
Enhanced Security Notions for Dedicated-Key
Hash Functions: Definitions and Relationships

Mohammad Reza Reyhanitabar, Willy Susilo, and Yi Mu

Centre for Computer and Information Security Research,
School of Computer Science and Software Engineering

University of Wollongong, Australia
{rezar, wsusilo, ymu}@uow.edu.au

Abstract. In this paper, we revisit security notions for dedicated-key
hash functions, considering two essential theoretical aspects; namely, for-
mal definitions for security notions, and the relationships among them.
Our contribution is twofold. First, we provide a new set of enhanced
security notions for dedicated-key hash functions. The provision of this
set of enhanced properties has been motivated by the introduction of
the enhanced target collision resistance (eTCR) property by Halevi and
Krawczyk at Crypto 2006. We notice that the eTCR property does not
belong to the set of the seven security notions previously investigated
by Rogaway and Shrimpton at FSE 2004; namely: Coll, Sec, aSec, eSec,
Pre, aPre and ePre. The fact that eTCR, as a new useful property, is
the enhanced variant of the well-known TCR (a.k.a. eSec or UOWHF)
property motivates one to investigate the possibility of providing en-
hanced variants for the other properties. We provide such an enhanced
set of properties. Interestingly, there are six enhanced variants of se-
curity notions available, excluding “ePre” which can be demonstrated
to be non-enhanceable. As the second and main part of our contribu-
tion, we provide a full picture of the relationships (i.e. implications and
separations) among the (thirteen) security properties including the (six)
enhanced properties and the previously considered seven properties. The
implications and separations are supported by formal proofs (reductions)
and/or counterexamples in the concrete-security framework.

Key words: hash functions, security notions, definitions, relationships.

1 Introduction

Cryptographic hash functions are widely used in many applications, most impor-
tantly in digital signature schemes and message authentication codes (MACs),
as well as commitment schemes, password protection, and key derivation, to
mention some. Unlike many other cryptographic primitives which are usually
intended to fulfill specific security notions, hash functions, as workhorses of
cryptography, are often expected to satisfy a wide and application dependent
spectrum of security notions, ranging from merely being a one-way function to
acting as a truly random function or random oracle (ideal hash).

2 M. R. Reyhanitabar, W. Susilo and Y. Mu

Cryptographic hash functions originally were used as “secure” compressing
functions to make digital signatures more efficient [6, 19, 11, 12, 4, 5], and
this application of hash functions in signature schemes, following hash-and-sign
paradigm, requires them to satisfy three well-known classic security properties;
namely, collision resistance, second-preimage resistance and preimage resistance.
These properties have been traditionally considered as the basic “necessary” se-
curity properties for a hash function to be used in signature schemes, as well as
in several other applications of hash functions.

There seems to be no clear consensus on specification of a set of proper-
ties that can be considered as a sufficient property set for a hash function in the
standard model of security [3]. The current literature contains many different in-
formal and formal definitions for some basic and widely-used security properties
of hash functions (such as [4, 5, 12, 13, 28, 18, 10, 24, 26]).

For a formal treatment of the security properties and their relationships,
it is essential to clearly specify the hash function setting; that is, whether the
hash function is specified as a keyless function H : M → C which only ad-
mits an input message, or it is a dedicated-key (i.e. two-argument) function
H : K ×M → C with an explicit key input in addition to a message input. A
dedicated-key hash function H : K ×M → C can also be viewed as a family
of functions {HK :M→ C}K∈K by considering the key as the index for the in-
stance functions. Although, historically, most of the widely used hash functions,
like MD5 [23], SHA-xxx (for xxx=1, 224, 256, 384, 512) [14, 15], are keyless
hash functions, the situation seems to be changing in favor of the dedicated-key
hash function setting, which has been more popular in rigorous formal treat-
ments of hash functions; e.g. [4, 5, 7]. For example, several new (practical and
efficient) dedicated-key hash functions have been proposed to the recent SHA-3
hash function competition run by NIST, e.g. SHAvite-3 and Skein, which do
have (optional) dedicated-key inputs [17].

Rogaway and Shrimpton [24, 25] provided formal definitions for seven vari-
ants of the three basic properties; namely, collision resistance (denoted by ‘Coll’
in [24]), three variants of second-preimage resistance (Sec, aSec, eSec) and three
variants of preimage resistance (Pre, aPre, ePre), as well as, all relationships
among these seven properties, in the dedicated-key hash function setting. Fig-
ure 1 shows the overall picture of these relationships. We note that the original
formal definition of the collision resistance and UOWHF properties were pro-
posed in the asymptotic-security framework, by Damg̊ard [4], and by Naor and
Yung [13]; respectively. UOWHF property was later called “target collision resis-
tance” (TCR) by Bellare and Rogaway [1] (in the concert-security framework),
and also renamed as “eSec” according to the nomenclature provided by Rogaway
and Shrimpton [24].

Halevi and Krawczyk at Crypto 2006 [8] introduced the “enhanced target
collision resistance” (eTCR) property, as a strengthened (or enhanced) variant
of the TCR property. eTCR is the property sought from the Randomized Hashing
construction [8], recently announced in NIST SP 800- 106 [16], for strengthening
digital signatures. In our previous work at FSE 2009 [20], we showed a separation

Enhanced Security Notions for Dedicated-Key Hash Functions 3

between the eTCR and Coll properties, and further completed the relationships
between eTCR and each of the seven security notions in [21]. Figure 1 also
depicts these relationships.

Seven security properties for hash
functions and their relationships
investigated by Rogaway and Shrimpton
in [25].

Relationships between eTCR and each of
the seven security properties for hash
functions investigated by Reyhanitabar,
Susilo, and Mu in [20, 21].

Coll

eSec

ePre

Pre

aPre

aSec

Sec

eTCR

Coll

eSec

ePre

Pre

aPre

aSec

Sec

Fig. 1. Known relationships among the security notions for dedicated-key hash func-
tions: a directed path shows an implication (dashed lines represent “provisional implica-
tions” in which the strength of the implications depends on the amount of compression
achieved by the hash function) and lack of a path shows a separation [24, 25, 20, 21].

In this paper we continue this line of research by further investigating the
security notions for dedicated-key hash functions. The fact that the interesting
eTCR property is an enhanced variant of the well-known TCR (a.k.a. eSec or
UOWHF) property has been our main motivation to investigate the possibility
of further completing the set of current security notions for dedicated-key hash
functions, by providing enhanced variants for the other properties. We note that
an enhanced variant of the collision resistance property, called “eColl”, also was
recently noticed by Yasuda in [27].

Nomenclature. For the seven security notions, we use the same nomencla-
ture; i.e. Coll, Sec, aSec, eSec, Pre, aPre, ePre, as proposed by Rogaway and
Shrimpton in [24]. The remaining six new strengthened variants (among the
thirteen properties) are denoted by adding a prefix ‘s-‘ to the names of the
related (weaker) notions; that is, s-Coll, s-Sec, s-aSec, s-eSec, s-Pre, s-aPre;
respectively, where s-Coll is the strengthened variant of Coll, and so forth. We
use prefix s− (for ‘strengthened’) instead of e− (for ‘enhanced’), to prevent any
ambiguity among the names, as the prefix ‘e’ has already been used by Rog-
away and Shrimpton in [24] to stand for ‘everywhere’ variants in eSec and ePre
properties. Note that now according to our new notations, ‘s-eSec‘ stands for
the ‘eTCR’ property of [8] and s-Coll is the same property as eColl in [27].

4 M. R. Reyhanitabar, W. Susilo and Y. Mu

Our Contributions. First, we provide a new extended set of strengthened
(enhanced) security notions for dedicated-key hash functions, which includes the
eTCR property, put forth by Halevi and Krawczyk [8] (denoted by ‘s-eSec’ in this
paper), the eColl property, introduced by Yasuda [27] (denoted by ‘s-Coll’ in this
paper), as well as four new properties which we introduce in this paper; namely,
s-Sec, s-aSec, s-Pre, s-aPre. Then, as our second and main contribution, we work
out all the relationships among the (thirteen) security properties, including the
(six) enhanced properties; namely, s-Coll, s-Sec, s-aSec, s-eSec, s-Pre, s-aPre,
and the well-known seven properties; namely, Coll, Sec, aSec, eSec, Pre, aPre,
ePre.

Figure 2 illustrates the relationships among the security notions. A solid
directed edge ‘A→ B’ shows a security-preserving reduction from the notion A
to the notion B, and a dashed directed edge ‘A 99K B’ represents a provisional
reduction (i.e. with some security loss) from A to B. (Formal definitions of the
security-preserving and provisional implications are given in Sec. 3.) The top
graph illustrates the essential “edges” that can be composed to construct the
“paths” showing all other implications; for instance, combining Coll→ eSec and
eSec → Sec edges one gets Coll → Sec (which is not explicitly shown in the
graph), and so on. The lack of a directed path from A to B in the graph means a
separation. The three tables below the graph detail all the relationships, where
an entry at row A and column B shows whether the property A implies the
property B, or there is a separation; trivial equivalences are denoted by ‘=’.

Notations. If A is a randomized algorithm then by y = A(x1, · · · , xn;R) it
is meant that y is the output of A on inputs x1, · · · , xn when it is provided
with random coins (tape) R. By y

$← A(x1, · · · , xn) it is meant that the tape
R is chosen at random and y is set to be y = A(x1, · · · , xn;R). To show that

an algorithm A is run without any input, we use either the notation y
$← A()

or y
$← A(∅). By time complexity of an algorithm we mean the running time,

relative to some fixed model of computation (e.g. RAM) plus the size of the
description of the algorithm using some fixed encoding method. If X is a finite
set, by x

$← X it is meant that x is chosen from X uniformly at random. For
a binary string M = M1||M2|| · · · ||Mm, let M1...n denote the first n bits of M
and |M | denote its length in bits (where n ≤ m = |M |). Let val(.) be a function
that on input a binary string M = M1 · · ·Mm, considered as an unsigned binary
number with Mm as the least significant bit (LSB), returns its decimal value.
For a positive integer x, let 〈x〉b denotes binary representation of x by a string
of length exactly b bits where the rightmost bit represents the LSB and some
of the most significant bits are chopped when dlog2(x)e > b. If S is a finite set
we denote size of S by |S|. The set of all binary strings of length n bits (for
some positive integer n) is denoted as {0, 1}n, the set of all binary strings whose
lengths are variable but upper-bounded by N is denoted by {0, 1}≤N and the
set of all binary strings of arbitrary length is denoted by {0, 1}∗.

Enhanced Security Notions for Dedicated-Key Hash Functions 5

s-Coll (eColl) s-Sec s-aSec s-eSec (eTCR) s-Pre s-aPre
s-Coll (eColl) = [27]

s-Sec =
s-aSec =

s-eSec (eTCR) =
s-Pre =
s-aPre =

Coll Sec aSec eSec (TCR) Pre aPre ePre
s-Coll (eColl)

s-Sec
s-aSec

s-eSec (eTCR) [20] [21] [21] [21] [21] [21] [21]
s-Pre
s-aPre

s-Coll s-Sec s-aSec s-eSec (eTCR) s-Pre s-aPre
Coll [20]
Sec [21]
aSec [21]

eSec (TCR) [21]
Pre [21]
aPre [21]
ePre [21]

aSec

Sec

eSec

ePre

Pre

aPre Coll

s-aSec

s-Coll

s-eSec

s-Sec

s-Pre

s-aPre

Fig. 2. A full picture of the relationships among the security notions. Note that the
top graph only illustrates the essential “edges” that can be composed to construct the
“paths” showing all other implications. The lack of a directed path in the graph means
a separation, while separations are explicitly denoted by 9 in the tables.

6 M. R. Reyhanitabar, W. Susilo and Y. Mu

2 Definitions of Security Notions

In this section, adopting the conventions of the concrete-security framework,
we provide definitions of the security notions for a dedicated-key hash function
H : K ×M → C, where C = {0, 1}n for some positive integer n, the key space
K is some nonempty finite set and the message space M ⊆ {0, 1}∗; such that
{0, 1}δ ⊆M for at least a positive integer δ. For any M ∈M and K ∈ K, we use
the notations HK(M) and H(K, M) interchangeably. Note that this description
of a hash function is generic enough to be applied when one considering: a Fixed-
Input-Length (FIL) hash function (i.e. a compression function), where M =
{0, 1}m; a Variable-Input-Length (VIL) hash function, where M = {0, 1}<λ for
some (huge) value λ (e.g. λ = 264 as in SHA-1); or even an Arbitrary-Input-
Length (AIL) hash function, where M = {0, 1}∗.

Let TH,δ denote the time complexity of the most efficient algorithm that
can compute H(K, M), for any M ∈ {0, 1}δ ⊆ M and K ∈ M, plus the time
complexity of the most efficient algorithm that can sample from the finite set K.

As usual in concrete-security definitions, we use the resource parameterized
function Advxxx

H (t, `) to denote the maximal value of the adversarial advantage
(i.e. Advxxx

H (t, `) = maxA {Advxxx
H (A)}) over all adversaries A, attacking xxx

property of H, that have time complexity at most t and use messages of length
at most ` bits. We say that H is (t, `, ε)-xxx secure if Advxxx

H (t, `) < ε.
In the sequel, we firstly review the seven properties; namely, Coll, Sec, aSec,

eSec, Pre, aPre and ePre, put forth by Rogaway and Shrimpton in [24]. Then, we
proceed by providing a new set of extended properties for a dedicated-key hash
function, which includes enhanced (or strengthened) variants of the security
properties considered by Rogaway and Shrimpton in [24].

We remind that the security notions for a dedicated-key hash functions can
be either known-key properties, or secret-key (a.k.a. hidden-key) properties. All
the security properties considered in this paper belong to the known-key security
setting where at some stage during the attack game, key(s) will be known to the
adversary. There are some other applications of dedicated-key hash functions;
e.g. as a MAC or PRF primitive, where the key must be kept secret throughout
the attack game.

2.1 Previously Considered Seven Security Notions

The advantage measures for an adversary A, attacking any of the seven security
properties of a dedicated-key hash function H, are defined (compactly) in Fig.
3.

Note that for some of the notions (namely, Sec[δ], aSec[δ], eSec[δ], Pre[δ],
and aPre[δ]) the advantage function is parameterized by a parameter δ where
{0, 1}δ ⊆ M. In the case of eSec property the parameter δ is implicit in the
definition and assumed to be the length of the first (i.e. the target) message M
output by the adversary.

Enhanced Security Notions for Dedicated-Key Hash Functions 7

AdvColl
H (A) = Pr

[
K

$← K; (M,M ′) $← A(K) : M 6= M ′ ∧ HK(M) = HK(M ′)
]

AdvSec[δ]
H (A) = Pr

[
K

$← K;M $← {0, 1}δ ;

M ′ $← A(K, M) : M 6= M ′ ∧ HK(M) = HK(M ′)

]

AdvaSec[δ]
H (A) = Pr

 (K, State) $← A1();

M
$← {0, 1}δ ;

M ′ $← A2(M,State) : M 6= M ′ ∧ HK(M) = HK(M ′)

AdveSec[δ]
H (A) = Pr

 (M,State) $← A1();

K
$← K;

M ′ $← A2(K, State) : M 6= M ′ ∧ HK(M) = HK(M ′)

AdvPre[δ]

H (A) = Pr

[
K

$← K;M $← {0, 1}δ ;Y ← HK(M);

M ′ $← A(K, Y) : HK(M ′) = Y

]

AdvaPre[δ]
H (A) = Pr

 (K, State) $← A1();

M
$← {0, 1}δ ;Y ← HK(M);

M ′ $← A2(Y, State) : HK(M ′) = Y

AdvePre

H (A) = Pr
[
(Y, State) $← A1();K

$← K;M ′ $← A2(K, State) : HK(M ′) = Y
]

Fig. 3. Definitions of the seven security notions for a dedicated-key hash function [24].

2.2 Enhanced Security Notions

We have noticed that the newly emerged notion of “enhanced target collision
resistance” (eTCR), put forth by Halevi and Krawczyk in [8], does not belong
to the set of the seven properties, and actually eTCR is an strengthened variant
of TCR (i.e. UOWHF or eSec) property. Considering the definition of eTCR
property and its application, we are motivated to study whether it is possible
to provide (sensible) enhanced variants for the other properties of the set of the
seven security properties in [24], in a similar way that TCR (eSec) is enhanced
to eTCR. That is, by giving the adversaries more freedom in selecting a new
(second) key and relaxing the corresponding success (winning) conditions in the
attack games defining the properties. Interestingly, all properties except ‘ePre’
are shown to be enhanceable. The definitions and discussions are provided in the
sequel.

Definitions. For the six strengthened security notions, the advantage func-
tions of an adversary A attacking H are defined in Fig. 4. For any property
xxx ∈ {s-Coll, s-Sec[δ], s-aSec[δ], s-eSec[δ], s-Pre[δ], s-aPre[δ]}, we say that H
is (t, `, ε)-xxx if Advxxx

H (t, `) < ε. Note that some of the notions (namely, s-
Sec[δ], s-aSec[δ], s-eSec[δ], s-Pre[δ] and s-aPre[δ]) are parameterized by δ where
{0, 1}δ ⊆ M. In the case of s-eSec (i.e. eTCR) property the parameter δ is
implicit in the definition and assumed to be the length of the first (i.e. target)
message M output by the adversary. If H is a compression function (i.e. an FIL

8 M. R. Reyhanitabar, W. Susilo and Y. Mu

hash function), then parameters δ and ` will be the same as the (fixed) input
length of the compression function and hence are omitted from the notations.

Advs-Coll
H (A) = Pr

[
K

$← K; (M,M ′,K ′) $← A(K) : (K, M) 6= (K ′,M ′) ∧ HK(M) = HK′(M ′)
]

Advs-Sec[δ]
H (A) = Pr

[
K

$← K;M $← {0, 1}δ ;

K ′,M ′ $← A(K, M) : (K, M) 6= (K ′,M ′) ∧ HK(M) = HK′(M ′)

]

Advs-aSec[δ]
H (A) = Pr

 (K, State) $← A1();

M
$← {0, 1}δ ;

K ′,M ′ $← A2(M,State) : (K, M) 6= (K ′,M ′) ∧ HK(M) = HK′(M ′)

Advs-eSec[δ]
H (A) = Pr

 (M,State) $← A1();

K
$← K;

K ′,M ′ $← A2(K, State) : (K, M) 6= (K ′,M ′) ∧ HK(M) = HK′(M ′)

Advs-Pre[δ]

H (A) = Pr

[
K

$← K;M $← {0, 1}δ ;Y ← HK(M);

K ′,M ′ $← A(K, Y) : HK′(M ′) = Y

]

Advs-aPre[δ]
H (A) = Pr

 (K, State) $← A1();

M
$← {0, 1}δ ;Y ← HK(M);

K ′,M ′ $← A2(Y, State) : HK′(M ′) = Y

Fig. 4. Definitions of enhanced properties for a dedicated-key hash function.

The Case for ePre. Unlike the other six properties, ePre notion of security cannot
be strengthened by allowing the adversary to select a new key K ′ in the second
phase of its attack, as used to define new enhanced variants in Fig. 4. This is
because there will remain no random challenge to be given to the adversary in
such a game and hence a trivial adversary will always exist. To make this clear,
let’s try to strengthen the ePre property in the same way that was done for other
properties in Fig. 4. Doing so, one gets the following advantage measure:

Pr
[
(Y, State) $← A1();K

$← K; (K ′,M ′) $← A2(K, State) : HK′(M ′) = Y
]

Clearly, as the winning condition (i.e. HK′(M ′) = Y) does not involve the only
random challenge (i.e. K) in the attack game, a trivial adversary, which selects
arbitrary K ′ and M ′; computes HK′(M ′) = Y , and outputs Y and (K ′,M ′),
always wins this game with probability one.

Remark 1. We notice that the parametrization of some of the security properties
by δ is mainly aimed to handle some subtle technical issues as follows:

– Efficient sampling from a set of messages according to the uniform distribu-
tion requires the set to be finite. For an arbitrary-input-length hash function,
withM = {0, 1}∗, the message space is infinite, and hence cannot be sampled

Enhanced Security Notions for Dedicated-Key Hash Functions 9

uniformly at random. Clearly, if H is an FIL hash function (i.e. a compres-
sion function), with M = {0, 1}m, then parameter δ (and also the resource
parameter `) will be the same as the fixed input length of the compression
function (i.e. δ = ` = m), and hence can be omitted.

– The ideal security level, measured in terms of time complexity of attacks, for
(variants of) second preimage resistance and preimage resistance properties
considering a hash function H : K × M → {0, 1}n is 2n, due to a sim-
ple generic (random search) attack. Clearly, if the length of target message
strings is “too short” (e.g. δ < n), then one will be able to simply search the
input message space in less than 2n steps. On the other hand, for iterated
hash functions if the length of a target input message is “too long”; e.g.
δ = 2l blocks for some large l, then there are generic long message second
preimage attacks, put forth by Kelsey and Schneier [9], with reduced time
complexity compared to the ideal 2n level for too long target messages, e.g.
when l = n/2. Therefore, explicitly parameterizing the properties by the
length of the target messages, i.e. δ, can clearly show these dependencies of
the advantage functions on the target message length.

3 Relationships among the Security Notions

In this section, we provide the details of the “new” relationships (implications
and separations) between any two properties among the thirteen security prop-
erties as defined in Fig. 3 and Fig. 4. Noticing that the relationships among the
seven security properties in Fig. 3 were shown in [24, 25], and the relationships
between eTCR (s-eSec) and other properties were demonstrated in [21, 20, 27],
we complete all the remaining new relationships. The summary of our results
is shown in Fig. 2, where we use the conventions explained in the sequel to
represent the relationships.

3.1 Security Preserving Implications

A solid directed line from a security notion xxx to a security notion yyy (i.e.
xxx → yyy) is used to represent a security-preserving reduction from xxx to yyy.
All security-preserving implications in this paper are easily provable by a tight
concrete bound of the form Advyyy

H (t′) ≤ Advxxx
H (t), where t′ = t − c for some

small constant c. That is, for any hash function H : K ×M → {0, 1}n, if H is
secure in the xxx sense then it is also secure in the yyy sense.

Lemma 1. For any dedicated-key hash function H : K×M→ {0, 1}n, and for
any fixed value of δ such that {0, 1}δ ⊆ M, let xxx be any property ∈ {Coll ,
Sec[δ], aSec[δ], eSec[δ], Pre[δ], aPre[δ] }; we have s-xxx → xxx.

Proof. It is straightforward to see that Advxxx
H (t) ≤ Advs−xxx

H (t), just by consid-
ering the definitions of the security notions and their “strengthened” variants in
Fig. 3 and Fig. 4, respectively. Note that in defining game for a strengthened

10 M. R. Reyhanitabar, W. Susilo and Y. Mu

notion s-xxx, the adversary is given more power by being allowed to choose a
different key K ′, and hence any adversary A that can succeed in playing xxx
game (where it does not get to choose a second key) will clearly succeed in the
game defining s-xxx (where it gets to choose a second key at will). ut

The following implications are also straightforward to show by simple security-
preserving reductions. A proof can be found in the full version of this paper in
[22].

Theorem 1. For any dedicated-key hash function H : K ×M → {0, 1}n, and
for any fixed value of δ such that {0, 1}δ ⊆M, we have:

1. s-Coll → s-Sec[δ]
2. s-Coll → s-eSec[δ]
3. s-Coll → Sec[δ]
4. s-Coll → eSec[δ]
5. s-aSec[δ] → s-Sec[δ]
6. s-aSec[δ] → Sec[δ]
7. s-eSec[δ] → s-Sec[δ]
8. s-eSec[δ] → Sec[δ]
9. s-aPre[δ] → s-Pre[δ]

10. s-aPre[δ] → Pre[δ]

3.2 Provisional Implications

A provisional implication from a security notion xxx to a security notion yyy;
denoted by xxx 99K yyy, means that there is a reduction from xxx to yyy, but the
reduction is not security-preserving. That is, we can upper-bound Advyyy

H (t′) as
a function of Advxxx

H (t), but the inherited security guarantee for the notion yyy
using such a bound is provisioned on the exact security degradation character-
istics of the reduction, which usually depends on the hash function parameters,
such as the lengths of input (δ) and output (n), and the size of the key space
(|K|). Therefore, these provisional implications should be interpreted carefully,
as for some values of the parameters (e.g. when there is little or no compression,
i.e. δ ≈ n) these reductions may effectively vanish.

Theorem 2. For any dedicated-key hash function H : K ×M → {0, 1}n, and
for any fixed value of parameter δ such that {0, 1}δ ⊆M, we have:

1. s-Coll 99K ePre: AdvePre
H (t′) ≤

√
Advs−Coll

H (t) + 1/|K|
2. s-Coll 99K s-Pre[δ]: Advs−Pre[δ]

H (t′) ≤ 3 Advs−Coll
H (t) + 2n−δ

3. s-Coll 99K Pre[δ]: AdvPre[δ]
H (t′) ≤ 3 Advs−Coll

H (t) + 2n−δ

4. s-Sec[δ] 99K s-Pre[δ]: Advs−Pre[δ]
H (t′) ≤ 3 Advs−Sec[δ]

H (t) + 2n−δ

5. s-Sec[δ] 99K Pre[δ]: AdvPre[δ]
H (t′) ≤ 3 Advs−Sec[δ]

H (t) + 2n−δ

6. s-aSec[δ] 99K s-Pre[δ]: Advs−Pre[δ]
H (t′) ≤ 3 Advs−aSec[δ]

H (t) + 2n−δ

Enhanced Security Notions for Dedicated-Key Hash Functions 11

7. s-aSec[δ] 99K Pre[δ]: AdvPre[δ]
H (t′) ≤ 3 Advs−aSec[δ]

H (t) + 2n−δ

8. s-aSec[δ] 99K aPre[δ]: AdvaPre[δ]
H (t′) ≤ 3 Advs−aSec[δ]

H (t) + 2n−δ

9. s-aSec[δ] 99K s-aPre[δ]: Advs−aPre[δ]
H (t′) ≤ 3 Advs−aSec[δ]

H (t) + 2n−δ

10. s-eSec[δ] 99K s-Pre[δ]: Advs−Pre[δ]
H (t′) ≤ 3 Advs−eSec[δ]

H (t) + 2n−δ

11. s-eSec[δ] 99K Pre[δ]: AdvPre[δ]
H (t′) ≤ 3 Advs−eSec[δ]

H (t) + 2n−δ

where t′ = t− cTH,δ, for some small non-negative constant c, and TH,δ denotes
the time for one computation of H.

Proof. We prove the first, fourth, and ninth cases, i.e. ‘s-Coll 99K ePre’, ‘s-Sec[δ]
99K s-Pre[δ]’, and ‘s-aSec[δ] 99K s-aPre[δ]’. Note that these are the three new
essential provisional implications as depicted in Fig. 2. (We remind that the other
two essential provisional implications, namely ‘Sec 99K Pre’ and ‘aSec 99K aPre’,
in Fig. 2, are already known from [25].) All other provisional implications can be
straightforwardly obtained by combining these essential provisional implications
with the security-preserving implications.

Proof of ‘s-Coll 99K ePre’. We employ the Reset Lemma from [2] for our
purpose. The first and main step is to express our problem in a format which
can be considered as a special case of the Reset Lemma, and then we can apply
the probabilistic analysis of the Reset Lemma. To simplify the representation of
our proof, we denote an adversary as a single probabilistic algorithm A which
uses a State variable to keep track of its several attack steps, rather than viewing
A as consisting of two sub-algorithms A = (A1, A2).

Let Verify(M,K, Y) be a deterministic predicate to compute a boolean de-
cision as follows:

Verify(M,K, Y) =
{

1 if HK(M) = Y
0 otherwise

Let R ∈ {0, 1}r denote the random tape (i.e. coins) used by the probabilistic
algorithm A. Using the above predicate, we can rewrite the experiment defining
the ePre attack by A against H (in a format which is appropriate for our analy-
sis) as below; where ∅ means an empty string:

ePre Experiment

R
$← {0, 1}r ; (Y, State) = A(∅;R);

K
$← K; M = A(K, State;R); d = Verify(M,K, Y);

Return d

Clearly probability that the above ‘ePre Experiment’ returns 1 is equal to
AdvePre

H (A). Now consider the following Reset Experiment:

12 M. R. Reyhanitabar, W. Susilo and Y. Mu

Reset Experiment:

R
$← {0, 1}r ; (Y, State) = A(∅;R);

K1 $← K; M1 = A(K1, State;R); d1 = Verify(M1,K1, Y);

K2 $← K; M2 = A(K2, State;R); d2 = Verify(M2,K2, Y);
If (d1 = 1 ∧ d2 = 1 ∧ K1 6= K2) then return 1 else return 0

The proof of the following proposition can be deduced as a special case of that
of the Reset Lemma in [2]. We provide a proof of this probabilistic claim here
for completeness, as it will also surface in several other cases in the following.

Proposition 1. Let p denote the probability that the ePre Experiment returns 1
(i.e. p = AdvePre

H (A)), and q be the probability that the Reset Experiment returns
1; we have p ≤ √q + 1/|K|.

Proof (Proof of the Proposition). For any R ∈ {0, 1}r, let YR and MR denote
the target hash value and the message, output by ePre adversary A having a
random tape R. Define two functions X : {0, 1}r → [0, 1] and Y : {0, 1}r → [0, 1]
as follows:

X(R) , Pr[Verify(MR,K, YR) = 1] (1)

where the probability is taken over random selection of K from the key space
{0, 1}k, and

Y (R) , Pr[Verify(M1R,K1, YR) = 1 ∧Verify(M2R,K2, YR) = 1 ∧K1 6= K2]
(2)

where the probability is taken over random and independent selection of K1 and
K2 from the key space K. By a simple argument, noting that K1 and K2 are
chosen independently and using the fact that Pr(E ∧ F) ≥ Pr(E)− Pr(F) for
any two events E and F , we have:

Y (R) = Pr[Verify(M1R,K1, YR) = 1] . Pr[Verify(M2R,K2, YR) = 1 ∧K1 6= K2]
≥ X(R)[X(R)− 1/|K|] (3)

We can view functions X and Y as random variables over sample space {0, 1}r of
random tape used by probabilistic algorithm A. Now, note that the probabilities
that the ‘ePre Experiment’ and the ‘Reset Experiment’ return 1 are, respectively,
the expected values of the random variables X and Y with respect to R, i.e.
p = E[X] and q = E[Y]. Using the inequality (3) and letting c = 1/|K| we have:

q = E[Y] ≥ E[X(X − c)] = E[X2]− cE[X] ≥ E[X]2 − cE[X] = p2 − cp

Using the above relation we have:

(p− c

2
)2 = p2 − cp +

c2

4
≤ q +

c2

4

Enhanced Security Notions for Dedicated-Key Hash Functions 13

and using the fact that
√

a + b ≤
√

a +
√

b for a, b ≥ 0 we have:

p− c

2
≤ √q +

c

2
that is, (remembering c = 1/|K|) we get the final result as p ≤ √q + 1/|K|.

To complete our proof for ‘s-Coll 99K ePre’, we construct an adversary B
against s-Coll property of H; such that Advs−Coll

H (B) = q as follows. Adver-
sary B, on receiving the first random key K, chooses another random key K ′

and employs A as shown in the ‘Reset Experiment’, by putting K1 = K and
K2 = K ′. B returns (M1,K1) and (M2,K2) as colliding pair in its own s-Coll
game. Advantage of B in s-Coll game will be the same as the probability that the
‘Reset Experiment’ returns 1. This can be easily verified by considering the con-
dition that the ‘Reset Experiment’ returns 1; noticing the defining game of s-Coll
property in Fig. 4, and the definition of predicate Verify(., ., .). Note that the
Reset Experiment returns 1 if (Verify(M1,K1, Y) = 1 ∧ Verify(M2,K2, Y) =
1 ∧ K1 6= K2), and from the definition of Verify(., ., .) this means that
(HK1(M1) = HK2(M2) = Y ∧ K1 6= K2). Hence, whenever the Reset Ex-
periment returns 1 the pair (K1,M1) 6= (K2,M2) and HK1(M1) = HK2(M2),
i.e. B succeeds in s-Coll attack against H. This ends the proof of ‘s-Coll 99K
ePre’.

The cases for ‘s-Sec[δ] 99K s-Pre[δ]’ and ‘s-aSec[δ] 99K s-aPre[δ]’. Proofs
of these two cases can be found in the full version of this paper in [22]. ut

3.3 Separations

We use xxx 9 yyy to show that notion xxx does not imply notion yyy. These
separation results are shown by providing counterexamples. Namely, assuming
that there exists a dedicated-key hash function H : {0, 1}k × {0, 1}m → {0, 1}n
that is (t, ε) − xxx secure, we construct (as a counterexample) a dedicated-key
hash function G : {0, 1}k × {0, 1}m → {0, 1}n which is (t′, ε′) − xxx secure, but
completely insecure in yyy sense; i.e. Advyyy

G (c) ≈ 1, where c is a small constant.
The concrete relations between adversarial advantages (i.e. ε = Advxxx

H (t) and
ε′ = Advxxx

G (t′)) and the resource parameters (t and t′) are given explicitly for
each case.

The following simple lemma will be quite useful in stating the separation
results compactly.

Lemma 2. Let xxx, yyy, and zzz be any three security properties defined for a
hash function H : K ×M→ {0, 1}n. If zzz→ yyy, then from xxx 9 yyy we can
conclude that xxx 9 zzz.

Proof. Note that zzz → yyy (in this paper) means that Advyyy
H (t′) ≤ Advzzz

H (t),
where t′ = t−c for a small constant c. Hence, if one constructs a counterexample
hash function G : {0, 1}k × {0, 1}m → {0, 1}n that has the property xxx, but is
insecure in the yyy sense (i.e. Advyyy

G (c) ≈ 1, for a small constant c), then clearly
Advzzz

G (c′) ≈ 1 for a small constant c′; that is, G will also be insecure in the zzz
sense.

14 M. R. Reyhanitabar, W. Susilo and Y. Mu

Remark 2. We should mention that for extreme ranges of the parameter values,
when the provisional implications vanish (e.g. when there is no compression;
δ = n), Rogaway and Shrimpton [24] considered the possibility of showing some
“unconditional separation” results, but as they stated in [24]: “That uncondi-
tional separations are (sometimes) possible in this domain is a consequence of
the fact that, for some values of the domain and range, secure hash functions
trivially exist (e.g. the identity function HK(M) = M is collision-free [but not
preimage resistant]). ” In this paper, we do not consider such unconditional
separations and instead we emphasize that provisional implications must be in-
terpreted carefully according to the exact bounds shown by related reductions.

Figure 5 lists the counterexamples that we use to prove the separation results.
Construction of some of these counterexamples are inspired from those of [24,
20, 21], where they were utilized to show other separation results.

G1K(M) =
{

C∗ if K = K∗

HK(M) otherwise

G2K(M) =
{

K1...n if val(M) = val(K)
HK(M) otherwise

G3K(M) =
{

HK(0m−k||K) if M = 1m−k||K
HK(M) otherwise

G4K(M) =
{

C∗ if M = 0m ∨ M = 1m

HK(M) otherwise

G5K(M) = HK(M1···m−1||0)

G6K(M) =
{

C∗ if M = M∗

HK(M) otherwise

G7K(M) =

 K1...n if val(M) = val(K) (1)
HK(〈val(K)〉m) if val(M) 6= val(K) ∧ HK(M) = K1...n (2)
HK(M) otherwise (3)

G8K(M) =

 K1...n if M = M∗ (1)
HK(M∗) if M 6= M∗ ∧ HK(M) = K1...n (2)
HK(M) otherwise (3)

G9K(M) =
{

K1...n if M = M∗

HK(M) otherwise

Fig. 5. Construction of counterexample hash functions Gi : {0, 1}k×{0, 1}m → {0, 1}n,
for 1 ≤ i ≤ 9, from a given hash function H : {0, 1}k×{0, 1}m → {0, 1}n. For the cases
of G2, G3, G7, G8, G9, it is assumed that m > k ≥ n. The parameters K∗ ∈ {0, 1}k;
M∗ ∈ {0, 1}m; and C∗ ∈ {0, 1}n have arbitrary and fixed values; e.g. K∗ = 0k, M∗ =
0m, C∗ = 0n.

Referring to (the three tables in) Fig. 2, it can be seen that there are 87
separations among the properties, of which 11 separations are already known

Enhanced Security Notions for Dedicated-Key Hash Functions 15

from [20, 21]. In the sequel, we complete the study of all the remaining 76 new
separations. The proofs are organized as follows:

– Theorem 3 (showing 2 separations) and Theorem 4 (showing 22 separations)
together with Lemma 2 and the security-preserving implications (see Fig. 2)
provide details of the 41 new separations shown in the top two tables in Fig.
2.

– Theorem 5 (showing 7 separations) and Theorem 6 (showing 7 separations)
together with Lemma 2 provide the remaining 35 new separations shown in
the bottom table in Fig. 2.

Theorem 3. s-Coll 9 aSec and s-Coll 9 aPre

Proof. We use counterexample G1, defined in Fig. 5, to prove these separations.
Let’s first demonstrate that G1 is completely insecure in both the aSec sense
and the aPre sense.

– AdvaSec
G1 (c′) = 1: Consider the following simple adversary A = (A1, A2)

playing aSec game against G1. A1 chooses the key as K = K∗, and A2

after receiving the first randomly selected message M , outputs any different
message M ′ 6= M . It can be easily seen that this adversary, spending a
small constant c′, always wins the aSec game because M ′ 6= M , and by the
construction of G1 we have G1K∗(M ′) = G1K∗(M) = C∗.

– AdvaPre
G1 (c′) = 1: Consider the following simple adversary A = (A1, A2)

playing aPre game against G1. A1 chooses the key as K = K∗, and A2

after receiving the hash value Y = G1K∗(M) = C∗, outputs any arbitrary
message M ′ ∈ {0, 1}m. Adversary A = (A1, A2) always wins the aPre game
because, according to the construction of G1, we have G1K∗(M ′) = C∗ for
any M∗ ∈ {0, 1}m.

To complete the proof, we show that G1 inherits the s-Coll property of H by

demonstrating that Advs−Coll
G1 (t′) ≤ Advs−Coll

H (t) +
√

Advs−Coll
H (t) + 2−k+1.

Let A be any adversary that can win s-Coll game against G1 with success
probability ε′ = Advs−Coll

G1 (A) and having time complexity at most t′. Consider
the following adversary B against s-Coll property of H which uses A as a sub-
routine (and simply forwards whatever it returns):

Algorithm B(K)
10: if K = K∗ then bad← true

20: (M,M ′,K ′) $← A(K);
30: if HK(M) = C∗ then bad← true
40: return (M,M ′,K ′)

We note that the use of the flag ‘bad’ (whose initial value is assumed to be
false) in the description of B is only aimed to make the proof easier to follow;
otherwise, the lines 10 and 30 in the description of B are dummy and can be
omitted from B without affecting its operation.

16 M. R. Reyhanitabar, W. Susilo and Y. Mu

Let Bad be the event that the flag bad is set to true by B, i.e. either K = K∗

or HK(M) = C∗. We show that if Bad does not happen then B will succeeds
in the s-Coll attack against H whenever A succeeds in the s-Coll attack against
G1.

Note that A succeeds in the s-Coll attack against G1 whenever (M,K) 6=
(M ′,K ′) and G1K(M) = G1K′(M ′). Assuming that the event Bad does not
happen; that is, K 6= K∗ ∧ HK(M) 6= C∗, and referring to the construction
of G1, it can be observed that in this case G1K(M) = G1K′(M ′) will imply
that HK(M) = HK′(M ′); that is, B also succeeds in the s-Coll attack against
H. As it is assumed that H is (t, ε)−s-Coll, we have: ε ≥ Pr[B succeeds] =
Pr[A succeeds ∧Bad] ≥ Pr[A succeeds]−Pr[Bad] = ε′ −Pr[Bad]. Rearranging
the terms we have:

ε′ ≤ ε + Pr[Bad] (4)

Now we need to upperbound Pr[Bad] = Pr[K = K∗∨HK(M) = C∗]. Using the
union bound we have:

Pr[Bad] ≤ Pr[K = K∗] + Pr[HK(M) = C∗] = 2−k + Pr[HK(M) = C∗] (5)

It remains to upper-bound p = Pr[HK(M) = C∗]. We claim that:

Claim. p = Pr[HK(M) = C∗] ≤ 2−k +
√

ε.

Before continuing to prove this claim, note that the inequalities (4), (5) and
the above claim complete the proof of the Theorem 3, i.e. we get the target
upper-bound as ε′ ≤ ε +

√
ε + 2−k+1. Clearly, the time complexity of B (denote

by t) is that of A (denote by t′) plus a small constant time c, i.e. t = t′ + c.

Proof of the Claim: Let Verify(M,K) be a deterministic boolean predicate which
is defined as follows:

Verify(M,K) =
{

1 if HK(M) = C∗

0 otherwise

According to the description of B, the probability p = Pr[HK(M) = C∗] is
taken over the random coins used by A and the random selection of the first
key K. Let R ∈ {0, 1}r denote the random tape used by A. Referring to the de-
scription of B it can be seen that p equals to the probability that the following
experiment returns 1:

Experiment I

R
$← {0, 1}r ;

K
$← {0, 1}k ; (M,M ′,K ′) = A(K;R); d = Verify(M,K);

return d

Let q be the probability that the following reset experiment returns 1:

Enhanced Security Notions for Dedicated-Key Hash Functions 17

Experiment II

R
$← {0, 1}r ;

K1 $← {0, 1}k ; (M1,M1′,K1′) = A(K1;R); d1 = Verify(M1,K1);

K2 $← {0, 1}k ; (M2,M2′,K2′) = A(K2;R); d2 = Verify(M2,K2);
If (d1 = 1 ∧ d2 = 1 ∧ K1 6= K2) then return 1 else return 0

The proof of the following proposition is similar to that of Proposition 1.

Proposition 2. p ≤ √q + 2−k.

To complete the proof of the Claim, we show that q ≤ ε. We construct
an adversary C against s-Coll property of H, such that Advs−Coll

H (C) = q,
as follows: The adversary C, on receiving a random key K1, chooses another
random key K2, and uses A by reseting it as shown in the Experiment II. C
returns (K2,M1,M2) in its s-Coll game. Advantage of C in s-Coll game will
be the same as the probability that the Experiment II returns 1. This can be
easily verified by considering the condition that the Experiment II returns 1;
noticing the defining game of s-Coll property in Fig. 4, and the definition of
predicate Verify(., .). Note that Experiment II returns 1 if Verify(M1,K1) =
1 ∧ Verify(M2,K2) = 1 ∧ K1 6= K2, and from the definition of Verify(., .)
this means that HK1(M1) = HK2(M2) = C∗ ∧ K1 6= K2. Hence whenever
the Experiment II returns 1, the pair (K1,M1) 6= (K2,M2) and HK1(M1) =
HK2(M2), i.e. C succeeds in s-Coll attack against H. ut

Theorem 4. Fix the values of the parameters for hash functions as indicated in
Fig. 5. The following separations hold (where c and c′ are small constant values
and t′ = t− c):

1. s-Sec 9 Coll: Advs−Sec
G3 (t′) ≤ Advs−Sec

H (t) + 2−m+1, and AdvColl
G3 (c′) = 1.

2. s-Sec 9 aSec: Advs−Sec
G1 (t′) ≤ Advs−Sec

H (t) +
√

Advs−Sec
H (t) + 2−k−m + 2−k,

and AdvaSec
G1 (c′) = 1.

3. s-Sec 9 aPre: Advs−Sec
G1 (t′) ≤ Advs−Sec

H (t) +
√

Advs−Sec
H (t) + 2−k−m + 2−k,

and AdvaPre
G1 (c′) = 1.

4. s-Sec 9 eSec: Advs−Sec
G4 (t′) ≤ Advs−Sec

H (t)+
√

Advs−Sec
H (t)+2−k−m+2−m+1,

and AdveSec
G4 (c′) = 1.

5. s-Sec 9 ePre: Advs−Sec
G4 (t′) ≤ Advs−Sec

H (t)+
√

Advs−Sec
H (t)+2−k−m+2−m+1,

and AdvePre
G4 (c′) = 1.

6. s-aSec 9 Coll: Advs−aSec
G3 (t′) ≤ Advs−aSec

H (t) + 2−m+1, and AdvColl
G3 (c′) = 1.

7. s-aSec 9 eSec: Advs−aSec
G4 (t′) ≤ Advs−aSec

H (t) +
√

Advs−aSec
H (t) + 3 × 2−m,

and AdveSec
G4 (c′) = 1.

8. s-aSec 9 ePre: Advs−aSec
G4 (t′) ≤ Advs−aSec

H (t) +
√

Advs−aSec
H (t) + 3 × 2−m,

and AdvePre
G4 (c′) = 1.

18 M. R. Reyhanitabar, W. Susilo and Y. Mu

9. s-eSec 9 s-Coll: Advs−eSec
G3 (t′) ≤ Advs−eSec

H (t) + 2−k+1, and
Advs−Coll

G3 (c′) = 1.

10. s-eSec 9 s-aSec: Advs−eSec
G1 (t′) ≤ Advs−eSec

H (t) +
√

Advs−eSec
H (t) + 2−k+1,

and Advs−aSec
G1 (c′) = 1.

11. s-eSec 9 s-aPre: Advs−eSec
G1 (t′) ≤ Advs−eSec

H (t) +
√

Advs−eSec
H (t) + 2−k+1,

and Advs−aPre
G1 (c′) = 1.

12. s-Pre 9 Coll: Advs−Pre
G5 (t′) ≤ 2Advs−Pre

H (t), and AdvColl
G5 (c′) = 1.

13. s-Pre 9 Sec: Advs−Pre
G5 (t′) ≤ 2Advs−Pre

H (t), and AdvSec
G5 (c′) = 1.

14. s-Pre 9 aSec: Advs−Pre
G5 (t′) ≤ 2Advs−Pre

H (t), and AdvaSec
G5 (c′) = 1.

15. s-Pre 9 eSec: Advs−Pre
G5 (t′) ≤ 2Advs−Pre

H (t), and AdveSec
G5 (c′) = 1.

16. s-Pre 9 aPre: Advs−Pre
G1 (t′) ≤ Advs−Pre

H (t) +
√

Advs−Pre
H (t) + 2−k, and

AdvaPre
G1 (c′) = 1.

17. s-Pre 9 ePre: Advs−Pre
G6 (t′) ≤ Advs−Pre

H (t) +
√

Advs−Pre
H (t) + 2−m, and

AdvePre
G6 (c′) = 1.

18. s-aPre 9 Coll: Advs−aPre
G5 (t′) ≤ 2Advs−aPre

H (t), and AdvColl
G5 (c′) = 1.

19. s-aPre 9 Sec: Advs−aPre
G5 (t′) ≤ 2Advs−aPre

H (t), and AdvSec
G5 (c′) = 1.

20. s-aPre 9 aSec: Advs−aPre
G5 (t′) ≤ 2Advs−aPre

H (t), and AdvaSec
G5 (c′) = 1.

21. s-aPre 9 eSec: Advs−aPre
G5 (t′) ≤ 2Advs−aPre

H (t), and AdveSec
G5 (c′) = 1.

22. s-aPre 9 ePre: Advs−aPre
G6 (t′) ≤ Advs−aPre

H (t)+
√

Advs−aPre
H (t)+2−m, and

AdvePre
G6 (c′) = 1.

The proof of the cases 2–5, 7–8, 10–11, 16–17, and 22 in this Theorem are quite
similar in main parts to that of Theorem 3, where we adapt the Reset Lemma to
obtain the square root terms in our upper-bounds. The reductions for the other
cases are also straightforward, and hence the proofs are omitted.

Theorem 5. For any property xxx ∈ {Coll, Sec, aSec, eSec, Pre, aPre, ePre},
we have xxx 9 s-Pre.

Proof. The proof is divided into two parts and can be found in the full version of
this paper in [22]: First, G7 is used as a counterexample to show that xxx 9 s-
Pre, for any xxx ∈ {Coll, Sec, aSec, eSec}. Then we use G2 as a counterexample
to demonstrate that xxx 9 s-Pre, for any xxx ∈ {Pre, aPre, ePre}.

Theorem 6. For any property xxx ∈ {Coll, Sec, aSec, eSec, Pre, aPre, ePre},
we have xxx 9 s-Sec.

Proof. The proof can be found in the full version of this paper in [22], where
counterexample function G8 is used to show that xxx 9 s-Sec, for any xxx ∈
{Coll, Sec, aSec, eSec}, and G9 is used as a counterexample to show that xxx 9
s-Sec, for any xxx ∈ {Pre, aPre, ePre}.

Enhanced Security Notions for Dedicated-Key Hash Functions 19

4 Conclusion

We have extended the set of security notions for dedicated-key hash functions
by providing new set of enhanced (strengthened) properties, which includes the
well-known enhanced target collision resistance property. The latter property has
been proven to be useful to enrich the notions of hash functions, in particular
with its application to construct the Randomized Hashing mode for strength-
ening digital signatures. We have also provided a full picture of relationships
among the (thirteen) security properties including the (six) enhanced proper-
ties and the previously considered seven properties. It is expected that by fu-
ture researches the new enhanced properties, introduced in this paper, may also
find interesting applications in practice. Meanwhile, we notice that these new
enhanced properties can be considered as easier targets to attack, by cryptan-
alysts who are trying to find (either certificational or major) weaknesses in the
dedicated-key hash functions; e.g., in some of the NIST SHA-3 candidates. For
instance, it might be the case that a hash function resists against the attacks on
the (conventional) Coll property, but becomes vulnerable to attacks against the
strengthened Coll (i.e. s-Coll) property.

Acknowledgments. We thank Angela Piper, Josef Pieprzyk, Jennifer Seberry,
and the anonymous reviewers of FSE 2010 for their constructive comments and
suggestions.

References

[1] Bellare, M., Rogaway, P.: Collision-Resistant Hashing: Towards Making
UOWHFs Practical. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 470–484. Springer (1997)

[2] Bellare, M., Palacio, A.: GQ and Schnorr Identification Schemes: Proofs of
Security against Impersonation under Active and Concurrent Attacks. In: Yung,
M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 162–177. Springer (2002)

[3] Contini, S., Steinfeld, R., Pieprzyk, J., Matusiewicz, K.: A Critical Look at
Cryptographic Hash Function Literature. In: ECRYPT Hash Workshop, 2007.

[4] Damg̊ard, I.: Collision Free Hash Functions and Public Key Signature Schemes.
In: Chaum, D., Price, W.L. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp.
203–216. Springer (1987)

[5] Damg̊ard, I. B.: A Design Principle for Hash Functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer (1990)

[6] Diffie, W., Hellman, M. E.: New directions in cryptography. IEEE Trans. on
Information Theory, vol. IT22, no. 6, 1976, pp. 644–654.

[7] Goldreich, O.: Foundations of Cryptography: Volume 2, Basic Applications.
Cambridge University Press, 2004.

[8] Halevi, S., Krawczyk, H.: Strengthening Digital Signatures Via Randomized
Hashing. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 41–59.
Springer (2006)

[9] Kelsey, J., Schneier, B.: Second Preimages on n-Bit Hash Functions for Much
Less than 2n Work. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 474–490. Springer (2005)

20 M. R. Reyhanitabar, W. Susilo and Y. Mu

[10] Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryp-
tography. CRC Press, 1996.

[11] Merkle, R.C.: Secrecy, Authentication, and Public Key Systems. UMI Research
Press, 1979.

[12] Merkle, R.C. : One Way Hash Functions and DES. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 428–446. Springer (1990)

[13] Naor, M., Yung, M.: Universal One-Way Hash Functions and Their Crypto-
graphic Applications. Proceedings of the 21st ACM Symposium on the Theory
of Computing–STOC 1989, pp. 33–43. ACM (1989)

[14] National Institute of Standards and Technology. FIPS PUB 180-2: Secure Hash
Standard. August 2002.

[15] National Institute of Standards and Technology. FIPS PUB 180-3: Secure Hash
Standard. June 2007.

[16] National Institute of Standards and Technology. NIST SP 800-
106: Randomized Hashing for Digital Signatures, February 2009.
http://www.csrc.nist.gov/publications/PubsSPs.html#800-106. (20 September
2009)

[17] National Institute of Standards and Technology. Cryptographic Hash Algorithm
Competition. http://csrc.nist.gov/groups/ST/hash/sha-3/index.html. (20 Sep-
tember 2009)

[18] Preneel, B.: Analysis and Design of Cryptographic Hash Functions. Doctoral
dissertation, K. U. Leuven, 1993.

[19] Rabin, M.O.: Digitalized Signatures. In: Lipton, R., DeMillo, R. (eds.) Founda-
tions of Secure Computation. Academic Press, New York, 1978, pp. 155–166.

[20] Reyhanitabar, M.R., Susilo, W., Mu, Y.: Enhanced Target Collision Resistant
Hash Functions Revisited. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665,
pp. 327–344. Springer (2009)

[21] Reyhanitabar, M.R., Susilo, W., Mu, Y.: An Investigation of the Enhanced
Target Collision Resistance Property for Hash Functions. Cryptology ePrint
Archive, Report 2009/506.

[22] Reyhanitabar, M.R., Susilo, W., Mu, Y.: Enhanced Security Notions for
Dedicated-Key Hash Functions: Definitions and Relationships. Cryptology
ePrint Archive, Report 2010/022.

[23] Rivest, R.: The MD5 Message-Digest Algorithm. RFC 1321, April 1992. Avail-
able at: http://www.ietf.org/rfc/rfc1321.txt (19 September 2009).

[24] Rogaway, P., Shrimpton, T.: Cryptographic Hash-Function Basics: Definitions,
Implications, and Separations for Preimage Resistance, Second-Preimage Re-
sistance, and Collision Resistance. In: Roy, B.K., Meier, W. (eds.) FSE 2004.
LNCS, vol. 3017, pp. 371–388. Springer (2004)

[25] Rogaway, P., Shrimpton, T.: Cryptographic Hash-Function Basics: Definitions,
Implications, and Separations for Preimage Resistance, Second-Preimage Resis-
tance, and Collision Resistance. Cryptology ePrint Archive: Report 2004/035
(Revised version of [24]: 9 Aug 2009).

[26] Rogaway, P.: Formalizing Human Ignorance: Collision-Resistant Hashing with-
out the Keys. In: Nguyen, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp.
211–228. Springer (2006)

[27] Yasuda, K.: How to Fill Up Merkle-Damg̊ard Hash Functions. In: Pieprzyk, J.
(ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 272–289. Springer (2008).

[28] Zheng, Y., Matsumoto, T., Imai, H.: Connections among several versions of one-
way hash functions. Special Issue on Cryptography and Information Security,
Proceedings of IEICE of Japan, 1990.

