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Abstract. In this article, we provide the first independent analysis of
the (2nd-round tweaked) 256-bit version of the SHA-3 candidate SHAvite-3.
By leveraging recently introduced cryptanalysis tools such as rebound at-
tack or Super-Sbox cryptanalysis, we are able to derive chosen-related-
salt distinguishing attacks on the compression function on up to 8 rounds
(12 rounds in total) and free-start collisions on up to 7 rounds. In partic-
ular, our best results are obtained by carefully controlling the differences
in the key schedule of the internal cipher. Most of our results have been
implemented and verified experimentally.
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1 Introduction

In cryptography hash functions are one of the most important and use-
ful tools. An n-bit cryptographic hash function H is a function taking
an arbitrarily long message as input and outputting a fixed-length hash
value of size n bits. One wants such a primitive to be collision resistant
and (second)-preimage resistant: it should be impossible for an attacker
to obtain a collision (two different messages hashing to the same value) or
a (second)-preimage (a message hashing to a given challenge) in less than
2n/2 and 2n computations respectively. However, in many protocols hash
functions are used to simulate the behavior of a random oracle [1] and the
underlying security proof often requires the hash function H to be indis-
tinguishable from a random oracle. This security notion naturally extends
to a fixed-input length random oracle with a compression function.

∗This work was partially supported by the French National Agency of Research:
ANR-06-SETI-013. The second author is supported by the National Competence
Center in Research on Mobile Information and Communication Systems (NCCR-
MICS), a center of the Swiss National Science Foundation under grant number 5005-
67322. The third author is supported by the Singapore National Research Foundation
under Research Grant NRF-CRP2-2007-03.



In recent years, we saw the apparition of devastating attacks [23, 22]
that broke many standardized hash functions [20, 14]. The National Insti-
tute of Standards and Technology (NIST) launched the SHA-3 competi-
tion [16] in response to these attacks and in order to keep an appropriate
security margin considering the increase of the computation power or
potential further cryptanalysis improvements. The outcome of this com-
petition will be a new hash function standard, to be selected in 2012.
Among the 64 candidates originally submitted and the 14 selected for
the 2nd round of the competition, one can observe that a non negligible
proportion are AES-based proposals (reuse of some parts of the AES block
cipher [15, 5] or mimicry of its structure), as SHAvite-3 [3] for example.

This fact motivated the academic community to improve its knowledge
concerning the security of the AES block cipher or AES-like permutations
in the setting of hash functions [17, 8, 13, 11, 10, 12, 7]. For an attacker,
one of the major distinction between cryptanalyzing a block cipher and
a hash function is that in the latter he has full access to the internal
computation and thus he can optimize its use of the freedom degrees. In
particular, the recent SHA-1 attacks where made possible thanks to an
improvement of the use of the freedom degrees. In the case of AES-based
hash functions, the rebound attack [13, 10], Start-from-the-middle [12] or
Super-Sbox cryptanalysis [7] are very handy tools for a cryptanalyst.

During the first round of the SHA-3 competition, SHAvite-3 was first
analyzed by Peyrin [18] who showed that an attacker could easily find
chosen-counter chosen-salt collisions for the compression function. This
weakness led to a tweaked version of the algorithm for the second round.
Then, recently new cryptanalysis results [4, 6] on the 512-bit version of
SHAvite-3 were published, in particular a chosen-counter chosen-salt
preimage attack on the full compression function of SHAvite-3-512.

Our contributions. In this paper, we give the first cryptanalysis results
on the tweaked 256-bit version of SHAvite-3-256. By using the rebound
attack or Super-Sbox cryptanalysis, we are able to derive distinguishers
for a reduced number of rounds of the internal permutation of SHAvite-3-
256. Those results can then be transformed into distinguishers or can
be used to mount a free-start collision attack for reduced versions of
the compression function. The number of rounds attacked can be further
extended by authorizing the attacker to fully control the salt values. The
results are summarized in Table 1. We emphasize that most of the attacks
have been implemented and verified experimentally.



Table 1. Summary of results for the SHAvite-3-256 compression function.

rounds
comput. memory

type section
complexity complexity

6 280 232 free-start collision sec. 3

7 248 232 distinguisher sec. 3

7 27 27 chosen-related-salt distinguisher sec. 4.1

7 225 214 chosen-related-salt free-start near-collision sec. 4.2

7 296 232 chosen-related-salt semi-free-start collision ext. vers.

8 225 214 chosen-related-salt distinguisher sec. 4.2

2 The SHAvite-3-256 Hash Function

SHAvite-3-256 is the 256-bit version of SHAvite-3 [3], an iterated hash
function based on the HAIFA framework [2]. We describe here the tweaked
version of the algorithm. The message M to hash is first padded and then
split into ` 512-bit message blocks M0‖M1‖ . . . ‖M`−1. Then, the 256-bit
internal state (initialized with an initial value IV ) is iteratively updated
with each message block using the 256-bit compression function C256.
Finally, when all the padded message blocks have been processed, the
output hash is obtained by truncating the internal state to the desired
hash size n as follows:

h0 = IV, hi = C256(hi−1,Mi−1, salt, cnt), hash = truncn(hi)

Internally, the 256-bit compression function C256 of SHAvite-3-256
consists of a 256-bit block cipher E256 used in classical Davies-Meyer
mode. The input of the compression function C256 consists of a 256-bit
chaining value hi−1, a 512-bit message block Mi−1, a 256-bit salt (denoted
salt) and a 64-bit counter (denoted cnt) that represents the number of
message bits processed by the end of the iteration. The output of the
compression function C256 is given by:

hi = C256(hi−1,Mi−1, salt, cnt) = hi−1 ⊕ E256
Mi−1‖salt‖cnt(hi−1)

where ⊕ denotes the XOR function.

2.1 The block cipher E256

The internal block cipher E256 of the SHAvite-3-256 compression function
is composed of 12 rounds of a classical 2-branch Feistel structure. The
chaining variable input hi−1 is first divided into two 128-bit chaining
values (A0, B0). Then, for each round, the Feistel construction computes:

(Ai+1, Bi+1) = (Bi, Ai ⊕ Fi(Bi)), i = 0, . . . , 11



where Fi is a non-linear function composed of three full AES rounds. More
precisely, if one considers that AESr denotes the unkeyed AES round (i.e.
SubBytes SB, ShiftRows ShR and MixColumns MC functions in this
order), then Fi is defined by (see Figure 1) :

Fi(x) = AESr(AESr(AESr(x⊕ k0
i )⊕ k1

i )⊕ k2
i ) (1)

where k0
i , k1

i and k2
i are 128-bit local keys generated by the message

expansion of the compression function C256 (it can also be viewed as
the key schedule of the internal block cipher E256). We denote by RKi =
(k0

i , k
1
i , k

2
i ) the group of local keys used during round i of the block cipher.
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Fig. 1. Round i of the state update of SHAvite-3-256 compression function.

2.2 The message expansion

The message expansion of C256 (the key schedule of E256) takes a 512-bit
message block Mi, the 256-bit salt (salt) and the 64-bit counter (cnt)
as inputs. The 512-bit message block Mi is represented as an array of
sixteen 32-bit words (m0,m1, . . . ,m15), the 256-bit salt as an array of
eight 32-bit words (s0, s1, . . . , s7) and the counter as an array of two 32-
bit words (cnt0, cnt1). 36 128-bit AES local subkeys kj

i (with 0 ≤ i ≤ 11
and 0 ≤ j ≤ 2) are generated, seen as 144 words of 32 bits each (one word
standing for one AES column), represented in an array rk[0...143]:

(k0
i , k

1
i , k

2
i ) = (rk[12 · i], rk[12 · i+ 1], rk[12 · i+ 2], rk[12 · i+ 3]),

(rk[12 · i+ 4], rk[12 · i+ 5], rk[12 · i+ 6], rk[12 · i+ 7]),
(rk[12 · i+ 8], rk[12 · i+ 9], rk[12 · i+ 10], rk[12 · i+ 11])

The first 16 values of the array rk are initialized with the message
block mi, i.e. rk[i] = mi with 0 ≤ i ≤ 15. Then, the rest of the array is
filled by repeating four times the step described in Figure 2. During one
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Fig. 2. The first step of the message expansion of the SHAvite-3-256 compression
function. The salt words are XORed to the internal state before the parallel AES rounds
application. The counters are XORed several times at different positions.

step, sixteen 32-bit words are first generated using parallel AES rounds
and a subsequent linear expansion step L1 (the salt words are XORed to
the internal state before applying the AES rounds). Note that during each
step the two counter words cnt0 and cnt1 (or a complement version of
them) are XORed with two particular 32-bits words at the output of the
AES rounds. Then, sixteen more 32-bit words are computed using only
another linear layer L2. For more details on the message expansion, we
refer to the submission document of the tweaked version of SHAvite-3 [3].

3 Rebound and Super-Sbox Analysis of SHAvite-3-256

Before describing our distinguishing and free-start collision attacks on
reduced versions of the SHAvite-3-256 compression function, we first ex-
plain what are the main tools we are going to use.



3.1 The cryptanalyst tool 1: the truncated differential path

When cryptanalyzing AES-based hash functions (or more generally byte-
oriented primitives), it has been shown [17] that it is very handy to look at
truncated differences [9]: instead of looking at the actual difference value
of a byte, one only checks if a byte contains a difference (active byte) or not
(inactive byte). In addition to simplifying the analysis, the direct effect
is that the differential behavior through the non-linear Sboxes becomes
deterministic. On the other hand, the differential transitions through the
linear MixColumns layer will be verified probabilistically.

More precisely, the matrix multiplication underlying the AES Mix-
Columns transformation has the interesting property of being a Maximum
Distance Separable (MDS) mapping: the number of active input and out-
put bytes for one column is always greater or equal to 5 (unless there is no
active input and output byte at all). When picking random input values,
the probability of success for a differential transition that meets the MDS
constraints through a MixColumns layer is determined by the number
of active bytes in the output: if such a differential transition contains k
active bytes in one column of the output, its probability of success will
approximatively be equal to 2−8×(4−k). For example, a 4 7→ 1 transition
for one column has success probability of approximatively 2−24. Note that
the same reasoning applies when dealing with the invert function as well.

In the following, we will use several different types of truncated dif-
ferential masks for a given 128-bit AES state. We reuse the idea from [19]
and we restrict ourselves to four types of byte-wise truncated differen-
tial words F, C, D and 1, respectively a fully active state, one fully active
column only, one fully active diagonal only and one active byte only. Con-
sidering those 4 types of differential masks seems natural because of the
symmetry and diffusion properties of an AES round.

We are especially interested in the truncated differential transitions
through 3 rounds of the AES since it is the main basic primitive used in
the round function of the SHAvite-3-256 compression function. We would
like to know what is the probability to go from one truncated differen-
tial mask to another (both forward and backward) and the corresponding
differential path. First, we can compute the approximate probability of
success for a one-round transition between the four types of truncated
differential states for both forward and backward directions. Those prob-
abilities are simply obtained by studying the MixColumns transitions for
one AES round. For example, one can easily check that when computing
forward, going from D to F with the trail D 7→ 1 7→ C 7→ F happens with
probability 2−24 with randomly selected input values and active bytes



difference values. The same probability holds for the inverse trail in the
backward direction.

3.2 The cryptanalyst tool 2: the freedom degrees

The second very important tool for a hash function cryptanalyst are the
freedom degrees. The rebound attack [13] uses a local meet-in-the-middle-
like technique in which the freedom degrees are consumed in the middle
part of the differential path, right where they can improve at best the
overall complexity. More precisely, the rounds in the middle are controlled
(the controlled rounds) and will be verified with only a few operations on
average, while the rest of the path both in forward and backward direc-
tion is fulfilled probabilistically (the uncontrolled rounds). This method
provides good results [11, 10], but the controlled part is limited to two
rounds only. In [12], this technique is generalized to start-from-the-middle
attacks, allowing to control 3 rounds in the middle part, without increas-
ing the complexity (i.e. only a few operations on average). However, this
technique is more complex to handle and only works for differential paths
for which the middle part does not contain too many active bytes. Finally,
the Super-Sbox cryptanalysis (independently introduced in [10] and [7])
can also control 3 rounds in the middle of the differential trail with only
a few operations on average and works for any differential path. The idea
is that one can view two rounds of an AES-like permutation as the parallel
application of a layer of big Sboxes, named Super-Sboxes, preceded and
followed by simple affine transformations. This technique can find several
solutions for an average cost of 1, but there is a minimal cost to pay in
any case: the complexity of the attack in the case of the AES permutation
is max{232, k} computations and 232 memory, where k is the number of
solutions found verifying the controlled rounds.

3.3 Super-Sbox attacks for reduced SHAvite-3-256

Having introduced our cryptanalyst tools, we will derive distinguishing
attacks for the 7-round reduced SHAvite-3-256 compression function, or
even free-start collision attacks (collision for which the incoming chain-
ing variable is fully controlled by the attacker) for the 6-round reduced
version. We start with the 6-round truncated differential path built by re-
moving the last round of the 7-round differential path depicted in Figure 3.
First, one can check that this path is valid as it contains no impossible
MixColumns transitions. Moreover, a simple analysis of the amount of
freedom degrees (as it is done in [7]) shows that we have largely enough



of them in order to obtain at least one valid solution for the whole differ-
ential path: we have a probability of about 2−48 that a valid pair for the
differential path exists when the ∆ and the subkeys values are fixed. Ran-
domizing those values provides much more than the 248 freedom degrees
required.

first round

second round

third round

fourth round

fifth round

sixth round

seventh round

∆

∆

∆

∆∆

∆∆

∆

∆

∆

2−24

2−24

Super-Sbox

Super-Sbox

Fig. 3. The 7-round truncated differential path. The left part is the three first rounds
and the right part the four last ones. Each gray cell stands for an active byte. A hatched
state denotes a fully active state obtained by applying the MixColumns function on
only one active byte per column. All D 128-bit words contain the difference ∆.

The most costly part is obviously located in the middle, during the
third and fourth rounds where we have fully active AES states (F-type).
Thus, we will use the available freedom degrees at those particular rounds
precisely. Let ∆ be one of the 232 possible D-type difference values. With
the Super-Sbox technique and by using the freedom degrees available on
the message input, we will find a valid 128-bit pair for the fourth round,
mapping the difference ∆ to the very same difference through the 3 AES
rounds. Then, we will do the same for the third round.

The subkeys used during the fourth round are k0
3, k1

3, k2
3. We first

choose a random value for k2
3. Then, using the Super-Sbox technique, for

a cost of max{232, 232} = 232 computations and 232 memory, one can
generate 232 pairs of 128-bit states verifying the truncated differential
path for the 3 AES rounds in the right branch of the fourth round: D 7→
C 7→ F 7→ D. At the present time, we did not fix k0

3 nor k1
3, because we were



only looking at truncated differences: for each 128-bit solution pair found,
the 3 AES rounds truncated differential path will be verified whatever is
the value of k0

3 or k1
3 (more precisely k1

3 will only have an incidence on
the exact D-type difference value on the input of the pairs, while k0

3 will
have no incidence on the difference at all). Note that the Super-Sbox
technique allows us to directly force the exact difference value ∆ at the
output of the 3 AES rounds. Indeed, one can observe that the output of the
3 AES rounds is only a linear combination of the 4 Super-Sboxes outputs.
However, the exact difference value on the four active bytes at the input
of the 3 AES rounds is unknown because of the SubBytes layer of the first
AES round. In order to get the desired difference value ∆ on the input as
well, for each solution pair we choose accordingly the value of k1

3. More
precisely, only the first column of k1

3 must be accommodated (only the first
column is active when incorporating k1

3) and this can be done byte per
byte independently. Exhausting all the AES Sbox differential transitions
during a 216 operations precomputation phase allows us to perform this
step with only four table lookups. At this moment, for a cost of 232

computations and memory, we found 232 pairs of 128-bit states that map
∆ to ∆ through the 3 AES rounds of the fourth SHAvite-3-256 round.
For each pair, the value of k2

3 and the first column of k1
3 are fixed, but the

rest of the message is free to choose.
We perform exactly the same method in order to find 232 pairs of

128-bit states that map ∆ to ∆ through the 3 AES rounds of the third
SHAvite-3-256 round. The only difference is that we will have to fix k2

2

and choose the first column of k1
2. This can be done independently from

the previously fixed values of k2
3 and the first column of k1

3 (by setting the
second column of k1

3, see Figure 2). We are left with two sets, each of 232

pairs, verifying independently the third and fourth rounds. The subkey
material that remains free is set to a random value and the second and
fifth rounds of the differential path is verified with probability 1.

Then, the rest of the path (the uncontrolled rounds) is verified proba-
bilistically: we have one D 7→ 1 7→ C 7→ F transition in the first round and
another one in the sixth round. As already demonstrated, this happens
with probability 2−2∗24 = 2−48. Overall, one can find a valid candidate
for the whole 6-round truncated differential path with 248 computations
and 232 memory.

If the very last branch switching of the Feistel structure is removed
(at the end of the sixth round) and due to the Davies-Meyer construction,
one can obtain a free-start collision if the active byte differences on the
input of the first round are equal to the active byte differences on the



output of the sixth round. This happens with probability 2−32 because we
have the right 128-bit word of the internal state containing the difference
∆ on both the input and output. The left one is fully active but its
differences belong to a 4-byte subspace since only one MixColumns linear
application away from a 4-byte difference (hatched states in Figure 3).
Finally, by repeating the process, one can find a free-start collision for
6-round reduced SHAvite-3-256 with 248+32 = 280 computations and 232

memory.

We can now move to the full 7-round path depicted in Figure 3. One
solution for the entire path can still be obtained with 248 computations
and 232 memory since the differential trail in the last round is verified with
probability 1. A solution pair will have a difference ∆ on its right word
input and a difference maintained in a subspace of roughly 232 elements
on its left word input (as denoted with hatched cells in Figure 3). Con-
cerning the output, the differences on the left 128-bit output word is kept
in the same subspace of 232 elements, while the right output word will
have a random difference. Overall, after application of the feed-forward,
we obtain a compression function output difference maintained in a sub-
space of at most 2160 elements, while the input difference is maintained in
a subspace of 232 elements (since the message/salt/counter inputs contain
no difference and the value of ∆ is fixed). This is equivalent to mapping
a fixed 672-bit input difference (224 bits for the chaining variable, 256
bits for the non active incoming message chunk, 128 and 64 bits for the
non active incoming salt and counter chunks respectively) to a fixed 96-
bit output difference through a 704-bit to 256-bit compression function.
According to the limited-birthday distinguishers [7], this should require
264 computations in the ideal case.1 Thus, one can distinguish a 7-round
reduced version of the SHAvite-3-256 compression function with 248 com-
putations and 232 memory.

4 Chosen-Related-Salt Distinguishers

While the previous section takes a full advantage of the Super-Sbox tech-
niques in its analysis, this section presents an attack that uses rebound
attack principle fully exploiting the message expansion. This leads to 7-
round and 8-round chosen-related-salt distinguishers on the SHAvite-3-

1As shown in [7], if we denote by i (resp. j) the number of fixed-difference bits in the
input (resp. in the output) and by t the total number of input bits of the compression
function, the equivalent complexity to find such a structure for a random compression
function is 2i+j−t = 2672+96−704 = 264 computations.



256 compression function with a complexity of 27 and 225 operations re-
spectively. Also, one can find chosen-related-salt semi-free-start collisions
on 7 rounds of the SHAvite-3-256 compression function with a complexity
of 296 operations (see extended version of this article). In this section, we
will insert differences in the message and in the salt input of the compres-
sion function. The main principle of those analyses relies on correcting
the differences at the end of each round so that they are not spread af-
terwards. The 8-round differential path used is given in Figure 4, while
the 7-round version is obtained by removing the seventh round. All the
differences in the successive internal states will be canceled from state 1
to state 7. This could be done by considering differences in the first four
32-bit words of the salt denoted (s0, s1, s2, s3), in eight 32-bit message
words (m0,m1,m2,m3) and (m8,m9,m10,m11) and differences in A0, the
left part of the initial chaining value, the other parameters being taken
without any difference. The notations used are the ones of Section 2: Ai

denotes the left part of the state at round i (where i goes from 0 to 8),
and Bi the right part of the internal state at round i.

∆10∆1

first round
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000
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∆2∆2∆3

fifth round

∆3∆4∆5

sixth round

∆6∆7∆8

seventh round

???

eight round

Fig. 4. The 8-round truncated differential path. The left part represents the four first
rounds and the right part the four last ones. Each gray cell stands for an active byte.
The ∆’s in each round denote the differences incorporated by the subkeys. For the
7-round differential path, we remove the differences control in the seventh round.



The difference values in the salt words and in the message words are
chosen to be identical (∆1), so that they cancel for the subkeys generated
after the first round of the message expansion. Moreover, the subkeys
involved in rounds 2, 3 and 4 will not contain any difference (as shown
on Figure 5). We concentrated our analysis on the active rounds in the
middle of the trail, i.e. rounds 5, 6 (and 7 in the case of the 8-round
distinguisher). The probability of success for the rest of the differential
path is one since in the first round the differences can spread freely.
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Fig. 5. Differential cancellation and differential equalities in the message expansion
for the 7-round and 8-round chosen-related-salt distinguishers on the SHAvite-3-256
compression function. ∆̃ represents the difference ∆ after application of the column
switching layer just before the salt incorporation.

We start by finding a valid pair that verifies the path for the rounds 5,
6 and 7. Let us remember that at the beginning, we have just established
the truncated differential path, i.e. the actual difference values in the bytes
are unknown. Thus, when required, we will fix the difference values of the
active bytes and also the values themselves. We will insert differences in
the first four salt words (s0, s1, s2, s3), all their bytes being active. As
before, when we refer to words, we denote the AES column 32-bit words
in the message expansion.

For a better understanding of the distinguisher procedure, we discrim-
inate 5 distinct kinds of ways in order to determine values and differences:



– Type a means that we directly choose the values and the differences.
This can be done when there is no previous restriction.

– Type b are determined by the linear part of the message expansion.
In this case, a linear relation of previously fixed differences or values
completely determines the remaining ones.

– Type c are determined by the non-linear part of the message expan-
sion. Here, a non linear relation of previously fixed differences and
values determines the remaining ones.

– Type d are produced by some previous conditions on the Feistel path.
That is, for example, if the value of Bi ⊕ k0

i+1 is fixed and then this
subkey is determined, we automatically deduce the value of Bi from
this equation. This will directly determine Ai+1 since Ai+1 = Bi.

– Type e are fixed by the AES rounds. This basically represents the
conditions associated to the controlled rounds part.

From now on and for a better clarity, we indicate its type in brackets for
each determination. When omitted, the default type is a. We will first
describe the distinguisher on 7 rounds and then the one on 8 rounds.

4.1 7-Round Distinguisher with 27 computations

As partially shown on Figure 4, the aim of the 7-round distinguisher is
to find a pair of plaintext/ciphertext values for the internal block cipher
of SHAvite-3-256 such that there is no difference on the right part of
the plaintext and on the left part of the ciphertext. As shown in [7], the
corresponding complexity to find such a structure for a random permuta-
tion is equal to 264 computations. We show in this section how to find a
pair of inputs that verifies the path with a time and memory complexity
of 27 (by omitting the last branch swapping of the Feistel construction,
the attack also applies to the compression function SHAvite-3-256 with
the same practical and ideal complexities). In order to build this distin-
guisher, we would like to find values and differences of the subkeys such
that the difference in the 3 AES rounds during SHAvite-3-256 rounds 5
and 6 are auto-erased. The differences generated by the subkeys in the
seventh round are let completely free for the 7-round distinguisher and it
will not be the case for the 8-round distinguisher. We first give in Table 2
how to fix the degrees of freedom in order to avoid any impossibility.

Fifth round: As described in Figure 4, after the fourth round, the inputs
of the fifth do not contain any active byte. The differences will be injected
during the fifth round through the message expansion. The idea is to erase



Table 2. Order and conditions for fixing values and differences. ∆2 and ∆3 are chosen
such that ∆2 and ∆2 ⊕ ∆3 can be both generated from an AES layer with the same
difference in the inputs (for randomly chosen ∆2 and ∆3, this is verified with very
high probability). When going through all these steps followed in the given order, we
are left with the degrees of freedom associated to the values of the words of the salt
s0, s1, s2, s3. Thus, we can pick a random value for those remaining freedom degrees
and finally compute the valid pair for the 7-round differential path. * represents the
steps that are not executed for the distinguisher over 8 rounds.

instant fixed implies type cost

(type a)

begin ∆k04 = ∆2 ∆k14 = ∆2 b 1

∆k24 = ∆3 ∆k05 = ∆3 b 1

∆k15 = ∆2 ⊕ ((∆3 ∧ (296 − 1))||((∆3 >> 96)⊕∆2) ∧ (232 − 1)) b 1

∆k25 = ∆2 ⊕ ((∆k15 ∧ (296 − 1))||((∆k15 >> 96)⊕∆2) ∧ (232 − 1)) b 1

∆k06 = ∆3 ⊕ ((∆k25 ∧ (296 − 1))||((∆k25 >> 96)⊕∆3) ∧ (232 − 1)) b 1

∆k16 = ∆3 ⊕ ((∆k06 ∧ (296 − 1))||((∆k06 >> 96)⊕∆3) ∧ (232 − 1)) b 1

round 5 B4 ⊕ k04 k14 : AESr(AESr(B4 ⊕ k04)⊕ k14)⊕ e 26

AESr(AESr(B4 ⊕ k04 ⊕∆2)⊕ k14 ⊕∆2) = ∆3

round 6 B5 ⊕ k05 k15 : AESr(AESr(B5 ⊕ k05)⊕ k15)⊕ e 26

AESr(AESr(B5 ⊕ k05 ⊕∆3)⊕ k15 ⊕∆k
1
5) = ∆k25

k25 = k14 ⊕ ((k15) ∧ (296 − 1)||((k15 >> 96)⊕ k14) ∧ (232 − 1) b 1

k04 ∧ (232 − 1) = (k15 ∧ (232 − 1))⊕ (((k15) >> 96) ∧ (232 − 1)) b 1

B4 ∧ (232 − 1) = (k04 ∧ (232 − 1))⊕ (k04 ⊕ B4) ∧ (232 − 1) b 1

end δs0 . . . δs3 k24 : AES−1
r (k24 ⊕ k

1
4)⊕ c 1

= ∆1 AES−1
r (k24 ⊕ k

1
4 ⊕∆2 ⊕∆3) = ∆1

k06 = k24 ⊕ ((k25 ∧ (296 − 1))||((k25 >> 96)⊕ k24) ∧ (232 − 1) b 1

* k05 (k04 >> 32) ∧ (296 − 1) = k05 ∧ (296 − 1) b 1

k16 = k05 ⊕ (k06 ∧ (296 − 1)||((k06 >> 96)⊕ k05) ∧ (232 − 1) b 1

s4 . . . s7 : AES−1
r (k04 ⊕ cnt⊕ AES

−1
r (k05 ⊕ k

2
4)⊕ s4||s5||s6||s7)⊕ c 1

AES−1
r (k04 ⊕ ct⊕ AES

−1
r (k05 ⊕ k

2
4)⊕ s4||s5||s6||s7 ⊕∆2) = ∆1

B4 = k04 ⊕ (k04 ⊕ B4) d 1

B5 = k05 ⊕ (B5 ⊕ k05) d 1

those differences directly during the fifth round. This will be achieved by
carefully choosing the actual values of the bytes.

We choose (type a) the difference in k0
4 to be ∆2 and this sets (type

b) the difference in k1
4 to be ∆2 as well. Then we pick a random difference

value for k2
4 that we denote ∆3. Note that due to the message expansion,

∆2 and ∆3⊕∆2 must be 128-bit output differences that can be obtained
from the same input difference after application of one AES round. Indeed,
as shown in Figure 5, ∆2 and ∆3 ⊕ ∆2 are constructed from the ∆1

difference inserted by the salt after application of one AES round. In fact,
for randomly chosen ∆2 and ∆3 values, this is verified with very high
probability. Those particular differences also fix (type b) the difference
values of the 9 subkeys used in rounds 5, 6 and 7. However, note that k2

6



is determined after one another AES non-linear round (as shown in Figure
5).

AES

round

AES

round

AES

round

k24 = ∆3 k14 = ∆2 k04 = ∆2

AES

round

AES

round
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AES

round

AES
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k26 k16 k06
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Fig. 6. Details of rounds 5, 6 and 7 of the 8-round chosen-related-salt distinguisher
on the SHAvite-3-256 compression function. The bytes denoted with north-west lines
are fixed during the fifth round. The light gray bytes are fixed during the sixth round.
The dark gray bytes are fixed at the beginning of the seventh round whereas the bytes
denoted with hatched cells are fixed at the end of the seventh round.

Once ∆2 and ∆3 differences fixed, we need to set the values them-
selves in this fifth round. To do so, we choose random value for B4 ⊕ k0

4

(see Figure 6) and we can compute forward the differences just before
the SubBytes layer of the second AES round. We can also propagate the
differences backwards from the insertion of ∆3 up to the output of this



SubBytes layer. Due to the AES Sbox differential property, with a proba-
bility of 2−16, the differences before and after the second SubBytes can be
matched (2−1 per Sbox). Thus, we will have to try 216 values of B4⊕k0

4 be-
fore finding a match. Note that this cost can be reduced to 4×24 = 26 by
attacking all the columns independently. When such a solution is found,
we directly pick (type e) a value of k1

4 that makes this match happen.

Sixth round: We deal with the sixth round in a very same way. The
differences in the subkeys k0

5, k
1
5 and k2

5 are already fixed by the message
expansion. Thus, we would like to find the corresponding values that make
the cancellation of differences possible in the sixth round computation.
As before, we choose an appropriate value of B5 ⊕ k0

5 such that we have
a possible match between the input and output differences of the second
SubBytes layer. When such a solution is found, we directly pick (type e)
a value of k1

5 that makes this match happen.

The final step: Now, if we randomly fix the values and differences δs0,
δs1, δs2, δs3, and k0

5, the values of k2
4, k0

6, k0
4, k1

6, s4, s5, s6, s7, B4 and
B5 will also be determined (as shown in Table 2). At this point, we have
obtained some coherent values that verify the differential path of rounds
5 and 6, and the only degrees of freedom left are the values of s0, s1, s2
and s3. We can just pick up one and compute backward and forward, and
we obtain the whole path, where the inputs have just the left part of the
state active, and the output, before the Davies-Meyer, the right one.

The total cost for the distinguisher is driven by the two first steps,
that is 2 × 26 = 27 operations in order to find one valid candidate. This
distinguisher has been implemented and verified experimentally. We pro-
vide in the extended version of this article an example of such a structured
input/output pair (which should not be generated with less than 264 op-
erations in the ideal case).

4.2 8-Round Distinguisher with 225 computations

In this section we describe the 8-round distinguisher. For rounds 5 and 6
the procedure is the same as the one for the 7-round distinguisher using
the equations described in Table 2. However, now we would like also
that the differences inserted during the seventh round cancel themselves,
whereas the differences inserted during the eighth round can freely spread.
In order to fulfill this requirement, after having handled the sixth round,
instead of randomly choosing the value of k0

5 one first chooses the values
of s0, s1, s2 and s3, which will allow us to determine the difference in k2

6.
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Fig. 7. The 3 AES rounds of the seventh round: the red bytes will determine the middle
columns of k1

6 (because of the message expansion and of previous conditions); the blue
bytes will determine the differences in the 2 middle columns on the input of the second
round; the orange bytes are fixed (due to round 6); the white and light gray bytes are
free. The green bytes are the results of an XOR between blue bytes and orange bytes
whereas pink bytes are the results of an XOR between blue bytes and red bytes.

Fixing the differences in the seventh round: We introduce the following
notations: let S be a 128-bit AES state, we denote (S)i the i-th column of
S and (S∗)i the i-th column of ShR(S) (i.e., the i-th diagonal of S), for
i ∈ [0..3]. We give in Figure 7 a complete illustration of our attack.

Let us analyze the relations that link together the values already fixed
and the values to be fixed. On the one hand, we have:

(B6)i =⇒ (A5)i = (B4)i =⇒ (k0
4)i (2)



that one can read as “setting the value of (B6)i will fix the value of (A5)i

(because the Feistel structure imposes (A5)i = (B4)i) which will in turn
deduce the value of (k0

4)i”. It is important to remark that the value of
(k0

4)3 has already been fixed in round 6, as shown in Table 2. Therefore,
because of Relation (2), (B6)3 will also be known. Then, from the message
expansion, we can derive the following relations:

(k0
4)i =⇒ (k0

5)i+1 =⇒ (k1
6)i+1 for i ∈ {0, 1}, (3)

(k0
4)2 =⇒ (k0

5)3 =⇒ (k1
6)3 = (k0

5)3 ⊕ (k1
6)0. (4)

One can check that the values of column 0 and column 3 of k1
6 are associ-

ated by a linear relation. We recall that for the time being the difference
of k1

6 is already known, but not its value.
On the other hand, we have (B6∗)i =⇒ (X)i, where X is the state

represented in Figure 7 just before the first MC. We can then write the
following relation:

SB[(k0
6∗)i ⊕ (B6∗)i]⊕ SB[(k0

6∗)i ⊕∆(k0
6∗)i ⊕ (B6∗)i] = ∆(X)i. (5)

For the path to be verified, we need the difference MC(∆(X)i) ⊕
∆(k1

6)i to be compatible with the difference fixed by k2
6 after the second

SB, and the differential transition must be possible by the values of k1
6

(which are not fixed yet). From the previous equations (2), (3), (4) and
(5) we obtain that for making the path to be verified over each column i,
the following columns or diagonals intervene at the same time: for i = 0,
{(B6∗)0, (B6)3}; for i = 1, {(B6∗)1, (B6)0}; for i = 2, {(B6∗)2, (B6)1}; for
i = 3, {(B6∗)3, (B6)2}.

From the previous relations we can deduce that there are some bytes
of B6 that interact in more than one way with the relations for one column
i, ((3,3) for i = 0, (3,0) for i = 1, (3,1) for i = 2, (3,2) for i = 3). Thus,
since we have defined the main relations that must be verified, we can
now describe how to find a valid pair. A conforming pair is a pair of values
that verifies the differential path of the seventh round as well as the path
of the previous rounds. This can be done with a complexity of 225 in time
and 214 in memory with the following process:
•We consider 224 values of the bytes of (B6∗)1 (the ones at byte positions
(0, 1); (1, 2); (2, 3); (3, 0)). As the byte (2, 3) has an already fixed value,
because it belongs to (B6)3 which was determined in the previous steps,
the 224 values are all the possible ones. Thus, the second column of the
state after the first MixColumns of the 7th round will be determined
by the previous values (i.e. the bytes of (B6∗)1). The values of (B6∗)1
that give us the match we are looking for are such that the differences



before and after the second SubBytes match for the second column. Those
differences are influenced for the first one by the already fixed differences
of k1

6 and for the second one by the already fixed differences of k2
6. In other

words, at this step, the differences are mainly fixed but not the values.
Due to the AES Sbox differential properties, the match between the two
differences will happen with a probability equal to 2−4.

We have then to consider that, when we have fixed the values for the
bytes ((0, 1); (1, 2); (2, 3); (3, 0)), the value of the byte (3, 1) of k1

6 will also
be determined due to equations (2) and (3).

So, when we find a match of differences, we also need that one of
the two values for (3, 1) that makes the match possible, collides with the
already fixed value for this byte. This will happen with a probability of
2−7. We obtain: 224 · 2−4 · 2−7 = 213 values for (B6∗)1 (bytes at positions
(0, 1); (1, 2); (2, 3); (3, 0)) that make the differential path possible for the
second column of the seventh round.
• We do the same thing with the bytes of (B6∗)2 (bytes at positions
(0, 2); (1, 3); (2, 0); (3, 1)), and we also obtain 213 values that make the
differential path possible for the third column of the seventh round.
•We now consider the interaction between the two previous steps in order
to simultaneously find the solutions for the two middle columns. The byte
at position (0, 1) of B6 has already been fixed during the first step, and it
determines the value of the byte (0, 2) of k1

6, which belong to (k1
6)2 that

affects the second step. Analogously the byte of the position (2, 0) from
B6 that was fixed at the second step determines the value of the byte
(2, 1) of k1

6, that belongs to (k1
6)1 and that affects the first step. Thus if

we want to compute all the valid candidate values for the two columns in
the middle before the second SB we will obtain: 213 · 213 · 2−7 · 2−7 = 212

possible values for fixing (B6∗)1 and (B6∗)2.
•We consider one of the previously determined values among the 212 pos-
sibles. We consider now the yet unfixed bytes corresponding to positions
(1, 0); (2, 1) of B6. Because of Relations (2), (3) and (4) they will deter-
mine the values of the associated bytes of k1

6. Thus, since the differences
are already fixed, each of these bytes has only 2 possible values that fulfill
the difference match in the second SB for bytes (1, 1) and (2, 2). From
(B6∗)3 (i.e. the values from B6 that will influence the fourth column in
the second SB), we still have one byte, (3, 2), that has no influence on the
already fixed parts. Therefore this byte can go through 28 distinct values.
In total, for the fourth column after the first MC there are 28+2 = 210

possible values and differences that do not interfere with the differential
path of the two middle columns in the second SB. We can compute how



many of these 212 values and differences for (B6∗)3 could satisfy the path
for the fourth column: 22 · 28 · 2−4 · 24 = 210 values for (B6∗)3 make the
fourth column on the second SubBytes also verify the path. The term
2−4 is present because one requires a possible match of differences and
the term 24 comes from the fact that we can associate 24 values of the
fourth column for one fixed difference before SubBytes.
• By applying the same method to the first column, we will obtain 210

values for (B6∗)0. We know from Relation (4) that (k1
6)0 and (k1

6)3 must
satisfy a linear relation. This will occur for a fixed (k1

6)0 and a fixed (k1
6)3

with a probability of 2−32. As we have 210 possible values of (k1
6)0 from

step 5 and 210 possible values for (k1
6)3 from step 4, we obtain a valid

couple ((k1
6)0, (k1

6)3) with probability 2−12.
• We repeat step 5 about 212 times with the different solutions of step 3,
and we get a valid couple: we obtain all the valid values that verify the
differential path, i.e. that have no differences after the 7th round.

Once those steps performed, all the desired values and differences
that verify the path are determined except the ones in the first round.
The values of s4, s5, s6 and s7 are not fixed yet and we can choose them
as explained in Table 2. Thus, ∆1 will determine ∆2 and we just compute
backwards until we obtain the initial state that verifies the path (and
consequently, also the first round). From this input, we get a correspond-
ing output that contains no difference after seven rounds. If we apply
the Davies-Meyer transformation, the right part of the state will not con-
tain any difference. Thus, we have exhibited a free-start near-collision
attack using chosen and related salts on a 7-round reduced version of
the SHAvite-3-256 compression function used in the Davies-Meyer mode
with 225 computations and 214 memory. The computation cost and mem-
ory requirements are quite far from the complexity corresponding to the
ideal case (264 operations).

Adding one more round at the end of the seventh round leads to a
particular input/output structure (see Figure 4). More precisely, the sub-
keys differences of the eighth round are no more controllable, thus the
right part A8 of the state will contain differences but not the left side
B8 which is the seventh round’s right part due to the Feistel structure.
Therefore, after the Davies-Meyer transform, we will have the same dif-
ference in the left side of the input state and in the left side of the output
state and we obtain a chosen-related-salt distinguisher on an 8-round re-
duced version of the SHAvite-3-256 compression function used in the
Davies-Meyer mode with the same complexity as for the previous chosen-
related-salt free-start near-collisions: 225 computations and 214 memory.



Finding such a structure in the ideal case should require at least 264

computations.
This 8-round distinguisher has been verified experimentally. We pro-

vide in the extended version an example of such a distinguisher.

5 Conclusion

In this paper, we have presented the first analysis of the (2nd-round
tweaked) 256-bit version of the SHA-3 competition candidate SHAvite-3.
As it is the case for many candidates based on the AES round function,
we showed that the Super-Sbox cryptanalysis and the rebound attacks
are very efficient when analyzing reduced-round versions of SHAvite-3-
256. Namely, without using the salt or the counter inputs, one can attack
up to seven rounds of the twelve rounds composing the SHAvite-3-256
compression function. We were even able to reach eight rounds when
the attacker is assumed to be able to control the salt input. Despite the
attacks being quite involved, all our practical complexity results were
verified experimentally.
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