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Abstract. Many modern block ciphers use maximum distance separa-
ble (MDS) matrices as the main part of their diffusion layers. In this
paper, we propose a new class of diffusion layers constructed from sev-
eral rounds of Feistel-like structures whose round functions are linear. We
investigate the requirements of the underlying linear functions to achieve
the maximal branch number for the proposed 4×4 words diffusion layer.
The proposed diffusion layers only require word-level XORs, rotations,
and they have simple inverses. They can be replaced in the diffusion layer
of the block ciphers MMB and Hierocrypt to increase their security and
performance, respectively. Finally, we try to extend our results for up to
8× 8 words diffusion layers.
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1 Introduction

Block ciphers are one of the most important building blocks in many security
protocols. Modern block ciphers are cascades of several rounds and each round
consists of confusion and diffusion layers. In many block ciphers, non-linear sub-
stitution boxes (S-boxes) form the confusion layer, and a linear transformation
provides the required diffusion. The diffusion layer plays an efficacious role in
providing resistance against the most well-known attacks on block ciphers, such
as differential cryptanalysis (DC) [2] and linear cryptanalysis (LC) [10].

In 1994, Vaudenay [15, 16] suggested using MDS matrices in cryptographic
primitives to produce what he called multipermutations, not-necessarily linear
functions with this same property. These functions have what he called perfect
? This work has been supported in part by the European Commission through the

ICT program under contract ICT-2007-216646 ECRYPT II.



diffusion. He showed how to exploit imperfect diffusion to cryptanalyze functions
that are not multipermutations. This notion was later used by Daemen named as
the branch number. Block ciphers exploiting diffusion layers with small branch
number may suffer from critical weaknesses against DC and LC, even though
their substitution layers consist of S-boxes with strong non-linear properties.

Two main strategies for designing block ciphers are Feistel-like and substitu-
tion permutation network (SPN) structures. In the last 2 decades, from these two
families several structures have been proposed with provable security against DC
and LC. Three rounds of Feistel structure [11, 12], five rounds of RC6-like struc-
ture [9] and SDS (substitution-diffusion-substitution) structure with a perfect or
almost perfect diffusion layer are examples of such structures [8].

1.1 Notations

Let x be an array of s n-bit elements x = [x0(n), x1(n), · · · , xs−1(n)]. The number
of non-zero elements in x is denoted by w(x) and is known as the Hamming
weight of x. The following notations are used throughout this paper:

⊕ : The bit-wise XOR operation
& : The bit-wise AND operation
Li : Any linear function
`i : The linear operator corresponding to the linear function Li

(L1 ⊕ L2)(x) : L1(x)⊕ L2(x)
L1L2(x) : L1(L2(x))
L2

1(x) : L1(L1(x))
I(·) function : Identity function, I(x) = x
x � m (x �
m)

: Shift of a bit string x by m bits to the right (left)

x ≫ m (x ≪
m)

: Circular shift of a bit string x by m bits to the right (left)

| · | : Determinant of a matrix in GF(2)
a|b : Concatenation of two bit strings a and b
x(n) : An n-bit value x

For a diffusion layer D applicable on x, we have the following definitions:

Definition 1 ([4]). The differential branch number of a linear diffusion layer
D is defined as:

βd(D) = min
x6=0
{w(x) + w(D(x))}

We know that the linear function D can be shown as a binary matrix B, and
Dt is a linear function obtained from Bt, where Bt is the transposition of B.

Definition 2 ([4]). The linear branch number of a linear diffusion layer D is
defined as:

βl(D) = min
x6=0
{w(x) + w(Dt(x))}

2



It is well known that for a diffusion layer acting on s-word inputs, the maximal
βd and βl are s+1 [4]. A diffusion layer D taking its maximal βd and βl is called
a perfect or MDS diffusion layer. Furthermore, a diffusion layer with βd = βl = s
is called an almost perfect diffusion layer [8].

1.2 Our contribution

In this paper, we define the notion of a recursive diffusion layer and propose a
method to construct such perfect diffusion layers.

Definition 3. A diffusion layer D with s words xi as the input, and s words yi

as the output is called a recursive diffusion layer if it can be represented in the
following form:

D :


y0 = x0 ⊕ F0(x1, x2, . . . , xs−1)
y1 = x1 ⊕ F1(x2, x3, . . . , xs−1, y0)
...
ys−1 = xs−1 ⊕ Fs−1(y0, y1, . . . , ys−2)

(1)

where F0, F1,. . . , Fs−1 are arbitrary functions.

As an example, consider a 2-round Feistel structure with a linear round
function L as a recursive diffusion layer with s = 2. The input-output relation
for this diffusion layer is:

D :
{
y0 = x0 ⊕ L(x1)
y1 = x1 ⊕ L(y0)

The quarter-round function of Salsa20 is also an example of a non-linear
recursive diffusion layer [1].

D :


y1 = x1 ⊕ ((x0 + x3) ≪ 7)
y2 = x2 ⊕ ((x0 + y1) ≪ 9)
y3 = x3 ⊕ ((y1 + y2) ≪ 13)
y0 = x0 ⊕ ((y2 + y3) ≪ 18)

Also, the lightweight hash function PHOTON [5] and the block cipher LED
[6] use MDS matrices based on Eq. (1). In these ciphers, an m×m MDS matrix
Bm was designed based on the following matrix B for the performance purposes:

B =


0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
0 0 0 · · · 1
Z0 Z1 Z2 · · · Zm−1
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By matrix B, one elements of m inputs is updated and other elements are
shifted. If we use Bm, all inputs are updated, but we must check if this matrix
is MDS. One example for m = 4 is the PHOTON matrix working over GF(28) :

B =


0 1 0 0
0 0 1 0
0 0 0 1
1 2 1 4

⇒ B4 =


1 2 1 4
4 9 6 17
17 38 24 66
66 149 100 11


In this paper, we propose a new approach to design linear recursive diffusion

layers with the maximal branch number in which Fi’s are composed of one or two
linear functions and a number of XOR operations. The design of the proposed
diffusion layer is based on the invertibility of some simple linear functions in
GF(2). Linear functions in this diffusion layer can be designed to be low-cost
for different sizes of the input words, thus the proposed diffusion layer might be
appropriate for resource-constrained devices, such as RFID tags. Although these
recursive diffusion layers are not involutory, they have similar inverses with the
same computational complexity. Another approach which is not recursive was
picked by Junod and Vaudenay in [7] to design efficient MDS matrices.

This paper proceeds as follows: In Section 2, we introduce the general struc-
ture of our proposed recursive diffusion layer. Then, for one of its instances,
we systematically investigate the required conditions for the underlying linear
function to achieve the maximal branch number. In Section 3, we propose some
other recursive diffusion layers with less than 8 input words and only one linear
function. We use two linear functions to have a perfect recursive diffusion layer
for s > 4 in Section 4. Finally, we conclude the paper in Section 5.

2 The Proposed Diffusion Layer

In this section, we introduce a new perfect linear diffusion layer with a recursive
structure. The diffusion layer D takes s words xi for i = {0, 1, . . . , s−1} as input,
and returns s words yi for i = {0, 1, . . . , s − 1} as output. So, we can represent
this diffusion layer as:

y0|y1| · · · |ys−1 = D(x0|x1| · · · |xs−1)

The first class of the proposed diffusion layer D is represented in Fig. 1, where
L is a linear function, αk, βk ∈ {0, 1}, α0 = 1, and β0 = 0.

This diffusion layer can be represented in the form of Eq. (1) in which the
Fi functions are all the same and can be represented as

Fi(x1, x2, . . . , xs−1) =
s−1⊕
j=1

αjxj ⊕ L

s−1⊕
j=1

βjxj


To guarantee the maximal branch number for D, the linear function L and

the coefficients αj and βj must satisfy some necessary conditions. Conditions
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1: Input : s n-bit words x0, . . . , xs−1

2: Output : s n-bit words y0, . . . , xs−1

3: for i = 0 to s− 1 do
4: yi = xi

5: end for
6: for i = 0 to s− 1 do

7: yi = yi ⊕ (

s−1⊕
j=0,j 6=i

α[(j−i) mod s]yj)⊕ L

 s−1⊕
j=0,j 6=i

β[(j−i) mod s]yj


8: end for

Fig. 1. The first class of the recursive diffusion layers

on L are expressed in this section and those of αj ’s and βj ’s are expressed in
Section 3. The diffusion layer described by Eq. (2) is an instance that satisfies
the necessary conditions on αj and βj with s = 4. In the rest of this section,
we concentrate on the diffusion layers of this form and show that we can find
invertible linear functions L such that D becomes a perfect diffusion layer.

D :


y0 = x0 ⊕ x2 ⊕ x3 ⊕ L(x1 ⊕ x3)
y1 = x1 ⊕ x3 ⊕ y0 ⊕ L(x2 ⊕ y0)
y2 = x2 ⊕ y0 ⊕ y1 ⊕ L(x3 ⊕ y1)
y3 = x3 ⊕ y1 ⊕ y2 ⊕ L(y0 ⊕ y2)

(2)

As shown in Fig. 2, this diffusion layer has a Feistel-like (GFN) structure, i.e.,

F0(x1, x2, x3) = x2 ⊕ x3 ⊕ L(x1 ⊕ x3)

and for each i > 0, yi is obtained by (xi, xi+1, . . . , xs−1) and (y0, y1, . . . , yi−1).

The inverse transformation, D−1, has a very simple structure and does not
require the inversion of the linear function L. Based on the recursive nature of
D, if we start from the last equation of Eq. (2), x3 is immediately obtained from
yi’s. Then knowing x3 and yi’s, we immediately obtain x2 from the third line of
Eq. (2). x1 and x0 can be obtained in the same way. Thus, the inverse of D is:

D−1 :


x3 = y3 ⊕ y1 ⊕ y2 ⊕ L(y0 ⊕ y2)
x2 = y2 ⊕ y0 ⊕ y1 ⊕ L(x3 ⊕ y1)
x1 = y1 ⊕ x3 ⊕ y0 ⊕ L(x2 ⊕ y0)
x0 = y0 ⊕ x2 ⊕ x3 ⊕ L(x1 ⊕ x3)

D and D−1 are different, but they have the same structure and properties. To
show that D has the maximal branch number, first we introduce some lemmas
and theorems.

Theorem 4 ([4]). A Boolean function F has maximal differential branch num-
ber if and only if it has maximal linear branch number.

5



L

L

L

L

x0 x1 x2 x3

y0 y1 y2 y3  

Fig. 2. The proposed recursive diffusion layer of Eq. (2)
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As a result of Theorem 4, if we prove that the diffusion layer D represented
in Eq. (2) has the maximal differential branch number, its linear branch number
will be maximal too. Thus, in the following, we focus on the differential branch
number.

Lemma 5. For m linear functions L1, L2, ..., Lm, the proposition

a 6= 0⇒ L1(a)⊕ L2(a)⊕ ...⊕ Lm(a) 6= 0

implies that the linear function L1 ⊕ L2 ⊕ ...⊕ Lm is invertible.

Proof. We know that (L1 ⊕ L2 ⊕ ...⊕ Lm)(x) is a linear function and it can be
represented as a binary matrix M. So, M is invertible if and only if |M| 6= 0. ut

Lemma 6. Assume the linear operator `i corresponds to the linear function
Li(x). If the linear operator `3 can be represented as the multiplication of two
operators `1 and `2, then the corresponding linear function L3(x) = L2(L1(x))
is invertible if and only if the linear functions L1(x) and L2(x) are invertible.

Proof. If L1(x) and L2(x) are invertible, clearly L3(x) is invertible too. On the
other hand, if L3(x) is invertible then L1(x) must be invertible, otherwise there
are distinct x1 and x2 such that L1(x1) = L1(x2). Thus, L3(x1) = L2(L1(x1)) =
L2(L1(x2)) = L3(x2) which contradicts the invertibility of L3(x). The invertibil-
ity of L2(x) is proved in the same way.

ut

Example 1: We can rewrite the linear function L3(x) = L3(x)⊕x (`3 = `3⊕ I)
as L3(x) = L1(L2(x)), where L1(x) = L(x) ⊕ x (`1 = ` ⊕ I) and L2(x) =
L2(x)⊕L(x)⊕ x (`2 = `2 ⊕ `⊕ I). Thus, the invertibility of L3(x) is equivalent
to the invertibility of the two linear functions L1(x) and L2(x).

Theorem 7. For the diffusion layer represented in Eq. (2), if the four linear
functions L(x), x ⊕ L(x), x ⊕ L3(x), and x ⊕ L7(x) are invertible, then this
diffusion layer is perfect.

Proof. We show that the differential branch number of this diffusion layer is 5.
First, the 4 words of the output are directly represented as functions of the 4
words of the input:

D :


y0 = x0 ⊕ L(x1)⊕ x2 ⊕ x3 ⊕ L(x3)
y1 = x0 ⊕ L(x0)⊕ x1 ⊕ L(x1)⊕ L2(x1)⊕ x2 ⊕ L2(x3)
y2 = L2(x0)⊕ x1 ⊕ L(x1)⊕ L3(x1)⊕ x2 ⊕ L(x2)⊕ x3 ⊕ L2(x3)⊕ L3(x3)
y3 = x0 ⊕ L2(x0)⊕ L3(x0)⊕ L(x1)⊕ L2(x1)⊕ L3(x1)⊕ L4(x1)

⊕L(x2)⊕ L2(x2)⊕ L2(x3)⊕ L4(x3)
(3)

Now, we show that if the number of active (non-zero) words in the input
is m, where m = 1, 2, 3, 4, then the number of non-zero words in the output
is greater than or equal to 5 −m. The diffusion layer represented in Eq. (2) is
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invertible. Consider m = 4, then all of the 4 words in the input are active, and
we are sure at least one of the output words is active too. Thus the theorem is
correct for m = 4. The remainder of the proof is performed for the 3 cases of
w(∆(x)) = m, for m = 1, 2, 3 separately. In each of these cases, some conditions
are forced on the linear function L.

Case 1: w(4x) = 1

To study this case, first the subcase

(4x0 6= 0,4x1 = 4x2 = 4x3 = 0 or 4x = 4x0|0|0|0)

is analyzed. For this subcase, Eq. (3) is simplified to:

D :


4y0 = 4x0

4y1 = (I ⊕ L)(4x0)
4y2 = L2(4x0)
4y3 = (I ⊕ L2 ⊕ L3)(4x0)

If D is a perfect diffusion layer then 4y0, 4y1, 4y2 and 4y3 must be
non-zero. Clearly, 4y0 is non-zero, and based on Lemma 5, the conditions for
4y1, 4y2 and 4y3 to be non-zero are that the linear functions I ⊕ L, L2 and
I ⊕ L2 ⊕ L3 must be invertible. Note that based on Lemma 6, the invertibility
of L2 yields the invertibility of L. Considering Lemma 6, if the other three sub-
cases are studied, it is induced that the linear functions x ⊕ L(x) ⊕ L2(x) and
x⊕ L(x)⊕ L3(x) must also be invertible.

Case 2: w(4x) = 2

In this case, there exist exactly two active words in the input difference and
we obtain some conditions on the linear function L to guarantee the branch
number 5 for D. In the following, we only analyze the subcase

(4x0,4x1 6= 0 and 4x2 = 4x3 = 0 or 4x = 4x0|4x1|0|0)

With this assumption, Eq. (3) is simplified to:

D :


4y0 = 4x0 ⊕ L(4x1)
4y1 = (I ⊕ L)(4x0)⊕ (I ⊕ L⊕ L2)(4x1)
4y2 = L2(4x0)⊕ (I ⊕ L⊕ L3)(4x1)
4y3 = (I ⊕ L2 ⊕ L3)(4x0)⊕ (L⊕ L2 ⊕ L3 ⊕ L4)(4x1)

(4)

To show that w(4y) is greater than or equal to 3, we must find some con-
ditions on L such that if one of the 4yi’s is zero, then the other three 4yj ’s
cannot be zero. Let 4y0 = 0, then:

4x0 ⊕ L(4x1) = 0⇒4x0 = L(4x1)
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If 4x0 is replaced in the last three equations of Eq. (4), we obtain 4y1, 4y2
and 4y3 as follows: 4y1 = 4x1

4y2 = 4x1 ⊕ L(4x1)
4y3 = L2(4x1)

Obviously, 4y1 is not zero. Furthermore, for 4y2 and 4y3 to be non-zero,
considering Lemma 5, we conclude that the functions x⊕ L(x) and L2(x) must
be invertible. This condition was already obtained in the Case 1. We continue
this procedure for 4y1 = 0.

4y1 = 4x0 ⊕ L(4x0)⊕ x1 ⊕ L(4x1)⊕ L2(4x1) = 0⇒
4x0 ⊕ L(4x0) = x1 ⊕ L(4x1)⊕ L2(4x1)

From the previous subcase, we know that if 4y0 = 0 then 4y1 6= 0. Thus
we conclude that, 4y0 and 4y1 cannot be simultaneously zero. Therefore, by
contraposition we obtain that if 4y1 = 0 then 4y0 6= 0. So, we only check 4y2
and 4y3. From the third equation in Eq. (4), we have:

(I ⊕ L)(4y2) = L2(4x1)⊕ L3(4x1)⊕ L4(4x1)⊕4x1

⊕L2(4x1)⊕ L3(4x1)⊕ L4(4x1)
= 4x1

x⊕L(x) is invertible, thus we conclude that with the two active words 4x0

and 4x1 in the input, 4y1 and 4y2 cannot be zero simultaneously. With the
same procedure, we can prove that 4y1 and 4y3 cannot be zero simultaneously.

Here we only gave the proof for the case (4x0,4x1 6= 0, 4x2 = 4x3 = 0).
We performed the proof procedure for the other cases and no new condition was
added to the previous set of conditions in Case 1.

Case 3: w(4x) = 3

In this case, assuming three active words in the input, we show that the
output has at least 2 non-zero words. Here, only the case

(4x0,4x1,4x2 6= 0 and 4x3 = 0 or 4x = 4x0|4x1|4x2|0)

is analyzed. The result holds for the other three cases with w(4x) = 3. Let
rewrite the Eq. (3) for 4x3 = 0 as follows:

D :


4y0 = 4x0 ⊕ L(4x1)⊕4x2

4y1 = (I ⊕ L)(4x0)⊕ (I ⊕ L⊕ L2)(4x1)⊕4x2

4y2 = L2(4x0)⊕ (I ⊕ L⊕ L3)(4x1)⊕ (I ⊕ L)(4x2)
4y3 = (I ⊕ L2 ⊕ L3)(4x0)⊕ (L⊕ L2 ⊕ L3 ⊕ L4)(4x1)⊕ (L⊕ L2)(4x2)

(5)
When 4y0 = 4y1 = 0, from the first 2 lines of Eq. (5), 4x0 and 4x1 are

obtained as the function of 4x2.
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4y0 = 4x0 ⊕ L(4x1)⊕4x2 = 0
4y1 = 4x0 ⊕ L(4x0)⊕4x1 ⊕ L(4x1)

⊕L2(4x1)⊕4x2 = 0
⇒
{
4x1 = L(4x2)
4x0 = 4x2 ⊕ L2(4x2)

Now, replacing 4x0 = 4x2 ⊕ L2(4x2) and 4x1 = L(4x2) into 4y2 and 4y3
yields:

4y2 = L2(4x0)⊕ (I ⊕ L⊕ L3)(4x1)⊕ (I ⊕ L)(4x2) = 4x2

4y3 = (I ⊕ L2 ⊕ L3)(4x0)⊕ (L⊕ L2 ⊕ L3 ⊕ L4)(4x1)⊕ (L⊕ L2)(4x2)
= (I ⊕ L)(4x2)

From Case 1, we know that the functions x ⊕ L(x) and x ⊕ L(x) ⊕ L2(x)
are invertible. Therefore, 4y2 and 4y3 are non-zero. If the other sub-cases with
three active words in the input are investigated, it is easy to see that no new
condition is added to the present conditions on L.

Finally, we conclude that the diffusion layer D presented in Fig. 1 is perfect
if the linear functions 

L1(x) = L(x)
L2(x) = x⊕ L(x)
L3(x) = x⊕ L(x)⊕ L2(x)
L4(x) = x⊕ L(x)⊕ L3(x)
L5(x) = x⊕ L2(x)⊕ L3(x)

are invertible. We know that L3(L2(x)) = x ⊕ L3(x) and L5(L4(L2(x))) =
x ⊕ L7(x). Thus, by Lemma 6, we can summarize the necessary conditions on
the linear function L as the invertibility of L(x), (I ⊕ L)(x), (I ⊕ L3)(x) and
(I ⊕ L7)(x).

ut

Next, we need a simple method to check whether a linear function L satisfies
the conditions of Theorem 7 or not. For this purpose, we use the binary matrix
representation of L. Assume that xi is an n-bit word. Hence, we can represent
a linear function L with an n × n matrix A with elements in GF(2). By using
Lemma 5, if L is invertible, A is not singular over GF(2) (|A| 6= 0). To investigate
whether a linear function L satisfies the conditions of Theorem 7, we construct
the corresponding matrix An×n from L and check the non-singularity of the
matrices A, I⊕A, I⊕A3 and I⊕A7 in GF(2). We introduce some lightweight
linear functions with n-bit inputs/outputs in Table 1 that satisfy the above con-
ditions. Note that there exist many linear functions which satisfy the conditions
of Theorem 7.

Unlike the shift and XOR operations, rotation cannot be implemented as a
single instruction on many processors. So, to have more efficient diffusion layers,
we introduce new L functions for 32-bit and 64-bit inputs in Table 2 that only
use shift and XOR operations.
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Table 1. Some instances of the linear function L satisfying Theorem 7

n Some linear functions L

4 L(x) = (x⊕ x� 3) ≪ 1

8 L(x) = (x⊕ (x & 0x2)� 1) ≪ 1

16 L(x) = (x⊕ x� 15) ≪ 1

32 L(x) = (x⊕ x� 31) ≪ 15 or L(x) = (x ≪ 24)⊕ (x & 0xFF)

64 L(x) = (x⊕ x� 63) ≪ 1 or L(x) = (x ≪ 8)⊕ (x & 0xFFFF)

Table 2. Some examples for the linear function L satisfying Theorem 7 without a
circular shift

n Sample linear functions L

32 L(x) = (x� 3)⊕ (x� 1)

64 L(x) = (x� 15)⊕ (x� 1)

We can use this diffusion layer with L(x) = (x� 3)⊕ (x� 1) instead of the
diffusion layers used in the block ciphers MMB [3] or Hierocrypt [13]. In MMB,
the diffusion layer is a 4× 4 binary matrix with branch number 4. If we use the
proposed diffusion layer in this cipher, it becomes stronger against LC and DC
attacks. This change also prevents the attacks presented on this block cipher in
[17]. By computer simulations, we observed that this modification reduces the
performance of MMB by about 10%. Also, if we use our proposed diffusion layer
with the same L(x), instead of the binary matrix of the block cipher Hierocrypt
(called MDSH [13]), we can achieve a 2 times faster implementation with the
same level of security.

Moreover, in the nested SPN structure of Hierocrypt, we replaced the MDS
matrix of AES in GF(232) (because inputs of MDSH are 4 32-bit words) with
irreducible polynomial x32 + x7 + x5 + x3 + x2 + x+ 1 [14] instead of the binary
matrix MDSH. We observed that the replacement of our proposed diffusion layer
instead of MDSH yields 5% better performance than the replacement of the AES
matrix in GF(232).

In Eq. (1), if Fi(x1, x2, x3) = F0(x1, x2, x3) = L(x1) ⊕ x2 ⊕ L2(x3), where
L(x) = 2x and x ∈ GF(24), PHOTON MDS matrix is obtained [5]. If we change
B to Eq. (2) and define L(x) = 2x, we have:

B =


0 1 0 0
0 0 1 0
0 0 0 1
1 2 1 3

⇒ B4 =


1 2 1 3
3 7 1 4
4 11 3 13
13 30 6 20



11



3 Other Desirable Structures for the Proposed Diffusion
Layer

In Section 2, the general form of the proposed diffusion layer was introduced
in Fig. 1. Then by assuming a special case of αi’s and βi’s, an instance of this
diffusion layer was given in Eq. (2). In this section, we obtain all sets of αi’s
and βi’s such that the diffusion layer of Fig. 1 becomes perfect. We know some
properties of αi’s and βi’s; for instance if all the words of the output are directly
represented as the function of input words, a function of each xi (0 ≤ i ≤ s− 1)
must appear in each equation. Another necessary condition is obtained for two
active words of the input. Assume there exist only two indices i, j such that
xi, xj 6= 0. If we write each two output words yp, yq in a direct form as a
function of xi and xj , we obtain:{

yp = Lpi
(xi)⊕ Lpj

(xj)
yq = Lqi

(xi)⊕ Lqj
(xj)

If
`pi

`qi
=

`pj

`qj
or

∣∣∣ `pi
`pj

`qi
`qj

∣∣∣ = 0

then, yp = 0 is equivalent to yq = 0. Thus, the minimum number of active words
in the input and output is less than or equal to s, and the branch number will
not reach the maximal value s + 1. This procedure must be repeated for 3 and
more active words in the input. As an extension, we can use Lemma 3 of [14].

Lemma 8. Assume the diffusion layer has m inputs/outputs bits and ` is the
linear operator of L(x) and I is the linear operator of I(x). Moreover, MLD is
an m ×m matrix representation of the operator of the diffusion layer. If D is
perfect, then all the sub-matrices of MLD is non-singular.

If we construct the MLD of Eq. (2), we have:

MLD =


I ` I I ⊕ `

I ⊕ ` I ⊕ `⊕ `2 I `2

`2 I ⊕ `⊕ `3 I ⊕ ` I ⊕ `2 ⊕ `3
I ⊕ `2 ⊕ `3 `⊕ `2 ⊕ `3 ⊕ `4 `⊕ `2 `2 ⊕ `4


If we calculate 69 sub-matrix determinant of MLD, we find the result of

Theorem 7. However, by following this procedure, it is complicated to obtain
all sets of αi’s and βi’s analytically. So, by systematizing the method based on
Lemma 8, we performed a computer simulation to obtain all sets of αi’s and
βi’s in the diffusion layer in Fig. 1 that yield a perfect diffusion. We searched for
all αi’s and βi’s that make the diffusion layer of Fig. 1 a perfect diffusion layer.
This procedure was repeated for s = 2, 3, . . . , 8. We found one set of (αi, βi) for
s = 2, four sets for s = 3, and four sets for s = 4. The obtained diffusion layers
along with the conditions on the underlying linear function L are reported in
Table 3. We observed that for s = 5, 6, 7 the diffusion layer introduced in Fig. 1
cannot be perfect.
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Table 3. Perfect regular recursive diffusion layers for s < 8 with only one linear
function L

s Diffusion Layer D Function that must be invertible

2

{
y0 = x0 ⊕ L(x1)
y1 = x1 ⊕ L(y0)

L(x) and x⊕ L(x)

3


y0 = x0 ⊕ L(x1 ⊕ x2)
y1 = x1 ⊕ L(x2 ⊕ y0)
y2 = x2 ⊕ L(y0 ⊕ y1)

L(x), x⊕ L(x) and x⊕ L3(x)

3


y0 = x0 ⊕ x1 ⊕ L(x1 ⊕ x2)
y1 = x1 ⊕ x2 ⊕ L(x2 ⊕ y0)
y2 = x2 ⊕ y0 ⊕ L(y0 ⊕ y1)

L(x), x⊕ L(x), x⊕ L3(x) and x⊕ L7(x)

3


y0 = x0 ⊕ x2 ⊕ L(x1 ⊕ x2)
y1 = x1 ⊕ y0 ⊕ L(x2 ⊕ y0)
y2 = x2 ⊕ y1 ⊕ L(y0 ⊕ y1)

L(x), x⊕ L(x), x⊕ L3(x) and x⊕ L7(x)

3


y0 = x0 ⊕ x1 ⊕ x2 ⊕ L(x1 ⊕ x2)
y1 = x1 ⊕ x2 ⊕ y0 ⊕ L(x2 ⊕ y0)
y2 = x2 ⊕ y0 ⊕ y1 ⊕ L(y0 ⊕ y1)

L(x), x⊕ L(x), and x⊕ L3(x)

4


y0 = x0 ⊕ x2 ⊕ x3 ⊕ L(x1 ⊕ x3)
y1 = x1 ⊕ x3 ⊕ y0 ⊕ L(x2 ⊕ y0)
y2 = x2 ⊕ y0 ⊕ y1 ⊕ L(x3 ⊕ y1)
y3 = x3 ⊕ y1 ⊕ y2 ⊕ L(y0 ⊕ y2)

L(x), x⊕ L(x), x⊕ L3(x) and x⊕ L7(x)

4


y0 = x0 ⊕ x1 ⊕ x2 ⊕ L(x1 ⊕ x3)
y1 = x1 ⊕ x2 ⊕ x3 ⊕ L(x2 ⊕ y0)
y2 = x2 ⊕ x3 ⊕ y0 ⊕ L(x3 ⊕ y1)
y3 = x3 ⊕ y0 ⊕ y1 ⊕ L(y0 ⊕ y2)

L(x), x⊕ L(x), x⊕ L3(x) and x⊕ L7(x)

4


y0 = x0 ⊕ x2 ⊕ L(x1 ⊕ x2 ⊕ x3)
y1 = x1 ⊕ x3 ⊕ L(x2 ⊕ x3 ⊕ y0)
y2 = x2 ⊕ y0 ⊕ L(x3 ⊕ y0 ⊕ y1)
y3 = x3 ⊕ y1 ⊕ L(y0 ⊕ y1 ⊕ y2)

L(x), x⊕ L(x), x⊕ L3(x), x⊕ L7(x)

and x⊕ L15(x)

4


y0 = x0 ⊕ x1 ⊕ x3 ⊕ L(x1 ⊕ x2 ⊕ x3)
y1 = x1 ⊕ x2 ⊕ y0 ⊕ L(x2 ⊕ x3 ⊕ y0)
y2 = x2 ⊕ x3 ⊕⊕y1 ⊕ L(x3 ⊕ y0 ⊕ y1)
y3 = x3 ⊕ y0 ⊕ y2 ⊕ L(y0 ⊕ y1 ⊕ y2)

L(x), x⊕ L(x), x⊕ L3(x), x⊕ L7(x)

and x⊕ L15(x)
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Note that some linear functions in Table 1 and Table 2 such as L(x) = (x�
15)⊕ (x� 1) cannot be used in the diffusion layers for which x⊕ L15(x) must
be invertible.

As we can see in Fig. 1 and its instances presented in Table 3, there exists
some kind of regularity in the equations defining yi’s, in the sense that the form
of yi+1 is determined by the form of yi and vice versa (Fi’s are all the same
in Eq. (1)). However, we can present some non-regular recursive diffusion layers
with the following more general form (Fi’s are different):

1: Input : s n-bit words x0, . . . , xs−1

2: Output : s n-bit words y0, . . . , xs−1

3: for i = 0 to s− 1 do
4: yi = xi

5: end for
6: for i = 0 to s− 1 do

7: yi = yi ⊕

 s−1⊕
j=0,j 6=i

Ai,jyj

⊕ L
 s−1⊕

j=0,j 6=i

Bi,jyj


8: end for

Fig. 3. Non-regular recursive diffusion layers

where Ai,j , Bi,j ∈ {0, 1}. If Ai,j = α(j−i) mod s and Bi,j = β(j−i) mod s, then
Fig. 3 is equivalent to Fig. 1. The main property of this new structure is that it
still has one linear function L and a simple structure for the inverse. For example,
if s = 4, then, the diffusion layer D is:


y0 = x0 ⊕A0,1 · x1 ⊕A0,2 · x2 ⊕A0,3 · x3 ⊕ L(B0,1 · x1 ⊕B0,2 · x2 ⊕B0,3 · x3)
y1 = x1 ⊕A1,0 · y0 ⊕A1,2 · x2 ⊕A1,3 · x3 ⊕ L(B1,0 · y0 ⊕B1,2 · x2 ⊕B1,3 · x3)
y2 = x2 ⊕A2,0 · y0 ⊕A2,1 · y1 ⊕A2,3 · x3 ⊕ L(B2,0 · y0 ⊕B2,1 · y1 ⊕B2,3 · x3)
y3 = x3 ⊕A3,0 · y0 ⊕A3,1 · y1 ⊕A3,2 · y2 ⊕ L(B3,0 · y0 ⊕B3,1 · y1 ⊕B3,2 · y2)

We searched the whole space for s = 3 and s = 4 (the order of search
spaces are 212 and 224 respectively). For s = 3, we found 196 structures with
branch number 4 and for s = 4, 1634 structures with branch number 5. The
linear functions that must be invertible for each case are different. Among the
196 structures for s = 3, the structure with the minimum number of operations
(only 7 XORs and one L evaluation) is the following:

D :

y0 = x0 ⊕ x1 ⊕ x2

y1 = x1 ⊕ x2 ⊕ L(y0 ⊕ x2)
y2 = x2 ⊕ y0 ⊕ y1

where L(x) and x⊕ L(x) must be invertible.

This relation is useful to enlarge the first linear function of the new hash
function JH for 3 inputs [18]. For s = 4, we did not find any D with the number

14



of L evaluations less than four. However, the one with the minimum number of
XORs is given as below:

D :


y0 = x0 ⊕ x1 ⊕ x2 ⊕ L(x3)
y1 = x1 ⊕ x3 ⊕ y0 ⊕ L(x2 ⊕ y0)
y2 = x2 ⊕ x3 ⊕ y0 ⊕ L(x3 ⊕ y1)
y3 = x3 ⊕ y1 ⊕ y2 ⊕ L(y0)

Searching the whole space for s = 5, 6, ... is too time consuming (note that
for s = 5, the order of search has complexity 240) and we could not search all
the space for s ≥ 5.

4 Increasing the Number of Linear Functions

In Section 3, we observed that for s > 4 we cannot design a regular recursive dif-
fusion layer in the form of Fig. 1 with only one linear function L. In this section,
we increase the number of linear functions to overcome the regular structure of
the diffusion layer of Eq. (2). A new structure is represented in Fig. 4, where
αk, βk, γk ∈ {0, 1}, k ∈ {0, 1, ..., s− 1}, α0 = 1, β0 = 0 and γ0 = 0.

1: Input : s n-bit words x0, . . . , xs−1

2: Output : s n-bit words y0, . . . , xs−1

3: for i = 0 to s− 1 do
4: yi = xi

5: end for
6: for i = 0 to s− 1 do

7: yi =

s−1⊕
j=0

α[(j−i) mod s]yj⊕L1

(
s−1⊕
j=0

β[(j−i) mod s]yj

)
⊕L2

(
s−1⊕
j=0

γ[(j−i) mod s]yj

)
8: end for

Fig. 4. Regular recursive diffusion layers with two linear functions L

If L1 and L2 are two distinct linear functions, Fig. 4 is too complicated to
easily obtain conditions on L1 and L2 that make it a perfect diffusion layer. To
obtain simplified conditions for a maximal branch number, let L1 and L2 have a
simple relation like L2(x) = L2

1(x) or L2(x) = L−1
1 (x). For the linear functions in

Table 2 and Table 3, L2(x) is more complex in comparison with L(x). However,
there exist some linear functions L(x) such that L−1(x) is simpler than L2(x).
As an example, for L(x(n)) = (x(n) ⊕ x(n) � b) ≪ a, where b > n

2 we have
(x(n) � 2b = 0):

L−1(x(n)) = ((x(n) ≫ a)⊕ (x(n) ≫ a)� b)

In Table 4, we introduce some recursive diffusion layers with (L1 = L and
L2 = L−1) or (L1 = L and L2 = L2) that have maximal branch numbers. These
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diffusion layers are obtained similar to that of Table 3. In this table, for each
case only y0 is presented. Other yi’s can be easily obtained from Fig. 4, since
Fi’s are all the same.

Table 4. Some perfect regular diffusion layers for s = 5, 6, 7, 8 with two linear functions

s y0 in a perfect diffusion Layer

5 y0 = x0 ⊕ x2 ⊕ x3 ⊕ L(x4)⊕ L2(x1)

5 y0 = L−1(x1 ⊕ x2)⊕ x0 ⊕ x1 ⊕ L(x1 ⊕ x3 ⊕ x4)

6 y0 = x0 ⊕ x2 ⊕ x4 ⊕ x5 ⊕ L(x3 ⊕ x5)⊕ L2(x1 ⊕ x2 ⊕ x3)

6 y0 = L−1(x1 ⊕ x3)⊕ x0 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ L(x1 ⊕ x3 ⊕ x4 ⊕ x5)

7 y0 = x0 ⊕ x2 ⊕ L(x3 ⊕ x4)⊕ L2(x1 ⊕ x2 ⊕ x4 ⊕ x5 ⊕ x6)

7 y0 = L−1(x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x6)⊕ x0 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ L(x1 ⊕ x2 ⊕ x3 ⊕ x5)

8 y0 = x0 ⊕ x1 ⊕ x3 ⊕ x4 ⊕ L(x2 ⊕ x3 ⊕ x5)⊕ L2(x1 ⊕ x5 ⊕ x6 ⊕ x7)

8 y0 = L−1(x1 ⊕ x2 ⊕ x3 ⊕ x5 ⊕ x7)⊕ x0 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x7 ⊕ L(x1 ⊕ x3 ⊕ x5 ⊕ x6 ⊕ x7)

If the 14 linear functions:

L(x) I ⊕ L(x) I ⊕ L3(x)
I ⊕ L7(x) I ⊕ L15(x) I ⊕ L31(x)
I ⊕ L63(x) I ⊕ L127(x) I ⊕ L255(x)
I ⊕ L511(x) I ⊕ L1023(x) I ⊕ L2047

I ⊕ L4095(x) I ⊕ L8191(x)

are invertible (all irreducible polynomials up to degree 13), then all the diffusion
layers introduced in Table 4 are perfect. One example for a 32-bit linear function
satisfying these conditions is:

L(x(32)) = (x(32) ⊕ (x(32) � 31)) ≪ 29

5 Conclusion

In this paper, we proposed a family of diffusion layers which are constructed using
some rounds of Feistel-like structures whose round functions are linear. These
diffusion layers are called recursive diffusion layers. First, for a fixed structure,
we determined the required conditions for its underlying linear function to make
it a perfect diffusion layer. Then, for the number of words in input (output)
less than 8, we extended our approach and found all the instances of the perfect
recursive diffusion layers with the general form of Fig. 1. Also, we proposed some
other diffusion layers with non-regular forms which can be used for the design
of lightweight block ciphers. Finally, diffusion layers with 2 linear functions were
proposed. By using two linear functions, we designed perfect recursive diffusion
layers for s = 5, 6, 7, 8 which cannot be designed based on Fig. 1, i.e., using only
one linear function.
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The proposed diffusion layers have simple inverses, thus they can be deployed
in SPN structures. These proposed diffusion layers can be used to improve the
security or performance of some of the current block ciphers and hash functions
or in the design of the future block ciphers and hash functions (especially the
block ciphers with provable security against DC and LC).
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