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Abstract. We answer the question of Reyhanitabar et al. from FSE’09
of constructing a domain extension scheme for enhanced target collision-
resistant (eTCR) hash functions with sublinear key expansion. The eTCR
property, introduced by Halevi and Krawczyk [1], is a natural fit for hash-
and-sign signature schemes, offering an attractive alternative to collision-
resistant hash functions. We prove a new composition theorem for eTCR,
and demonstrate that eTCR compression functions exist if and only if
one-way functions do.

1 Introduction

Hash functions are the staple of cryptographic protocols. Mapping out the nec-
essary and sufficient assumptions on hash functions is an important research
program, with implications for constructions and modes of operations of hash
functions. While collision resistance is the strongest and arguably the most uni-
versally applicable property one may expect of a hash function, weaker security
properties are often sufficient and may be easier to design for.

The focus of this paper is on a new security property of hash functions
put forth by Halevi and Krawczyk [1] for the purpose of strengthening hash-
and-sign signatures against collision-finding attacks. The standard hash-and-
sign paradigm, which is the basis of virtually all practical signature schemes,
calls for hashing the message using a collision-resistant hash function and then
signing the result. Should collisions in the hash function be found, the hash-and-
sign signature becomes obviously insecure as a signature on one of the colliding
messages is a valid signature on the other. Halevi and Krawczyk propose hashing
the message under a randomly chosen key and then including the key as part of
the signature. The new security property of the hash function, under which the
scheme preserves security of the underlying fixed input-length signature scheme,
is called enhanced target collision-resistance.

They demonstrate practical and theoretical advantages of this approach as
well as a concrete instantiation of the hash function satisfying this property based
on a randomized Merkle-Damg̊ard construction, with a minimal computational
overhead. The construction can be proved secure under several non-standard
assumptions on the fixed input-length keyless compression function. We argue
that a compelling alternative is starting with a keyed eTCR compression function
with fixed input length and extending its domain with a dedicated construction.



The question of domain extension for eTCR was first considered by Reyhanitabar
et al. [2] who found that only one of many known domain extension schemes
preserves the eTCR property and this construction expands the key linearly,
rendering it impractical for application in signatures. In the main contribution
of this paper we propose a new eTCR-preserving domain extension scheme with
logarithmic key expansion thus settling the open question from [2].

The organization of the paper is as follows. In Sections 2, 3, 4 we survey prior
and related work, recall standard definitions, and give an overview of domain
extension techniques. In Section 5 we consider the question of placing eTCR
in the complexity-theoretic hierarchy of hardness assumptions and prove that
eTCR compression functions may be constructed from one-way functions. Fi-
nally, we introduce a new domain extension scheme in Section 6 and instantiate
it in Section 7.

2 Related Work

The hash-and-sign paradigm for cryptographic signatures goes back to the Rabin
signature scheme [3], where the hash function was used for message compression
and, rather presciently, for input randomization (see also [4]). The notion of
collision-resistant hash functions, which are essential for the signatures’ security,
was formally defined by Damg̊ard [5]. All standards for digital signatures in use
today are based on some variant of the hash-and-sign paradigm. In fact, first
standards of dedicated hash functions, such as MD2, MD5, or SHA [6–8], were
explicitly aimed at securing digital signature schemes.

Security of most practical signature schemes cannot be argued based on the
collision-resistance property of the hash function alone. Instead, proofs are given
in the random oracle model, where the hash function is replaced by an ideal
functionality with oracle access [9, 10].

As part of a larger research program of reducing hardness assumptions neces-
sary for proving security of various cryptographic primitives, a series of seminal
papers reduced existence of secure signatures to that of one-way functions [11–
13] (see also Katz and Koo [14] for a complete proof and Haitner et al. [15] for
an alternative proof of the last reduction). The crucial intermediate step of the
construction, proposed by Naor and Yung, is universal one-way hash functions

(UOWHFs), also known as target collision-resistant (TCR) hashes.
TCR hashes appear to be a fundamentally weaker primitive than collision-

resistant hashes, and thus may be easier to construct, as evidenced by the work
of Simon [16]. He showed that collision-resistant hashes cannot be built using
one-way functions in a black-box manner, as opposed to target collision-resistant
hashes that can. In practice, collision-resistance of standardized hash functions
has been under assault recently, starting with remarkable attacks on the MD
and SHA families by Wang et al. [17–20].

The attacks spurred interest in using hash functions that are less fragile
than collision-resistant hashes. Even before that, the Cramer-Shoup signature
scheme [21], which was a first efficient short signature scheme provable in the



standard model, included a TCR hash as an option. The main difficulty in using
TCR hashes as a drop-in replacement for broken or vulnerable collision-resistant
functions is in handling the key, since the TCR hashes are keyed unlike keyless
collision-resistant hashes.

Moreover, the key of a TCR hash cannot be chosen ahead of time: to take ad-
vantage of its security guarantee the key must be chosen by the signer, signed and
communicated as part of the signature. More concretely, if σ(·) is a secure (ex-
istentially unforgeable [11]) signature scheme for fixed-length inputs and Hk(·)
is a TCR hash, 〈σ(k||Hk(M)), k〉 where k is chosen at signing, will be a secure
signature scheme for variable-length messages.

To address the problem of inflating the signature length, Mironov [22], gen-
eralized by Pasini and Vaudenay [23], suggests reusing the randomness already
present in the signature scheme to key the TCR hash. A different approach,
which is the main motivation for the present work, is due to Halevi and Krawczyk [1].
They propose a new security definition for hash functions, called enhanced target

collision-resistance (eTCR), which allows one to leave out the hash function key
from the signature’s input. Namely, if the keyed hash function Hk(·) satisfies the
new definition, the following signature—〈σ(Hk(M)), k〉—inherits security of the
σ(·) scheme.

Constrained by backwards compatibility, Halevi and Krawczyk ingeniously
replace legacy keyless hash functions in signature schemes such as RSA or DSA
with a keyed eTCR function without changing existing implementations of the

signing algorithm. Instead, they transform the message with a randomly chosen
key, sign the output of the transformation, and append the key to the signature.
Thus, their signature scheme takes the form of 〈σ(H(RMXk(M))), k〉, where
RMX is the keyed randomization scheme. A concrete specification of the RMX
transform is available as a NIST special publication [24] and an IETF Internet
draft [25]. The security of the combined signature scheme follows from existential
unforgeability of σ(·) and from H(RMXk(·))’s being eTCR if H is an iterative
(based on the Merkle-Damg̊ard scheme [26, 27]) hash function whose compres-
sion function satisfies one of several non-standard cryptographic properties. For
security of the RMX transform applied to blockcipher-based Davies-Meyer hash
functions (i.e., most of current standards) see Gauravaram and Knudsen [28].

Given its practical significance, we consider the eTCR property as a natural
and intriguing extension of target collision-resistance that can be studied on its
own. Two fundamental questions arise in connection with a new definition of
security for hash functions: its place in the hierarchy of hardness assumptions,
and existence and efficiency of domain extension schemes. In other words, what is
the simplest primitive eTCR can be reduced to, and once we have a fixed-length
input eTCR, how can we apply it to arbitrary-length inputs? The first question
was previously considered by Yasuda [29], which we revisit for compressing eTCR
in Section 5. The second question was initially raised by Reyhanitabar et al. [2],
who found that most known domain extension schemes do not preserve the
eTCR property. The only construction on their list that does, achieves so by
expanding the key linearly with the size of the message. They conclude the



paper by leaving open the problem of constructing a (key-length) efficient eTCR-
preserving domain extension scheme. We answer it in Section 6.

3 Definitions

To simplify notation we state standard definitions of security properties for
hashes in the asymptotic setting, parameterized with security parameter λ ∈ N,
which is omitted when clear from the context. A function of λ is negligible if it
is less in absolute value than 1/|p(λ)| for any polynomial p and large enough λ.

Since we deal with both fixed and variable-input length functions, the defini-
tions are given using abstract domain and range sets, which can be substituted
for fixed-length binary strings {0, 1}n or bounded-length {0, 1}<n as needed.
We always assume inputs to be of length polynomial in λ and functions to be
computable in polynomial time.

Definition 1 (Target collision-resistance—TCR [12]). {Hλ}λ∈N is a tar-
get collision-resistant family of functions Hλ : Kλ×Dλ →Rλ if for any polynomial-

time adversary consisting of two randomized algorithms A = (A1,A2) the prob-

ability of outputting success in the following experiment is negligible:
Exptcr

H,A(λ):

(M, state)← A1(1
λ);

k
$
← Kλ;

M ′ ← A2(1
λ, k, state);

output success if Hλ(k,M) = Hλ(k,M
′) and M 6= M ′.

The probability is taken over the adversary’s random tape and the choice of k.

For notation’s brevity, we often write the hash function’s key as a subscript also
omitting the security parameter, as in Hk(M) instead of Hλ(k,M). When the
function’s domain D is a direct product of two or more sets, say X × Y, we
may write the input of the hash function as several arguments, such as Hk(x, y),
where (x, y) ∈ X × Y = D. The difference is purely syntactical.

Definition 2 (Enhanced target collision-resistance—eTCR [1]). We call

{Hλ}λ∈N an enhanced target collision-resistant family of functions Hλ : Kλ ×
Dλ → Rλ if for any polynomial-time adversary consisting of two randomized

algorithms A = (A1,A2) the probability of outputting success in the following

experiment is negligible:

Expetcr
H,A(λ):

(M, state)← A1(1
λ);

k
$
← Kλ;

(k′,M ′)← A2(1
λ, k, state);

output success if Hλ(k,M) = Hλ(k
′,M ′) and (k,M) 6= (k′,M ′).

The probability is taken over the adversary’s random tape and the choice of k.

In other words, in the Exptcr
H,A(λ) experiment (the TCR game) the adversary

commits to a message M , receives a randomly sampled key k, and is tasked with



producing a message M ′ such that it collides with M under Hk: Hk(M) =
Hk(M

′). The adversary in the eTCR game is more powerful—after committing
to M and receiving k as before, he wins the game if he can find M ′ and possibly
a different key k′ such that Hk(M) = H ′

k(M
′) subject to the condition that

(k,M) 6= (k′,M ′).
We note that our versions of the definitions of TCR and eTCR do not ex-

plicitly require the functions to be compressing. In fact, since we allow variable-
length inputs, the functions may sometimes map short inputs into longer strings.
However, throughout the paper the ranges Rλ are always assumed to consist of
bit-strings of some fixed lengthm (depending on λ) and the domains Dλ typically
include strings longer than m.

4 Overview of Domain Extension Schemes for TCR

The most common method of designing hash functions is to construct a fixed
input-length compression function and then extend its domain by repeated ap-
plications via some composition scheme. By far the best known such scheme
is Merkle-Damg̊ard [26, 27] that provably and without any loss in exact secu-
rity extends a collision-resistant compression function. It is important to note
limitations of this approach: (1) the extended-domain hash is only as secure as
the underlying compression function; (2) the domain extension scheme may not
preserve security properties other than those for which it was proved secure; (3)
exact security (i.e., the one most relevant in practice) may deteriorate under
composition. Several recent papers stress these points regarding the Merkle-
Damg̊ard scheme: multi-block collision-finding attacks on MD5 and SHA-0 [18,
19, 30] span several applications of the compression function; multicollisions,
second-preimage and other attacks may take advantage of the Merkle-Damg̊ard
iterative structure [31–33].

More relevantly and also reinforcing point (2) from the above, target collision-
resistance is not preserved under the Merkle-Damg̊ard iterative composition [34],
which motivates construction of dedicated TCR-preserving domain extension
schemes. Two such schemes appear in the Naor-Yung paper, the first being a
Merkle-Damg̊ard-like sequential composition of independently keyed compres-
sion functions (linear hash), and the second similar to the Wegman-Carter tree-
based method [35] (basic tree, according to [34]). Both schemes expand the key,
whose length (the shorter, the better) is an important characteristic of a TCR
function. Reducing key expansion in sequential and parallelizable settings was
the subject of several papers starting with [34].

Remarkably, both the linear hash and basic tree composition schemes pre-
serve the eTCR property. The first statement was shown in [2] and the second,
observed by Dodis and Haitner [36], is implied by the following argument. Each
level of the tree construction can be modeled as an independently keyed hash
function, which is a concatenation of multiple eTCR and thus an eTCR itself.
The basic tree construction is eTCR by applying the same argument as in the
proof of the linear hash scheme to the composition of layers.



Let the fixed input-length compression function be H : {0, 1}ℓ × {0, 1}m →
{0, 1}n, where ℓ is the key length, and let the message length be L > m. Lin-
ear hash expands the key to ℓ⌈L/(m − n)⌉. Naor-Yung basic tree for hashing
messages of size L results in key length ℓ⌈logm/n(L/n)⌉, improved for large ℓ
to ℓ + m⌈logm/n(L/n)⌉ by Bellare and Rogaway with the XOR tree construc-
tion [34]. A sequential composition scheme due to Shoup [37] expands the key
to ℓ + n⌈log2(L/(m − n))⌉, which is an improvement over the XOR tree con-
struction by approximately a factor of m/n log2 m/n. The Shoup construction’s
key expansion was proved optimal in a certain restricted model by Mironov [38].
The construction and the proof of optimality were generalized to DAG-based
constructions (including tree-based schemes) by Sarkar [39, 40].

Depending on the parameters of the compression function and the length of
the message, one of the following composition schemes is the least key-expanding:
sequential composition, basic tree, or Shoup’s construction. The three schemes
are illustrated in Figure 1.

Two comments are in order. First, we leave the issue of padding and length
encoding for Section 7. Second, we present the linear hash and the Shoup con-
struction without the usual initial value (IV) constant (see also [41]). Instead,
the first application of the compression function processes the initial m-bit long
block of the message. For the narrowly defined purpose of TCR domain exten-
sion these constructions can be proved secure using standard methods. On the
upside, our versions have the pleasant property of defaulting to the compression
function when the message (after length encoding and padding) is m-bit long
and of enabling chaining composition of several such functions (see Figure 2
below).

For more comprehensive treatment of domain extension schemes with an
eye towards simultaneously preserving many cryptographic properties of hash
functions, such as second-preimage resistance, multi-collision resistance, random
oracleness, etc., we refer to several recent papers [42–44] on domain extension
for keyed and keyless functions.

5 From One-way Hashes to eTCR

Motivated by compatibility with existing standards and APIs, Halevi and Kraw-
czyk describe an elegant eTCR construction framed as a message-preprocessing
scheme. Indeed, the composition of the RMX transform (pronounced remix ),
defined as RMX(r,M) = (r,M1 ⊕ r, . . . ,Ml ⊕ r), with a Merkle-Damg̊ard hash
function satisfying certain properties is eTCR. They prove security of the compo-
sition based on either one of two rather strong assumptions on the compression
function, one of which implies existence of collision-resistant hashes, and the
other is a property of the composition scheme itself. In light of known diffi-
culty of constructing (plain) TCR functions from one-way functions without key
expansion, it is unlikely that RMX can be proved secure based on a property
reducible to one-way functions.
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Fig. 1. Extenders for TCR hashes: linear, basic tree, and Shoup constructions.



We pursue a different approach, starting with TCR hashes, which in turn
can be reduced to one-way functions (see also [29] for related results). Before
presenting our construction, we recall the Naor-Yung method of building TCR
compressing functions (originally introduced as UOWHFs) from one-way per-
mutations, and demonstrate that the resulting function is not an eTCR.

Select a bijection between GF(2n) and {0, 1}n by fixing an irreducible polyno-
mial over F2 of degree n. Let π : {0, 1}

n → {0, 1}n be a one-way permutation and
let ga,b : {0, 1}

n → {0, 1}n−1 be the function defined as ga,b(x) = chop(ax + b),
where x, a, b ∈ {0, 1}n, arithmetic is done in GF(2n), and chop drops the last
bit of its input. Naor and Yung prove that the following composition function
is target collision-resistant: Ha,b(x) = ga,b(π(x)). Indeed, by assuming the op-
posite, we find a pre-image under π of a given z chosen uniformly at random
from {0, 1}n as follows. First, the adversary produces some x ∈ {0, 1}n, we then
choose a, b ∈ {0, 1}n such that ga,b(π(x)) = ga,b(z). If the adversary succeeds in
finding y 6= x that collides with x under Ha,b(·), it means that π(y) = z, since
Ha,b(x) has exactly two preimages under ga,b(·), one of which is π(x) and the
other is z. It contradicts π’s one-wayness.

The above construction compresses the input by one bit. Naor and Yung
prove that a sequential composition of independently-keyed TCR hashes is also
TCR, and thus one can achieve arbitrary (polynomial) compression ratio.

We reproduce the proof here because ha,b(·) fails as enhanced TCR for the
same reason it can be proved (plain) TCR. The function is defined in such a way
that by choosing the key it can be forced to take any given value on any fixed
input. Likewise, a concrete instantiation of a TCR function based on hardness
of the subset-sum problem due to Impagliazzo and Naor [45] is trivially not an
eTCR.

However, there is a simple transformation that converts a TCR function into
an enhanced TCR. If hk(·) is a TCR, then Ĥk(x) = Hk(x)||k is eTCR. More
formally,

Proposition 1. If {Hλ} is a TCR family of functions Hλ : Kλ×Dλ → Rλ, the

following family Ĥλ : Kλ ×Dλ →Rλ ×Kλ defined as

Ĥ(k,M) = H(k,M)||k

is eTCR.

Proof. Assuming the opposite, there is an adversary A = (A1,A2) that wins the
eTCR game against Ĥ . Let the output of A1 be M , the random key be k, and
the output of A2 be (k′,M ′). Since Ĥk(M) = Hk(M)||k and Ĥk(M) = Ĥ ′

k(M
′),

it means that k = k′, and the adversary A wins the TCR game against H with
the same probability it wins the eTCR game against Ĥ . ⊓⊔

The TCR-to-eTCR transform as applied to the basic Naor-Yung construction
does not yield a compressing eTCR, because the key of the original construction
is longer than the input. For instance, to achieve the compression ratio of two,
the key must be quadratic in the input length. However, domain extenders for



TCR with sublinear key expansion, surveyed in Section 4, do result in TCR
hashes where the length of the key concatenated with the output is less than the
hash function’s input length. Combining this with Proposition 1, and invoking
the result of Rompel [13, 14] stating that one-way functions are sufficient for
TCR compressing hashes, we establish the following:

Theorem 1. Compressing eTCR hash functions exist if and only if one-way

functions do.

To the best of our knowledge, the above theorem is the first application of
domain extension schemes with sublinear key expansion in complexity-theoretic
treatment of cryptographic hash functions.

6 Domain Extension for eTCR

As the main contribution of the paper we construct a domain extender for eTCR.
The construction is recursive and uses domain extension schemes for TCR. It is
based on the observation that a composition of a TCR function with an inde-
pendently keyed eTCR function is eTCR. Since an eTCR compression function
is also (plain) TCR, whose domain we know how to extend, it suffices to iterate
the composition scheme until the input into the eTCR function becomes shorter
than the compression function’s input or a linear hash extension scheme can be
applied.

Suppose we are given a TCR hash Htcr and an eTCR hash F etcr. We argue
that the following composition function is eTCR:

Gk1,k2
(M) = F etcr

k2
(Htcr

k1
(M), k1).

Indeed, if after committing to M and receiving (k1, k2), the adversary finds a
collision of the type Gk1,k2

(M) = Gk′

1
,k′

2
(M ′), where M 6= M ′, k1 = k′1, and

Htcr
k1

(M) = Htcr
k1

(M ′), it (intuitively) means that the adversary broke target
collision-resistance of the Htcr function. If k1 6= k′ or Htcr

k1
(M) 6= Htcr

k1
(M ′), we

would use the adversary to win the eTCR game against F etcr. More formally:

Theorem 2. If Htcr
λ : K1

λ × Dλ → R1
λ is a TCR family indexed by security

parameter λ and F etcr
λ : K2

λ×R
1
λ×K

1
λ →R

2
λ is eTCR, then the following family

of functions G : K1
λ ×K

2
λ ×Dλ →R

2
λ is eTCR:

Gk1,k2
(M) = F etcr

k2
(Htcr

k1
(M), k1).

Proof. Assume towards a contradiction that there is an adversary A = (A1,A2)
winning the eTCR game against G. Let (M, state) be the output of A1, and
let A2 produce a collision Gk1,k2

(M) = Gk′

1
,k′

2
(M ′) given random (k1, k2). We

classify the collisions into two types: inner collisions, where M 6= M ′, k1 = k′1
andHtcr

k1
(M) = Htcr

k′

1

(M ′), and outer collisions (all others). If we guess at random

which of these two cases takes place, we succeed with probability at least a half.



Case I: Inner collision. In this case, we may use the adversary to break the
Htcr function. Define algorithm BI = (BI

1,B
I
2) as follows:

Algorithm BI
1(1

λ): Algorithm BI
2(1

λ, state, k1):

1. Run (M, state)← A1(1
λ). 1. Pick random k2

$
← K2.

2. Output (M, state). 2. (M ′, k′1, k
′
2)← A2(1

λ, state, k1, k2).
3. Fail if this is not an inner collision.
4. Output M ′.

By the definition of an inner collision (i.e., M 6= M ′, k1 = k′1, and Htcr
k1

(M) =
Htcr

k′

1

(M ′)), the algorithm BI outputs a valid collision on Htcr.

Case II: Outer collision. In this case, we attack the F etcr function. Let BO =
(BO

1 ,B
O
2 ) be the following:

Algorithm BO
1 (1

λ): Algorithm BO
2 (1

λ, k1||state, k2):
1. Run (M, state)← A1(1

λ). 1. (M ′, k′1, k
′
2)← A2(1

λ, state, k1, k2).

2. Pick random k1
$
← K1. 2. Fail if this is not an outer collision.

3. Output (〈Htcr
k1

(M), k1〉, k1||state). 3. Output (k′2, 〈H
tcr
k′

1

(M ′), k′1〉).

If A succeeds, we know that Gk1,k2
(M) = Gk′

1
,k′

2
(M ′) and (k1, k2,M) 6=

(k′1, k
′
2,M

′). To conclude, we must verify that this gives a valid collision on F etcr,
where the colliding key-message pairs is (k2, 〈H

tcr
k1

(M), k1〉) and (k′2, 〈H
tcr
k′

1

(M ′), k′1〉).

By definition of an outer collision, at least one of the following holds true:
M = M ′, or k1 6= k′1, or Htcr

k1
(M) 6= Htcr

k′

1

(M ′). In the last two cases, the

inputs into F etcr are obviously distinct. If M = M ′, then by definition of the
eTCR game won by A, we know that (k1, k2) 6= (k′1, k

′
2), which results in a valid

collision on F etcr. ⊓⊔

Remark 1. The domain of the outer function F etcr in the theorem statement is
R1×K1, whereas in practice the function’s input is most likely to be a bit string.
Thus, to apply the theorem one has to ensure that F etcr’s input can be uniquely
parsed into the output of Htcr and its key. It is indeed the case when either the
output of the function (the most common option) or the key have fixed length,
or alternatively, by using an encoding scheme where the boundary between the
two strings can be unambiguously identified.

The above composition theorem gives a domain extension scheme for eTCR
except for one potential problem: Since there are no known domain extenders for
TCR hashes without key expansion, the key k1, which is concatenated with H ’s
output and fed into the eTCR function F , may be longer than the compression
function’s input length. The construction may be applied recursively, or it may
terminate by using the linear hash domain extension scheme for eTCR (see
below). If one uses the Shoup construction for H and the linear hash for F , the
total key expansion is (ℓ + n⌈log2(L/(m− n))⌉)× (1 + ℓ/(m− n)).

7 Length Variability and Concrete Scheme

Before we present a concrete instantiation of the scheme proven secure in The-
orem 2 we must address the question of message padding and length encoding



by the underlying schemes. As is, domain extenders for TCR hashes from Fig-
ure 1 either require message pre-processing or become insecure when applied to
variable-length messages. A generic method for domain extension to variable-
length inputs is described by Bellare and Rogaway [34] and requires one addi-
tional application of an independently keyed compression function. To stream-
line the construction, we encode the message length into the input of the eTCR
function F etrc, which allows us to use domain extenders satisfying a weaker
definition of TCR∗ (defined in [2]), where the function accepts variable-length
inputs but the adversary in the TCR game is restricted to finding a collision of
equal-length messages. Namely, assuming that the keyed function of three inputs
F etcr is eTCR and Htcr is TCR∗, the following function is eTCR:

G∗
k1,k2

(M) = F etcr
k2

(Htcr
k1

(M), k1, |M |).

The proof is analogous to Theorem 2. In our construction below we make sure
that the input to F etcr be uniquely parsed into three parts.

The following construction, which consists of pre-processing followed by ap-
plication of independently keyed compression functions, is very similar to the
linear hash scheme of [34]. They differ in two important aspects: the IV, which
is replaced with input material in our construction, and handling of the message
length, which is encoded in the last block. A proof of the claim that the result-
ing construction is eTCR a straightforward adaption of Theorem 7 from the full
version of [2].

Pre-processing function

Input: message M , length len < 2d

Output: blocks M1, . . . ,Mt

format M as M1, . . . ,Mt, where (a) |M1| = |M | if |M | < m

(b) |M1| = m if |M | ≥ m

(c) |Mi| = m− n for 1 < i < t

(d) |Mt| ≤ m− n

s←

{

m if t = 1

m− n otherwise

if |Mt| > s− d then

pad Mt with zeros to s bits
Mt+1 ← empty
t← t+ 1

pad Mt with zeros to m− n− d bits

Mt ←Mt||[len ]
d

2, where [len ]d2 is len encoded as d-bit binary

The following example (Figure 2) is a domain extension scheme for the com-
pression function H : {0, 1}128×{0, 1}640 → {0, 1}256, which can be based on the
compression function of SHA-256 with 128 input bits allocated for the key. The
composite function takes input of length 256+ 4× 384 = 1792 bits and expands
the key to 3 × 128 + 2 × 256 = 896 bits. The example illustrates two features
of our construction. First, its two main components, the TCR∗ and eTCR func-
tions, may be selected independently from each other. In particular, the choice



Linear hashing

Given: function F : {0, 1}ℓ × {0, 1}m → {0, 1}n

Input: blocks M1, . . . ,Mt; keys k1, . . . , kt
Output: hash of length n bits

h1 ← Fk1
(M1)

for i := 2 to t do

hi ← Fki
(hi−1||Mi)

output ht

of the inner function TCR∗ may depend on the message length (for instance,
in our example a more keysize-efficient choice of the inner function would have
been the linear hash; we prefer the Shoup construction for illustrative purposes).
Second, rather than separately encoding the length of its input, as prescribed
by the linear hash scheme, and the length of the message, called for by the con-
struction of G∗, the outer eTCR function may only do the latter as long as the
message length uniquely determines the length of eTCR’s input. In fact, our
pre-processing function accepts the length of the message as a separate input,
which allows this optimization.

M1 M2 M3 M4

HHHHHH

kkkk

⊕⊕⊕

k0k0

k1

k2 k3

TCR∗

eTCR

k||k0 k1||[len]
128
2

Fig. 2. Example of an eTCR domain extension function for H : {0, 1}128 ×{0, 1}640 →
{0, 1}256.

8 Conclusion

We study the enhanced target collision-resistant (eTCR) property of hash func-
tions introduced by Halevi and Krawczyk as a method of securing signature
schemes in lieu of traditionally used collision-resistant hash functions [1]. While
the definition was initially proposed to facilitate proof of security of the RMX
transform, it is an interesting variant of the TCR property that may have appli-
cations on its own.



In our first contribution, we explore connections between TCR and eTCR
hash functions, demonstrating that the TCR construction of Naor-Yung is prov-
ably not eTCR. On the other hand, eTCR hashes can be constructed from TCR
compressing functions, placing them in the same complexity-theoretic class of
functions that can be based on one-way functions in a black-box manner. It sep-
arates them from collision-resistant hashes that cannot be reduced to one-way
functions or permutations via a black-box construction.

Secondly, we answer the question raised in [2] on constructing a key length-
efficient domain extender for eTCR hashes by presenting a domain extension
scheme with logarithmic key expansion.
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