≤ 2−n+2−m,

where the last inequality follows from thatH1 is 2−n-AXU andH2(x)[n+1,...,n+m]

is 2−m-AXU. Combining this observation and Theorem 2, the proof is completed.

H

H

m

m

m n-m

m
n-m

cut

cut

n n

n n

n n

n n

Fig. 2. Encryption of ENR. Left: the case m = n. Right: the case m < n.

4.3 Proof of Theorem 2

Setup. Let us abbreviate ENR[G, P̃n,m] to ENR∗, where G is (ϵ, γ, ρ)-AU. We
only present the information-theoretic part, that is, the indistinguishability of
ENR∗ from P2n against any computationally unbounded cca-adversary. The
computational part is easy from the standard technique (see e.g., [2]). For con-
venience, we introduce some notations. For any F : M×Σ → M with a set M,
F [i] : M → M is defined as F [i](x) = F (x, i) for i ∈ Σ. For F : Σ2n×Σ → Σ2n,
we define GF : Σ2n ×Σ → Σ2n as

GF (x, 0) = G−1
rev ◦ F [0] ◦G(x), and GF (x, 1) = G−1 ◦ F [1] ◦Grev(x). (4)



Then, DR : Σ2n ×Σ → Σ2n is defined as

DR((xl, xr), 0) =(U,RR(xr, Û , 0)), where U = RL(xl, x̂r, 0),

DR((xl, xr), 1) =(RR(xl, T̂ , 1), T ), where T = RL(xr, x̂l, 1), (5)

using two independent URFs, RL, RR : Σn × Σm × Σ → Σn. Let P̃L and P̃R
denote two independent instances of P̃n,m. Using them, we also define DP :
Σ2n × Σ → Σ2n in the same way as DR but RR and RL are substituted with
⟨P̃R⟩ and ⟨P̃L⟩, respectively. Here, note that GDP is equivalent to ⟨ENR∗⟩.

The proof outline is as follows. We analyze cpa′-advantage between GDP and
⟨P2n⟩, which corresponds to what we want from Eq. (2). Then, using the triangle
inequality, we move as GDP ⇒ GDR ⇒ R2n+1,2n ⇒ ⟨P2n⟩, that is, we evaluate
the maximum cpa′-advantages for the game with GDP and GDR (Game 1), and
the game with GDR and R2n+1,2n (Game 2), and the game with R2n+1,2n and
⟨P2n⟩ (Game 3). Formally, we have

AdvsprpENR∗(q) = AdvccaENR∗,P2n
(q) = Advcpa

′

⟨ENR∗⟩,⟨P2n⟩ = Advcpa
′

GDP,⟨P2n⟩ (6)

≤ Advcpa
′

GDP,GDR(q) + Advcpa
′

GDR,R2n+1,2n
(q) + Advcpa

′

R2n+1,2n,⟨P2n⟩(q). (7)

Analysis of Game 3. By extending the well-known PRP-PRF switching lemma
(e.g., Lemma 1 of [4]), we easily get

Advcpa
′

R2n+1,2n,⟨P2n⟩(q) ≤
(
q

2

)
· 1
22n

. (8)

Analysis of Game 2. We first observe that

GR2n+1,2n ≡ R2n+1,2n, and thus Advcpa
′

GDR,R2n+1,2n
(q) = Advcpa

′

GDR,GR2n+1,2n
(q), (9)

since pre- and post-processing added by G are permutations. We consider an
adversary, D, accessing to F which is DR or R2n+1,2n. For each time period
i = 1, . . . , q, D can choose whether F [0] or F [1] is queried. This information is
denoted by Wi ∈ Σ, and if Wi = 0, the input to F [0] is denoted by (SEi, TEi) ∈
Σn ×Σn (if Wi = 1, (SEi, TEi) is undefined), and the corresponding output is
denoted by (UEi, V Ei) ∈ Σn ×Σn. Similarly, if Wi = 1, the input to F [1] and
the output from F [1] are denoted by (UDi, V Di) and (SDi, TDi), respectively
(see Fig. 3). These notations will also be used for adversaries accessing to GF .
We define an MES E = e0e1 . . . , where eq denotes the event that

(SEi, T̂Ei) ̸= (SEj , T̂Ej) and (ÛEi, TEi) ̸= (ÛEj , V Ej), and (10)

(UDi, T̂Di) ̸= (UDj , T̂Dj) and (ÛDi, V Di) ̸= (ÛDj , V Dj), (11)

holds for all possible i ̸= j, i, j ∈ {1, . . . , q}, e.g., Eq. (10) for i ̸= j with Wi =
Wj = 0. Then, we obtain the following equivalence. Its proof is in Appendix B.

DRE ≡ RE
2n+1,2n. (12)



From Eq. (12) and Lemma 2, we have

GDRE ≡ GRE
2n+1,2n. (13)

Using Eqs. (9) and (13) and Theorem 1, we obtain

Advcpa
′

GDR,R2n+1,2n
(q) = Advcpa

′

GDR,GR2n+1,2n
(q) ≤ νcpa′(GR2n+1,2n, eq). (14)

We leave the analysis of the last term of Eq. (14) for now.
Analysis of Game 1. We consider the indistinguishability between ⟨P̃n,m⟩ and
Rn+m+1,n. We first focus on the input/output collision for the same tweak value.
More precisely, let (Xi, Ti,Wi) ∈ Σn ×Σm ×Σ denote the i-th input to ⟨P̃n,m⟩
or Rn+m+1,n, and let Yi ∈ Σn be the i-th output. For b ∈ Σ and t ∈ Σm, let
X t
b = {Xi : i ∈ {1, . . . , q}, Ti = t,Wi = b} and Ytb = {Yi : i ∈ {1, . . . , q}, Ti =

t,Wi = b}. Then, aq denotes the event that

[X t
0 ∩ Yt1 = ∅] ∧ [X t

1 ∩ Yt0 = ∅] for all t ∈ Σm.

The corresponding MES, A = a0a1 . . . , is called the generalized collision-freeness
(GCF). Then, we have

⟨P̃n,m⟩A∧C ≡ RA
n+m+1,n, for some MES C. (15)

The proof of Eq.(15) is written in Appendix C. As mentioned, if we substitute
RL and RR with ⟨P̃L⟩ and ⟨P̃R⟩, we will obtain DP. Thus, from Eq. (15), we get

DPAL∧CL∧AR∧CR ≡ DRAL∧AR, and GDPAL∧CL∧AR∧CR ≡ GDRAL∧AR, (16)

where AL = al0al1 . . . denotes the GCF for ⟨P̃L⟩ or RL, and AR = ar0ar1 . . .

denotes the GCF for ⟨P̃R⟩ or RR, and CL and CR are some MESs (implied by
Eq. (15)). The second equivalence follows from Lemma 2. Thus, using Theorem
1 we obtain

Advcpa
′

GDP,GDR(q) ≤ νcpa′(GDR, alq ∧ arq). (17)

For DR and R2n+1,2n, the occurrence of alq∧arq can be completely determined
by the q inputs and outputs. From this fact and Lemma 5, we can adjoin AL∧AR
to the both sides of Eq. (12) and obtain

DRE∧AL∧AR ≡ RE∧AL∧AR
2n+1,2n . (18)

Moreover, it is easy to see that E ∧ AL ∧ AR ≡ AL ∧ AR holds for DR and
R2n+1,2n. Combining this observation, Eq. (18), and Lemmas 2 and 3, we have

GDRAL∧AR ≡ GRAL∧AR
2n+1,2n, and

Advcpa
′

GDP,GDR(q) ≤ νcpa′(GDR, alq ∧ arq) = νcpa′(GR2n+1,2n, alq ∧ arq). (19)
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Collision probability analysis. Combining Eqs. (7), (8), (14), and (19), and
Lemma 4, we have

AdvsprpENR∗(q) ≤
(
q

2

)
1

22n
+

∑
ev=eq,alq,arq

νcpa′(GR2n+1,2n, ev). (20)

We need to bound νcpa′ terms of Eq. (20). First, the maximum probabilities
of alq and arq (under GR2n+1,2n) are the same because of the symmetry from
Eq. (4) and that Grev is a mirrored image of G. Thus we only need to evaluate
the maximum probabilities of alq and eq.

As shown by Eqs. (10) and (11), eq consists of collision events such as

type[e1] : (SEi, T̂Ei) = (SEj , T̂Ej), type[e2] : (ÛEi, TEi) = (ÛEj , TEj)

type[e3] : (ÛDi, V Di) = (ÛDj , V Dj), type[e4] : (UDi, T̂Di) = (UDj , T̂Dj)

for all possible i ̸= j, i, j ∈ {1, . . . , q}. Moreover, alq consists of collision events
such as

type[a1] : (SEi, T̂Ei) = (SEj , T̂Ej), type[a2] : (UEi, T̂Ei) = (UEj , T̂Ej)

type[a3] : (UDi, T̂Di) = (UDj , T̂Dj), type[a4] : (SDi, T̂Di) = (SDj , T̂Dj)

type[a5] : (SEi, T̂Ei) = (SDj , T̂Dj), type[a6] : (UEi, T̂Ei) = (UDj , T̂Dj).

Note that type[a1] and type[a3] are the same as type[e1] and type[e4], re-
spectively. Let Pr[x] be the maximum probability of type[x]-collision for x ∈
{e1, . . . , e4,a1, . . . ,a6} under GR2n+1,2n, where the maximum is taken for all
q-cpa′ (possibly adaptive) adversaries and for all i, j ∈ {1, . . . , q} with i ̸= j.
Using the union bound and the symmetry of GR2n+1,2n[0] and GR2n+1,2n[1], the



R.H.S. of Eq. (20) is at most(
q

2

)  1
22n

+
∑

i=1,...4

Pr[ei] + 2
∑

j=1,...6

Pr[aj]

 . (21)

From Eq. (9), the adversary’s choice must be independent of (the key of)
G and Grev. With this fact, each collision probability of Eq. (21) can be easily
bounded for any cpa′-adversary if G is (ϵ, γ, ρ)-AU6. The full description of our
analysis is rather long7, thus we here describe some typical examples. Other
collision probabilities can be analyzed in a similar way. Let XEi and Y Ei be the
i-th 2n-bit input and output of GR2n+1,2n with Wi = 0 (they are undefined for
i satisfying Wi = 1). Similarly, XDi and Y Di denote the i-th input and output
with Wi = 1.

– type[e1]. Here, a collision means G(XEi)[1,...,n+m] = G(XEj)[1,...,n+m] for
XEi ̸= XEj . Moreover, XEi and XEj are independent of G’s key. Thus we
have Pr[e1] ≤ ϵ as G is assumed to be (ϵ, γ, ρ)-AU.

– type[e2]. Without loss of generality, we assume i < j. The probability of
TEi = TEj is at most γ, as G is (ϵ, γ, ρ)-AU. Since G is invertible, the
inputs to R2n+1,2n[0] are always distinct. This implies that ÛEj is indepen-
dent of previous variables (including ÛEi, TEi and TEj) and uniform, even
conditioned by the event TEi = TEj . Thus we get

Pr[e2] = max
i ̸=j

Pr[ÛEi = ÛEj |TEi = TEj ] · Pr[TEi = TEj ] ≤ 2−mγ. (22)

– type[a5]. When i < j, (SDj , T̂Dj) is uniform and independent of (SEi, T̂Ei),
thus collision probability is exactly 2−(n+m). When j < i, XEi ̸= Y Dj must
hold as we consider cpa′-adversary (i.e., XEi = Y Dj for j < i means an
intentional invertibility check). Hence

Pr[(SEi, T̂Ei) = (SDj , T̂Dj)]
= Pr[G(XEi)[1,...,n+m] = G(Y Dj)[1,...,n+m]] ≤ ϵ. (23)

Thus we have Pr[a5] ≤ max{2−(n+m), ϵ}. Here, ϵ ≥ 2−(n+m) as it is the
collision probability over (n+m) bits.

In summary, we obtain all maximum collision probabilities:

Pr[e1] ≤ ϵ, Pr[e2] ≤ 2−mγ, Pr[e3] ≤ ϵ, Pr[e4] ≤ 2−mγ,

Pr[a1] ≤ ϵ, Pr[a2] ≤ 2−nρ, Pr[a3] ≤ 2−mγ,

Pr[a4] ≤ 2−(n+m), Pr[a5] ≤ ϵ, Pr[a6] ≤ max{2−mγ, 2−nρ}. (24)

Combining Eqs. (24) and (21) proves the theorem.
6 Note that if G is (ϵ, γ, ρ)-AU, the mirrored image of Grev is also (ϵ, γ, ρ)-AU.
7 This is mainly because we have to think of the cases when the adversary’s choice is

adaptive, even though it is independent of G.



4.4 PRP and PRF Versions of ENR

Although our primary target is a DBLC secure against CCA, a slight simplifica-
tion of our proposal yields a CPA-secure variant of ENR. It saves some operations
from the original ENR at the cost of a weaker attack class.

Definition 4. The simplified ENR (sENR) is defined as ENR with Grev being
omitted (or, substituted with the identity function).

Corollary 3. Let G be (ϵ, γ, ρ)-AU. Then, the cpa-security of sENR[G, Ẽ] is:

Advprp
sENR[G,Ẽ]

(q, τ) ≤ 2Advp̃rp
Ẽ

(q, τ +O(q)) + q2
(
ϵ+

γ

2m
+

ρ

2n+1
+

1
2n+m

)
.

The proof is similar to that of Theorem 2, thus is omitted here. The reason why
Grev can be omitted is that, we do not have to consider some bad events (e.g., the
collision of (ÛD, V D)) that have to be avoided by Grev when decryption query
is possible. Moreover, by truncating the rightmost n-bit output, we obtain a
PRF : Σ2n → Σn which is O(2(n+m)/2)-secure for any m = 1, . . . , n (the proof
is trivial from Corollary 3). We emphasize that ENR, and the simplified ENR,
and its truncated-output version are optimally efficient, for they need exactly c
calls of Ẽ when the output is cn bits, for c = 1, 2.

5 A Simple Construction of Tweakable Block Cipher
with Beyond-birthday-bound Security

Our proposal requires a tweakable block cipher with beyond-birthday-bound se-
curity. Then, one may naturally ask how to realize it. A straightforward approach
is building from scratch, e.g., Mercy [9] and HPC [8]. Recent studies [10][21]
demonstrated that adding a tweak to some internal variables of a (generalized)
Feistel cipher could yield a secure tweakable block cipher. This technique, called
direct tweaking, may well be applied to a concrete tweakable cipher using (e.g.)
S-box and linear diffusion. Another approach, which we focus on, is building
from ordinary block ciphers. There are several schemes [16][24] that turn an
n-bit block cipher into an (n, n)-bit tweakable cipher. However, they only have
O(2n/2)-security8. Building a tweakable block cipher with better security has
been considered as rather difficult (Liskov et al. mentioned it as an open prob-
lem [16]).

Our solution is simple and intuitive: changing keys depending on tweaks.
This idea was possibly in mind of [16]. However, to our knowledge it has not
been seriously investigated9. Although our scheme is simple, its security proof
needs some cares. Throughout this section, we occasionally write EK instead of
E, if we need to specify the key we use.
8 In [10], tweakable ciphers having “security against exponential attacks” are proposed.

They correspond to (2n, m)-bit tweakable ciphers with O(2n)-security, thus their
security is up to the birthday bound of the block size.

9 Liskov et al., said that a change of a tweak should be faster than a change of a key.
This requirement is certainly desirable, however not mandatory one.



Definition 5. For EK : Σn → Σn with key K ∈ K and FMK : Σm → K
with key MK ∈ K′, Tweak-dependent Rekeying (TDR) is an (n,m)-bit tweakable
cipher, where its encryption is TDR[E,F ](x, t) = EFMK(t)(x), and decryption is
TDR[E,F ]−1(y, t) = E−1

FMK(t)(y). Here, the key of TDR[E,F ] is F ’s key, MK.

Theorem 3. Advs̃prpTDR[E,F ](q, τ) ≤ AdvprfF (η, τ + O(q)) + ηAdvsprpE (q, τ + O(q)),

where η def= min{q, 2m}.

Proof. Let R : Σm → K be the URF. We have

Advs̃prpTDR[E,F ](q, τ) ≤ Advc̃caTDR[E,F ],TDR[E,R](q, τ) + Advs̃prpTDR[E,R](q, τ). (25)

The first term of R.H.S. for Eq. (25) is clearly at most AdvprfF (η, τ +O(q)), as we
can evaluate F or R on at most η points. For the second term, the adversary can
produce at most η instances of E, and their keys are independent and uniform
(as keys are generated from URF). For each sampled key, the adversary can
query at most q times10. Thus, the second term is at most ηAdvsprpE (q, τ +O(q))
from the triangle inequality.

At first glance, TDR seems to provide a desirable security, since it simulates
the tweakable URP in an intuitive way. However, this is not always the case. For
example, when K = Σn and m = n, a simple attack using about 2n/2 queries can
easily distinguish TDR from P̃n,n: we first query a fixed plaintext with many
distinct tweaks, and if a ciphertext collision is found for tweak t and t′, then
query a new plaintext with tweaks t and t′ and see if the new ciphertexts collide
again11.

Nevertheless, this scheme can have beyond-birthday-bound security if tweak
length is not longer than the half of block length:

Corollary 4. Let EK be an n-bit block cipher with key K ∈ Σn. For m < n/2,
let Eq : Σm → Σn be defined as Eq(x) = E(x∥0n−m). Then Advs̃prpTDR[E,Eq](q, τ)
is at most (η + 1)AdvsprpE (q, τ +O(q)) + η2/2n+1, where η = min{q, 2m}.

Here, TDR[E,Eq] is secure if 2−(n−2m) is sufficiently small and E is computa-
tionally secure, where “secure” means cca-advantage being much smaller than
2−m. Unfortunately, Corollary 4 does not tell us how large q is admissible by
itself, since the first term of the bound would not be negligible if q is large.
Nonetheless, as the first term is at least ητ + O(q)/2n ≈ q/2n−m when q ≥ 2m

(achieved by the exhaustive key search, see [3]), we expect that TDR[E,Eq] is
computationally secure against attacks with q ≪ 2n−m queries, if E is sufficiently
secure.
10 A more elaborate analysis can significantly improve the second term of the bound.

However, it requires some additional parameters to describe the adversary’s strategy
and thus the result would look rather complicated. We here make it simple.

11 This does not contradict with Theorem 3: the second term of the bound is at least
η(τ + O(q))/|K|, which is about q2/2n when |K| = 2n, as pointed out by Bellare et
al. [3].



Practically, the big problem of TDR is the frequent key scheduling of E, as it
may be much slower than encryption. Still, the negative impact on speed could
be alleviated when on-the-fly key scheduling is possible.
Combining ENR and TDR. A combination of ENR and TDR provides a
DBLC using an n-bit block cipher E. Let us consider combining the schemes
from Corollaries 2 and 4. The resulting DBLC needs 4 calls of E and two key
schedulings of E. By assuming AdvsprpE (q, τ) ≈ q/2n, the security bound of this
DBLC is about 2q/2n−m + 8q2/2(n+m)/2 + 2q2/22n + 1/2n−2m. Then the choice
m ≈ n/3 achieves the security against q ≪ 22n/3 queries for fixed n, which is the
best possible for this combination. For example, if we use AES (i.e., n = 128)
and set m = 42, the combined scheme’s security is about 83.5-bit, assuming
AES’s security. Compared to the previous DBLCs having 64-bit security, the
gain is not that large, but non-negligible. Of course, the security and efficiency
of the resulting ENR would be greatly improved by using a better AES-based
tweakable block cipher.

6 Conclusion

We described the extended Naor-Reingold (ENR), which converts an n-bit block
tweakable block cipher into a 2n-bit block cipher. ENR has the beyond-birthday-
bound security (for n) if underlying tweakable block cipher does, and has almost
the same throughput as that of the tweakable block cipher. Hence, we have shown
that a good (i.e., fast and secure) tweakable cipher implies a good double-block-
length cipher. We also described a way to convert an n-bit block cipher into
tweakable one and achieves beyond-birthday-bound security based on the com-
putational indistinguishability of the underlying block cipher. Unfortunately, this
scheme has both theoretical and practical drawbacks due to its frequent rekey-
ing. Thus, finding an efficient scheme without rekeying would be an important
open problem.
Future directions. It would be interesting to extend ENR to mn-bit block
cipher for m > 2 and make ENR tweakable, keeping beyond-birthday-bound
security for n. Both problems can be basically solved by using ENR as a mod-
ule of some known block cipher modes (e.g., CMC mode [12]) as they have
O(2n)-security with 2n-bit pseudorandom permutation. However, more efficient
constructions may well be possible.
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A Lemmas from Maurer’s Methodology

We describe some lemmas developed by Maurer [19] that we used in this paper.
We assume that F and G are two random functions with the same input/output
size; we define MESs A = a0a1 . . . and B = b0b1 . . . for F and G. The i-th input
and output are denoted by Xi and Yi for F (or G), respectively.

Lemma 1. (Lemma 1 (iv) of [19]) If F |A ≡ G|B and
PFai|XiY i−1ai−1

≤ PGbi|XiY i−1bi−1
holds for i ≥ 1, then there exists an MES C

defined for G such that FA ≡ GB∧C.

Lemma 2. (Lemma 4 (ii) of [19]) Let F be the function of F and G (i.e., F[F ]
is a function that internally invokes F , possibly multiple times, to process its
inputs). Here, F can be probabilistic, and if so, we assume F is independent of
F or G. If FA ≡ GB holds, F[F ]A

′ ≡ F[G]B
′

also holds, where a′i denotes an
event that A-event is satisfied for the time period i. For example, if F[F ] always
invoke F c times for any input, then a′i = aci. B′ is defined in the same way.

Lemma 3. (Lemma 6 (ii) of [19]) If FA ≡ GB holds for the attack class atk,
then νatk(F, aq) = νatk(G, bq) holds.

Lemma 4. (Lemma 6 (iii) of [19]) νatk(F, aq ∧ bq) ≤ νatk(F, aq) + νatk(F, bq).

Lemma 5. (An extension of Lemma 2 (ii) of [19]) If FA ≡ GB, then FA∧C ≡
GB∧C holds for any MES C defined on the inputs and/or outputs.



B Proof of Equation (12)

We focus on the indistinguishability between DR[0] and R2n,2n. Let dist(Xi, Y j)
denote an event that there is no collision among {X1, . . . , Xi, Y1, . . . , Yj}. Let
i-th input (to DR[0] or R2n,2n) be Xi

def= (SEi, TEi) ∈ Σn×Σn, and i-th output
be Yi

def= (UEi, V Ei) ∈ Σn × Σn. We define events ilq
def= dist(SEq, T̂Eq) and

irq
def= dist(ÛEq, TEq) and the corresponding MESs, IL and IR. For DR[0], let

us analyze the conditional probability of Ŷq (which equals to ÛEq), given Xq =
xq, Y q−1 = yq−1 and ilq∧irq. Note that the inputs to RL[0] are distinct from ilq,
which means Ŷ q are independent and uniform. However, if tei = tej for some
i ̸= j, uei ̸= uej must hold from irq. Thus, Ŷq is uniform over Ŷc = {0, 1}m \ Ŷ,
where Ŷ def= {uei : tei = teq, i = 1, . . . , q − 1}. The remaining (2n−m) bits of Yq
are uniform over Σ2n−m from ilq and irq. For R2n,2n, the set Ŷ can be defined
in the same way and Yq (given Xq = xq, Y q−1 = yq−1 and ilq ∧ irq) is clearly
uniformly distributed over Ŷc ×Σ2n−m. Thus we have

P
DR[0]
Yq|XqY q−1ilqirq

= P
R2n,2n

Yq|XqY q−1ilqirq
. (26)

Next, we see that

P
DR[0]
ilqirq|XqY q−1ilq−1irq−1

(xq, yq−1) =

{
0 if ilq is contradicted by xq,
|Ŷc|
2m otherwise.

(27)

holds true, as ilq is a function of xq and the conditional probability of irq given
Xq = xq, Y q−1 = yq−1, and ilq ∧ bq−1 is the probability of Ŷq ̸∈ Ŷ, where Ŷq is
uniform given ilq. Therefore, the conditional probability of irq is |Ŷc|/2m when
xq satisfies ilq. The same analysis also holds for R2n,2n. Thus we have

P
DR[0]
ilqirq|XqY q−1ilq−1irq−1

= P
R2n,2n

ilqirq|XqY q−1ilq−1irq−1
(28)

From Eqs. (26) and (28),

DR[0]IL∧IR ≡ RIL∧IR
2n,2n , and DR[1]IL

′∧IR′
≡ RIL′∧IR′

2n,2n (29)

is obtained. The latter equivalence is derived by symmetry, where IL′ and IR′

are defined by il′q
def= dist(UDq, T̂Dq) and ir′q

def= dist(ÛDq, V Dq) (here, i-th
input is Xi = (UDi, V Di) and output is Yi = (SDi, TDi)). From Eq. (29) and
the independence of DR[0] and DR[1], the proof is completed.

C Proof of Equation (15)

We abbreviate Rn+m+1,n and P̃n,m to R and P, respectively. From the definition
of GCF event aq, it is easy to derive

⟨P̃⟩|A ≡ R|A. (30)



Next, we have

P
⟨P̃⟩
aq|XqY q−1aq−1

(xq, yq−1) = 1, and PR
aq|XqY q−1aq−1

(xq, yq−1) = 1 − θ

2n
, (31)

for any xq consistent with aq (given xq−1 and yq−1), since ⟨P̃⟩’s output always
keeps GCF, while R’s output is uniform and thus has a chance to violate GCF.
From Eq. (31), we get PR

aq|XqY q−1aq−1
≤ P

⟨P̃⟩
aq|XqY q−1aq−1

. The proof is completed
by combining this inequality, and Eq. (30), and Lemma 1.


