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Abstract. We propose to relax the assumption that decryption failures are indis-
tinguishable in security models for symmetric encryption. Our main purpose is to
build models that better reflect the reality of cryptographic implementations, and
to surface the security issues that arise from doing so. We systematically explore
the consequences of this relaxation, with some surprising consequences for our
understanding of this basic cryptographic primitive. Our results should be use-
ful to practitioners who wish to build accurate models of their implementations
and then analyse them. They should also be of value to more theoretical cryp-
tographers proposing new encryption schemes, who, in an ideal world, would be
compelled by this work to consider the possibility that their schemes might leak
more than simple decryption failures.

1 Introduction

ATTACKS BASED ON DECRYPTION FAILURES. Encryption schemes meeting strong
notions of security typically introduce redundancy into their ciphertexts, and as a con-
sequence ciphertexts may be deemed invalid during decryption. A scheme’s correctness
ensures that honestly generated ciphertexts will always decrypt correctly, hence we ex-
pect decryption to ‘fail’ only for ciphertexts that are corrupted during transmission or
are adversarially generated. Typically, protocols making use of an encryption scheme
report decryption failures to the sender through error messages, and thus the fact that
a decryption failure has occurred becomes known to the adversary. After Bleichen-
bacher’s attack on RSA PKCS#1 [9], it became recognised in the academic community
that these decryption failures (and the attendant error messages) may leak significant
information to an adversary, undermining schemes’ confidentiality properties. Other
examples in the asymmetric setting were subsequently discovered [16, 21] and called
reaction attacks. Vaudenay then showed that similar issues can arise in the symmetric
setting [27], and his ideas were extended to produce significant attacks against (among
others) SSL/TLS [11, 23], IPsec [12, 13], ASP.NET [14], XML encryption [19] and
DTLS [2]. Analysis of error messages in the symmetric setting was also crucial to the
success of attacks against the SSH Binary Packet Protocol [1].

THE RELATION BETWEEN ATTACKS AND SECURITY DEFINITIONS. At a very high
level the above-mentioned attacks on symmetric schemes have the common feature that



during decryption some information about the plaintext is leaked, due to error mes-
sages, their timing, or some other aspect of the implementation. The leaked information
is normally quite small, and the power of these attacks really comes from the adver-
sary’s ability to amplify this leakage through iteration. That is, given a target ciphertext,
an adversary is able to produce a sequence of related ciphertexts which when decrypted
will leak more information about the target plaintext. If we now compare this to the
IND-CCA security model, it appears that such attacks should be fully accounted for
and prevented, given the very conservative approach adopted in this model. Indeed, in
the IND-CCA model, the adversary is given full access to a decryption oracle for any
ciphertext except the target ciphertext, from which he learns either the corresponding
plaintext or the fact that decryption fails; and yet this should not leak any information
about the target plaintext. Furthermore, several of the attacks above do not even make
full use of the decryption oracle, but only consider ciphertexts which result in decryp-
tion failures.

Why then are the attacks possible at all? Are the underlying encryption schemes
actually IND-CCA secure? Is the IND-CCA model the right one for capturing these
classes of attack?

SSL/TLS makes an instructive case study for answering these questions. At a high
level, SSL/TLS most commonly uses a Mac-then-Encrypt (MtE) construction, with
either a stream cipher or CBC-mode encryption of a block cipher as the encryption
scheme. Thus SSL/TLS is covered by Krawczyk’s result [20], and one might reason-
ably conclude that its symmetric encryption scheme is IND-CCA secure. Yet Canvel
et al. [11] presented plaintext-recovering attacks against the OpenSSL implementation
of SSL/TLS when CBC-mode is used, in which the attacker does nothing other than
submit certain ciphertexts for decryption and analyse the results (i.e. the attacker os-
tensibly operates within the IND-CCA model). The key point, however, is that at the
time of Canvel et al.’s attacks in 2003, it was possible to infer more from SSL/TLS
decryption failures than the simple fact that decryption had failed: decryption could fail
either because either the underlying padding needed by CBC-mode was incorrectly for-
matted or because of a MAC failure, and it was possible to tell these conditions apart
(either because they were indicated by different error messages or because the error
messages were produced at different times during decryption processing). This addi-
tional information was sufficient to realise a padding oracle attack, in the style of [27].
Furthermore, this attack is technically outside the IND-CCA security model, because
this model only ever provides a single decryption failure symbol ⊥ to the adversary.
Thus, while SSL/TLS may be provably IND-CCA secure in theory, it turned out not to
be in practice. Suitable countermeasures involve making it hard for an attacker to learn
the cause of decryption failures and were incorporated into the TLS specification from
version 1.1 onwards. Meanwhile, building an accurate model of SSL/TLS’s symmetric
encryption scheme and proving its security has turned out to be a complex task that
was only recently completed in [23]. Even there, however, it was necessary to assume
that all decryption failures are indistinguishable (since, otherwise, attacks like those
of [27, 11, 2, 3] are possible). A similar story could be told for MAC-then-encryption
configurations of IPsec, to which the theory in [20] and the attacks of [13] both apply.

2



So the answers to our questions above are, respectively, yes and no. Yes, the un-
derlying encryption schemes are provably IND-CCA secure. However, this is for some
description of the schemes that may not accurately reflect how they are actually imple-
mented. And no, the standard model for IND-CCA security is not the right one for cap-
turing these attacks: in the current formalism, more specifically the basic syntax adopted
for encryption schemes, it is assumed that decryption failures are indistinguishable and
that each decryption failure will return the same error symbol ⊥. This creates a gap in
the effective power conferred by a decryption oracle between the IND-CCA model and
practical attack scenarios (where decryption failures are often distinguishable). In short,
knowing why decryption failed may be more informative to the adversary than the mere
fact that decryption has failed.

OUR CONTRIBUTIONS. We propose to strengthen the existing security definitions for
symmetric encryption by letting the adversary distinguish various possible decryption
errors. Our main purpose is to build models that better reflect the reality of crypto-
graphic implementations, and to surface the security issues that arise from doing so.
We are not the first to make this relaxation (see, for example, [22, 24]), but we are the
first to systematically explore its consequences, with some surprising consequences for
our understanding of this basic cryptographic primitive. Our results should be useful
to practitioners who wish to build accurate models of their implementations and then
analyse them. They should also be of value to more theoretical cryptographers propos-
ing new encryption schemes, who, in an ideal world, would be compelled by this work
to consider the possibility that their schemes might leak more than simple decryption
failures. (Of course, an alternative reaction by the latter group would be to cast this as
an implementation issue and simply assume indistinguishable errors as usual; however,
the history of attacks tells us that this is hard to guarantee in practice and therefore a
dangerous assumption to make.)

Our approach requires the adoption of a slightly different syntax for encryption
schemes to the standard one. Now, our decryption algorithm will either return a mes-
sage from the message space, or an error message from a predetermined finite set of
values which we refer to as the error space. Technically, then, encryption schemes with
multiple errors are a slightly different object from single-error schemes. This approach
allows us to handle schemes that can fail in a finite number of distinguishable ways
that will be indicated in practice by different error messages. It also enables us to treat
attacks in which indistinguishable error messages are returned (perhaps because they
are all encrypted, as is the case in SSL/TLS), but in which the errors are returned at a
discrete set of times. We note that our approach is equally applicable to the asymmetric
setting; here we will restrict our scope to the symmetric setting only.

With this new syntax in hand, we re-examine the statement due to Bellare and Nam-
prempre [10] that semantic (IND-CPA) security in combination with integrity of cipher-
texts (INT-CTXT) is sufficient to imply chosen ciphertext (IND-CCA) security. One
consequence of their results is that ‘IND-CPA + INT-CTXT’ has come to be seen as
the ‘right’ security notion to aim for in the symmetric case, with this combined notion
now being referred to as authenticated-encryption security. This seems to be mostly
because it implies IND-CCA security, and because that is by now the accepted notion
in the asymmetric setting. We show, through separations, that this important relation no
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longer holds for multiple error symmetric encryption schemes. Indeed, it is easy to see
where the proof of this relation in [10] breaks down: in the passage from the INT-CTXT
security game to the IND-CPA security game, the simulation in [10] simply replies to
all decryption queries with the error message ⊥; only if an adversary forges a cipher-
text does this simulation go awry. But this is not an accurate response in the multiple
error setting, since one of several possible error messages should be returned, and the
simulation does not necessarily know which.

We then go on to establish relations that are similar in spirit to the classic relations,
in that they combine a weak form of confidentiality with some form of ciphertext in-
tegrity to obtain strong confidentiality. An interesting aspect that emerges in our analysis
is that it is not at all obvious how the notion of ciphertext integrity should be extended to
the multiple-error setting. We identify two candidate definitions for ciphertext integrity,
one being strictly stronger than the other. We compare and contrast the two, and provide
evidence (by means of a rather non-trivial counterexample) for requiring the stronger
variant in our relations.

We also provide a natural extension of the IND-CCA3 security notion to the multiple-
error setting. This notion, due to Rogaway and Shrimpton [26], is an elegant combina-
tion of semantic security and ciphertext integrity into a single equivalent security notion.
We show that it serves as a good security notion for symmetric encryption with multiple
errors. More specifically we show that our extension to IND-CCA3 security does imply
chosen-ciphertext security in the multiple error setting.

We conclude by showing that the encode-then-encrypt-then-MAC (EEM) construc-
tion is IND-CCA secure for any encoding scheme, any IND-CPA secure encryption
scheme with arbitrary error messages, and any SUF-CMA MAC. Following the works
of Bellare and Namprempre [10] and Krawczyk [20], this result provides further for-
mal grounds for preferring the EEM composition over other generic constructions, for
example MAC-then-encrypt.

In addition to the standard symmetric encryption notions, we provide equivalent re-
sults for security definitions involving indistinguishability from random bits introduced
by Rogaway [25], and for the stateful setting introduced by Bellare, Kohno, and Nam-
prempre [8]. Many of these additional results follow rather straightforwardly, but we
consider it valuable to include them for completeness.

For reasons of space, all proofs are deferred to the full version [6].

2 Preliminaries

2.1 Notation

Unless otherwise stated, an algorithm may be randomized. An adversary is an algo-
rithm. For any algorithm A we use y ← A(x1, x2, . . . ) to denote executing A with
fresh coins on inputs x1, x2, . . . and assigning its output to y. If S is a set then |S| de-
notes its size, and y ←$S denotes the process of selecting an element from S uniformly
at random and assigning it to y. The set of all finite binary strings is denoted by {0, 1}∗,
for any positive integer n and bit b, we denote by bn the string of n consecutive b’s and
{0, 1}n represents the set of all binary strings of length n. The empty string is repre-
sented by ε. For any two strings w and z and a positive integer i, w ‖ z denotes their
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concatenation, w ⊕ z denotes their bitwise XOR, |w| denotes the length of w, and w[i]
denotes the ith bit of w. If j is a non-negative integer, then 〈j〉` denotes the unsigned `-
bit binary representation of j. Accordingly 〈·〉−1 represents the inverse mapping which
maps strings of any length to N. If w is an `-bit string and i is an integer we use w + i
as shorthand for 〈〈w〉−1 + i mod 2`〉`. We use Func(X ,Y) to denote the set of all
functions with domain X and codomain Y . We will often have that X = {0, 1}` or
X = {0, 1}∗, and Y = {0, 1}n for some positive integers ` and n. Accordingly we ab-
breviate notation for the corresponding sets of functions to Func(`, n) and Func(∗, n)
respectively.

2.2 Building Blocks

PSEUDORANDOM FUNCTIONS. A function family is a map F : K×X → Y . We refer
to K as the key space of F , X as the domain of F , and Y as the codomain of F . In
this paper K, X , and Y will be sets of bit-strings. For eack K ∈ K we define the map
FK : X → Y by FK(x) = F (K,x) for all x ∈ X . Thus F can be seen as a collection
of maps from X to Y , each identified by some key in K . We will refer to FK as an
instance of F . We will often make use of function families that are pseudorandom.

Definition 1 (Pseudorandom functions). Let F : K × X → Y be a function family.
Consider an adversary A with oracle access to some function with domain X and
codomain Y , that returns a single bit as its output. We define the prf-advantage of
adversary A with respect to the function family F as:

Advprf
F (A) = Pr

[
K ←$K : AFK(·) = 1

]
−Pr

[
f ←$ Func(X ,Y) : Af(·) = 1

]
.

F is said to be a pseudorandom function (PRF), if for every adversary A with reason-
able resources its prf-advantage Advprf

F (A) is small.

MACS. A message authentication code (MAC)MA = (K, T ,V) with associated error
space Q⊥ consists of three algorithms. The randomized key-generation algorithm K
takes no input and returns a secret keyK. We will sometimes abuse notation and regard
K as a set of keys. The tagging algorithm T may be randomized or stateful. It takes as
input the secret key K and a message m ∈ {0, 1}∗ to return a tag τ . The verification
algorithm V is deterministic and stateless. It takes the secret key K, a message m ∈
{0, 1}∗ and a candidate tag τ , and returns either 1 or an error message inQ⊥. We require
that for all K that can be output by K and all m ∈ {0, 1}∗, it hold (with probability
1) that if τ ← TK(m) then VK(m, τ) = 1. Here, we allow multiple possible error
messages forMA in order to be able to model certain types of attack, e.g. that in [3].

The standard security notion for MACs is existential unforgeability under chosen
message attacks (UF-CMA). We will however require a stronger variant of this notion
(SUF-CMA) which is defined below.

Definition 2 (SUF-CMA). Let MA = (K, T ,V) be a message authentication code
with associated error spaceQ⊥. For an adversaryA, define experiment Expsuf-cma

MA (A)
as shown in Figure 1. A key K is first generated by calling K . The adversary A is then
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Expsuf-cma
SE (A)

K ← K
L← ∅,win← 0

ATag(·),Ver(·,·)

return win

Tag(m)

τ ← TK(m)
L← L ∪ (m, τ)
return τ

Ver(m, τ)

v ← VK(m, τ)
if v 6∈ Q⊥ and (m, τ) 6∈ L

then win← 1
return v

Fig. 1. SUF-CMA experiment for message authentication codes.

given access to a tagging oracle Tag(·) and a verification oracle Ver(·, ·). The adver-
sary wins if it queries a valid message-tag pair that was not previously returned by the
tagging oracle. We define the adversary’s advantage as:

Advsuf-cma
MA (A) = Pr

[
Expsuf-cma

MA (A)
]
.

The schemeMA is said to be SUF-CMA) secure if, for every adversary A consuming
reasonable resources its advantage Advsuf-cma

MA (A) is small.

The standard UF-CMA notion is defined analogously but the adversary is only
granted a win if it forges a tag for a message that was not previously queried to the
tagging oracle.

ENCODING SCHEMES. When constructing symmetric encryption schemes from other
components it is common to perform some form of preprocessing on the message. Its
purpose may be to map messages to the message space of the encryption scheme, or as
an attempt to extend the scheme’s functionality, such as masking the message length.
Generally such transformations are unkeyed, but may be randomized. We model such
transformations by encoding schemes.

An encoding scheme ES = (EC, DC) consists of two algorithms and associated
domain, codomain, and an error space. The encoding algorithm EC which may be ran-
domized, takes as input an element from its domain and maps it to some element in its
codomain. The decoding algorithm DC is deterministic and takes an element from its
codomain and returns either an element in its domain or an error symbol from its error
space. The scheme must be correct, i.e. for every element m in its domain it holds with
probability 1 that DC(EC(m)) = m.

3 Symmetric Encryption with Multiple Errors: Definitions

SYNTAX. A symmetric encryption scheme SE = (K, E ,D) with associated message
spaceM⊆ {0, 1}∗, ciphertext space C ⊆ {0, 1}∗, and error space S⊥ consists of three
algorithms. The randomized key-generation algorithm K takes no input and returns a
secret key K, an initial encryption state σ0, and an initial decryption state %0. We will
sometimes abuse notation and regard K as a set of keys. The randomized and stateful
encryption algorithm E : K ×M×Σ → C ×Σ takes as input the secret key K ∈ K,
a plaintext m ∈ M, and the current encryption state σ ∈ Σ, and returns a ciphertext
in C together with an updated state. The deterministic and stateful decryption algorithm
D : K×C ×Σ → (M ∪ S⊥)×Σ takes as input the secret key K, a ciphertext c ∈ C,
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and the current decryption state % to return the corresponding plaintext m ∈ M or a
special symbol from S⊥ (indicating that the ciphertext is invalid) and an updated state.

Our syntax of symmetric encryption schemes differs in two main ways from the
more conventional way of modelling symmetric encryption schemes. Firstly it allows
the decryption algorithm to indicate invalid ciphertexts with distinct error messages
within the error space. We will assume the error space be a set of symbols {⊥1,⊥2

, . . . ,⊥n} for some positive integer n. The symbol ⊥ will be used interchangeably
to denote a specific error symbol or a variable assuming values from the error space.
We will use the term multiple-error encryption scheme to indicate schemes with an
error space of size strictly greater than one. Secondly we adopt a stateful syntax for
both encryption and decryption. This is without loss of generality. Both encryption and
decryption can be made stateless by defining K to always return the empty string for
the corresponding initial state, and having E ,D ignore (i.e. never update) the state.

For any ` ∈ N and any m = [m1, . . . ,m`] ∈ M`, we write (c, σ) ← EK(m, σ0)
as shorthand for (c1, σ1) ← EK(m1, σ0), (c2, σ2) ← EK(m2, σ1), . . . (c`, σ`) ←
EK(m`, σ`−1), where c = [c1, . . . , c`] and σ = σ`. Similarly we use (m′, %) ←
DK(c, %0) to denote the analogous process for decryption. Finally, we require that
a symmetric encryption scheme satisfy correctness which is defined as follows:

Definition 3 (Correctness of SE). For all (K,σ0, %0) that can be output by K, all
` ∈ N, and all m ∈ M`, it holds (with probability 1) that if (c, σ) ← EK(m, σ0) and
(m′, %)← DK(c, %0), then m′ = m.

INDISTINGUISHABILITY NOTIONS. We adopt the ‘left-or-right’ model of indistin-
guishability from Bellare et al. [5] to define three notions of confidentiality for sym-
metric encryption. Indistinguishability under chosen-plaintext attack (IND-CPA), and
indistinguishability under chosen-ciphertext attack (IND-CCA) are fairly standard, ex-
cept for the fact that for multiple-error schemes the decryption oracle will now return
one of many possible error messages. We introduce the notion of indistinguishability
under ciphertext-validity attack (IND-CVA), which can be seen as a strengthened adap-
tion of a similar notion defined by Bauer et al. [4] to the symmetric setting. Here, in
addition to an encryption oracle the adversary is given access to a ciphertext-validity
oracle which indicates whether a ciphertext is valid or not, and if not, returns the exact
error message output by the decryption algorithm.

Definition 4 (IND-ATK security). Let SE = (K, E ,D) be a symmetric encryption
scheme. For an adversaryA and a bit b, define the experiments Expind-atk-b

SE (A) where
atk ∈ {cpa, cva, cca} as shown in Figure 2. In all three experiments, a key K is first
generated by calling K . The adversary A is then given access to a left-or-right en-
cryption oracle LoR(·), and possibly a ciphertext-validity oracle Val(·) or a decryption
oracle Dec(·). No restriction is imposed on the adversary’s queries, rather if it queries a
pair of messages of unequal length to LoR(·), or if it queries a ciphertext to Dec(·) pre-
viously returned by LoR(·), the  symbol is returned. In the Val(·) oracle the  symbol
indicates that the queried ciphertext was valid.

The adversary’s goal is to output a bit b′, as its guess of the challenge bit b, and
the experiment returns b′ as well. For each of these three experiments we define the
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Expind-cpa-b
SE (A)

(K,σ, %)← K
i← 0, C← ()

b′ ← ALoR(·)

return b′

LoR((m0,m1))

if |m0| 6= |m1|
then return  

(c, σ)← EK(mb, σ)
i← i+ 1, Ci ← c
return c

Expind-cva-b
SE (A)

(K,σ, %)← K
i← 0, C← ()

b′ ← ALoR(·),Val(·)

return b′

Val(c)

(m, %)← DK(c, %)
if m ∈M then m←  
return m

Expind-cca-b
SE (A)

(K,σ, %)← K
i← 0, C← ()

b′ ← ALoR(·),Dec(·)

return b′

Dec(c)

(m, %)← DK(c, %)
if c ∈ C then m←  
return m

Fig. 2. IND-ATK experiments for symmetric encryption schemes.

corresponding advantages of an adversary A as:

Advind-atk
SE (A) = Pr

[
Expind-atk-1

SE (A) = 1
]
− Pr

[
Expind-atk-0

SE (A) = 1
]
.

The scheme SE is said to be IND-ATK secure, if for every adversaryA with reasonable
resources its advantage Advind-atk

SE (A) is small.

INDISTINGUISHABILITY FROM RANDOM BITS. We can recast the above three secu-
rity notions in terms of indistinguishability from random bits as introduced by Rog-
away [25]. Here the adversarial goal is to distinguish encrypted messages from random
bit-strings of the same length.

Definition 5 (IND$-ATK security). Let SE = (K, E ,D) be a symmetric encryption
scheme. For an adversary A and a bit b, define the experiments Expind$-atk-b

SE (A)
where atk ∈ {cpa, cva, cca} as shown in Figure 3. In all three experiments, a key
K is first generated by callingK . The adversaryA is then given access to a special en-
cryption oracle Enc$(·), if b = 1 the oracle returns the encrypted message, otherwise it
returns a uniformly-random bit-string of the same length. In the ind$-cva and ind$-cca
experiments, the adversary is additionally given access to a ciphertext-validity oracle
Val(·) and a decryption oracle Dec(·) respectively. Trivial-win conditions are avoided
by having the decryption oracle return  in response to any ciphertext that was previ-
ously output by the encryption oracle. The ciphertext-validity oracle uses  to indicate
that the queried ciphertext was valid or has been previously output by the encryption
oracle.

The adversary’s goal is to output a bit b′, as its guess of the challenge bit b, and
the experiment returns b′ as well. For each of these three experiments we define the
corresponding advantages of an adversary A as:

Advind$-atk
SE (A) = Pr

[
Expind$-atk-1

SE (A) = 1
]
− Pr

[
Expind$-atk-0

SE (A) = 1
]
.

The scheme SE is said to be IND$-ATK secure, if for every adversary A with reason-
able resources its advantage Advind$-atk

SE (A) is small.
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Expind$-cpa-b
SE (A)

(K,σ, %)← K
b′ ← AEnc$(·)

return b′

Enc$(m)

(c, σ)← EK(m,σ)
if b = 0

then c←$ {0, 1}|c|
i← i+ 1, Ci ← c
return c

Expind$-cva-b
SE (A)

(K,σ, %)← K
i← 0, C← ()

b′ ← AEnc$(·),Val(·)

return b′

Val(c)

(m, %)← DK(c, %)
if m ∈M or c ∈ C

then m←  
return m

Expind$-cca-b
SE (A)

(K,σ, %)← K
i← 0, C← ()

b′ ← AEnc$(·),Dec(·)

return b′

Dec(c)

(m, %)← DK(c, %)
if c ∈ C then m←  
return m

Fig. 3. IND$-ATK experiments for symmetric encryption schemes.

STATEFUL INDISTINGUISHABILITY NOTIONS. Secure protocols like SSH, SSL/TLS
and IPsec aim to protect against replay and reordering of ciphertexts. These security
goals are not captured by any of the above security notions. Bellare, Kohno, and Nam-
prempre [8] introduced a notion called IND-sfCCA. This notion implies IND-CCA se-
curity and additionally protects against replay and reordering of ciphertexts. We recall
this notion and introduce natural variants in terms of indistinguishability from random
bits and ciphertext-validity attacks. Of course, our definitions are also for the setting
of multiple errors. In what follows we will classify the adversary’s decryption queries
to be in-sync, if the sequence of queried ciphertexts is a prefix of the sequence of ci-
phertexts returned by the encryption oracle. Accordingly we refer to the first decryption
query (and any subsequent one) for which this is no longer true as an out-of-sync query.

Definition 6 (Stateful indistinguishability). Let SE = (K, E ,D) be a symmetric en-
cryption scheme. For an adversaryA and a bit b, define experiments Expind-sfcca-b

SE (A)
and Expind$-atk-b

SE (A) where atk ∈ {sfcva, sfcca} as shown in Figure 4. In all three
experiments, a key K is first generated by calling K . In the ind-sfcca experiment the
adversary is given access to a left-or-right encryption oracle LoR(·), and a stateful de-
cryption oracle sfDec(·). The stateful decryption oracle returns the decrypted cipher-
texts only for out-of-sync queries, and returns  otherwise. Similarly in the ind$-atk
experiments the adversary is given access to the special encryption oracle Enc$(·),
and either a stateful ciphertext-validity oracle sfVal(·) or a stateful decryption oracle
sfDec(·).

The adversary’s goal is to output a bit b′, as its guess of the challenge bit b, and
the experiment returns b′ as well. For each of these three experiments we define the
corresponding advantages of an adversary A as:

Advind-sfcca
SE (A) = Pr

[
Expind-sfcca-1

SE (A) = 1
]
− Pr

[
Expind-sfcca-0

SE (A) = 1
]

Advind$-atk
SE (A) = Pr

[
Expind$-atk-1

SE (A) = 1
]
− Pr

[
Expind$-atk-0

SE (A) = 1
]
.
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Expind-sfcca-b
SE (A)

(K,σ, %)← K
i← 0, j ← 0
C← (), sync← 1

b′ ← ALoR(·),sfDec(·)

return b′

LoR((m0,m1))

if |m0| 6= |m1|
then return  

(c, σ)← EK(mb, σ)
i← i+ 1, Ci ← c
return c

sfDec(c)

j ← j + 1
(m, %)← DK(c, %)
if j > i or c 6= Cj

then sync← 0
if sync = 1 then m←  
return m

Expind$-sfcva-b
SE (A)

(K,σ, %)← K
i← 0, j ← 0
C← (), sync← 1

b′ ← AEnc$(·),sfVal(·)

return b′

Enc$(m)

(c, σ)← EK(m,σ)
if b = 0

then c←$ {0, 1}|c|
i← i+ 1, Ci ← c
return c

Expind$-sfcca-b
SE (A)

(K,σ, %)← K
i← 0, j ← 0
C← (), sync← 1

b′ ← AEnc$(·),sfDec(·)

return b′

sfVal(c)

j ← j + 1
(m, %)← DK(c, %)
if j > i or c 6= Cj

then sync← 0
if sync = 1 or m ∈M

then m←  
return m

Fig. 4. Stateful indistinguishability experiments for symmetric encryption schemes.

The scheme SE is said to be IND-sfCCA or IND$-ATK secure, if for every adversaryA
with reasonable resources its respective advantage Advind-sfcca

SE (A) or Advind$-atk
SE (A)

is small.

The naming of these notions is partly justified by the fact that the decryption and
ciphertext-validity oracles are stateful. In addition, it is easy to see that for an encryp-
tion scheme to be IND-sfCCA or IND$-sfCCA secure, its decryption algorithm must be
stateful. However, a scheme need not have a stateful decryption algorithm to be IND$-
sfCVA secure. As the reader may have noticed, we did not define an IND-sfCVA notion.
This is because in the presence of a left-or-right encryption oracle, the sfVal(·) oracle
reduces to a Val(·) oracle, and therefore IND-sfCVA (defined in the obvious way) is
equivalent to IND-CVA.

CIPHERTEXT INTEGRITY. We define ciphertext integrity analogously to Bellare and
Namprempre [10], and we also consider its stateful variant [8] which additionally pro-
tects against replay and reordering attacks. Here an adversary trying to forge a ciphertext
is granted multiple attempts by giving it access to a verification oracle Try(·), in addi-
tion to a standard encryption oracle. When extending these notions to schemes with
multiple errors, it is not clear how to interpret the verification oracle’s functionality.
That is, should the verification oracle indicate only whether a ciphertext is valid or not,
or should it additionally return the exact error message output by the decryption algo-
rithm if the ciphertext is invalid? For single-error schemes the two interpretations are
equivalent, but this does not hold in general (see Section 4). For each of the standard
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and stateful notions we consider both variants and we denote the weaker variant (i.e.
the one that is less informative to the adversary) with ‘∗’. In what follows we classify
verification queries to be in-sync or out-of-sync in an analogous manner as we did for
decryption.

Definition 7 (Ciphertext Integrity). Let SE = (K, E ,D) be a symmetric encryp-
tion scheme. For an adversary A define the experiments Expint-atk

SE (A) where atk ∈
{ctxt, ctxt∗, sfctxt, sfctxt∗} as shown in Figure 5. In all experiments, a key K is first
generated by calling K . The adversary A is then given access to an encryption or-
acle Enc(·), and one of the following verification oracles Try(·),Try∗(·), sfTry(·), or
sfTry∗(·). The Try∗(·) oracle (and similarly the sfTry∗(·) oracle) returns  if the queried
ciphertext is valid, or if the ciphertext has been previously output by the encryption or-
acle (respectively: if the verification query is in-sync), and returns ⊥ if the ciphertext is
invalid. The Try(·) and sfTry(·) oracles operate analogously but return the exact error
message output by the decryption oracle when a ciphertext is invalid.

In the int-ctxt and int-ctxt∗ experiments the adversary’s goal is to make a valid
verification query not previously output by the encryption oracle. In the int-sfctxt and
int-sfctxt∗ experiments the adversary’s goal is to make a valid out-of-sync verification
query. In all cases the experiment outputs a bit indicating the adversary’s success. For
each experiment we define the advantage of an adversary A as:

Advint-atk
SE (A) = Pr

[
Expint-atk

SE (A) = 1
]
.

The scheme SE is said to be INT-ATK secure, if for every adversaryA with reasonable
resources its advantage Advint-atk

SE (A) is small.

ERROR INVARIANCE. Although an encryption scheme may have multiple error mes-
sages, not all error messages may be ‘available’ to the adversary. In particular an ad-
versary may not be able to produce (invalid) ciphertexts that generate all possible error
messages. We introduce a simple security notion that captures exactly this situation.
Informally an encryption scheme is error-invariant if no efficient adversary can gener-
ate more than one of the possible error messages. Of course any single-error scheme is
trivially error invariant.

Definition 8 (INV-ERR security). Let SE = (K, E ,D) be a symmetric encryption
scheme with error space S⊥. For any ⊥∈ S⊥ and an adversary A, define the exper-
iment Expinv-err

SE,⊥ (A) as shown in Figure 6. A key K is first generated by calling K .
The adversary A is then given access to an encryption oracle Enc(·) and a decryption
oracle Dec(·).

The adversary’s goal is to submit a ciphertext to the decryption oracle which re-
sults in an error message not equal to ⊥ . The experiment outputs a bit indicating the
adversary’s success. We define the advantage of an adversary A with respect to ⊥ as:

Advinv-err
SE,⊥ (A) = Pr

[
Expinv-err

SE,⊥ (A) = 1
]
.

The scheme SE is said to be INV-ERR secure if there exists a unique ⊥∈ S⊥ such
that for every adversary A with reasonable resources its advantage Advinv-err

SE,⊥ (A) is
small.
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Expint-ctxt
SE (A)

(K,σ, %)← K
i← 0, C← (), win← 0

AEnc(·),Try(·)

return win

Expint-sfctxt∗
SE (A)

(K,σ, %)← K
i← 0, j ← 0, C← ()
sync← 1, win← 0

AEnc(·),sfTry∗(·)

return win

sfTry(c)

j ← j + 1
(m, %)← DK(c, %)
if j > i or c 6= Cj

then sync← 0
if sync = 0 and m 6∈ S⊥

then win← 1
if m 6∈ S⊥ then m←  
return m

Expint-sfctxt
SE (A)

(K,σ, %)← K
i← 0, j ← 0, C← ()
sync← 1, win← 0

AEnc(·),sfTry(·)

return win

Enc(m)

(c, σ)← EK(m,σ)
i← i+ 1, Ci ← c
return c

Try∗(c)

(m, %)← DK(c, %)
if c 6∈ C and m 6∈ S⊥

then win← 1
if m ∈ S⊥ then m←⊥
else m←  
return m

Expint-ctxt∗
SE (A)

(K,σ, %)← K
i← 0, C← (), win← 0

AEnc(·),Try∗(·)

return win

Try(c)

(m, %)← DK(c, %)
if c 6∈ C and m 6∈ S⊥

then win← 1
if m 6∈ S⊥ then m←  
return m

sfTry∗(c)

j ← j + 1
(m, %)← DK(c, %)
if j > i or c 6= Cj

then sync← 0
if sync = 0 and m 6∈ S⊥

then win← 1
if m ∈ S⊥ then m←⊥
else m←  
return m

Fig. 5. Ciphertext integrity experiments for symmetric encryption schemes.

ADDITIONAL NOTES. The reader may be wondering how exactly to interpret the  
symbol, given that we assign to it different meanings in our security definitions. In gen-
eral we use it to ‘suppress’ certain outputs from an oracle, and hence limit the informa-
tion conveyed by the oracle to the adversary. We use it to avoid trivial win conditions by
suppressing the output of in-sync decryption queries, or left-or-right queries containing
messages of different lengths. We also use it to define ciphertext-validity and verifica-
tion oracles by suppressing any plaintext that is output by the decryption algorithm.

For each security definition we have defined the corresponding advantage of an ad-
versary with respect to some cryptographic scheme. We will sometimes refer to the
maximum advantage with respect to a cryptographic scheme over all adversaries con-

Expinv-err
SE,⊥ (A)

(K,σ, %)← K
win← 0

AEnc(·),Dec(·)

return win

Enc(m)

(c, σ)← EK(m,σ)
return c

Dec(c)

(m, %)← DK(c, %)
if m ∈ S⊥ and m 6=⊥

then win← 1
return m

Fig. 6. INV-ERR experiment for symmetric encryption schemes.
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suming reasonable resources. Any advantage not parametrized by an adversary is to be
interpreted this way.

4 Relations and Separations

INTERPRETING OUR IMPLICATIONS AND SEPARATIONS. An implication from secu-
rity notion X to security notion Y, indicated by X −→ Y, means that any scheme which
is X-secure is also Y-secure. More formally there exists a constant κ > 0 such that for
any symmetric encryption scheme SE and any Y adversary Ay there exists a X adver-
sary Ax (with similar resources) such that:

Advy
SE(Ay) ≤ κ ·Advx

SE(Ax)

A separation from security notion X to security notion Y indicated by X 6−→ Y, means
that there exists a symmetric encryption scheme which meets notion X but for which
we can exhibit an attack showing that it does not meet notion Y. The separation is in-
teresting only if there exists some scheme which meets security notion X, as otherwise
the implication X −→ Y is vacuously true. Our separations can be categorised into two
types. In the former we will assume that there exists some scheme SE which meets no-
tion X, and use it to construct a scheme SE which meets notion X but is insecure in the Y
sense. From the foregoing discussion, such an assumption is in some sense minimal. In
the second type of separations we will assume the existence of pseudorandom functions
and UF-CMA MACs to construct a scheme which meets notion X but not notion Y. In
this paper for all separations of the latter type we will have that X −→ IND-CPA. It
is a well-known result that the existence of IND-CPA-secure symmetric encryption im-
plies the existence of pseudorandom functions [18, 17, 15]. In addition a pseudorandom
function can be combined with an almost-universal hash function to obtain a variable-
input-length pseudorandom function, which in turn yields a UF-CMA MAC. Thus from
a theoretical viewpoint the underlying assumptions for either type of separation are
equivalent.

Note that when proving a separation we do not require the scheme to have distinct
error messages, as we are interested solely in the existence of a counterexample show-
ing that the relation under question cannot be established. Secondly any multiple-error
scheme which is secure under some notion X implies the existence of a single-error
scheme which is also secure under notion X (simply by mapping all error messages to a
single error message). Consequently it is best to prove separations using schemes with
an error space of minimal cardinality. It then follows that the separation also holds for
all schemes of higher error-space cardinality.

STRAIGHTFORWARD RELATIONS. The following set of relations are self-evident. We
state them here for the sake of completeness without proofs.
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Proposition 1.

IND-sfCCA // IND-CCA // IND-CVA // IND-CPA

IND$-sfCCA //

//

IND$-CCA // IND$-CVA // IND$-CPA

IND$-sfCVA

OO

INT-sfCTXT //

//

INT-CTXT // INT-CTXT∗

INT-sfCTXT∗

OO

REVISITING CLASSIC RELATIONS. If a symmetric encryption scheme that only sup-
ports a single possible error symbol satisfies both passive confidentiality (IND-CPA)
and integrity of ciphertexts, then it offers confidentiality against chosen-ciphertext at-
tacks [10, 8]. Often, when analysing a particular scheme, its chosen-plaintext security
and ciphertext integrity are proven first, and then the results of [10, 8] are used to
guarantee chosen-ciphertext security. Indeed, the combination of IND-CPA and INT-
sfCTXT (or their stateful versions) has come to be the accepted security notion for
symmetric encryption. We proceed to re-examine the classic relations from [10, 8] in
the context of encryption schemes with multiple error messages.

The following theorem serves as the basis for the two separations in Corollaries 1
and 2, showing that the classic relations no longer hold for multiple-error schemes.
We point out that in proving the separations, we adopt the stronger interpretations of
ciphertext integrity so as to avoid any ambiguity in the results.

Theorem 1 (IND-CPA∧ INT-sfCTXT 6−→ IND-CCA). Let F : Ke×{0, 1}` → {0, 1}n
be a pseudorandom function, and letMA = (Km, T ,V) be a UF-CMA secure MAC
with tag length `tag < n . Consider the stateful symmetric encryption scheme SE1 hav-
ing message space {0, 1}n−`tag and error space {⊥0,⊥1} shown in Figure 7. For any
IND-CPA adversaryAcpa and any INT-sfCTXT adversaryAint against SE1, both mak-
ing at most 2` − 1 encryption queries, there exist two corresponding adversaries Aprf

and Auf using roughly the same resources as Acpa and Aint, respectively, such that:

Advind-cpa
SE1

(Acpa) ≤ 2 ·Advprf
F (Aprf) , (1a)

Advint-sfctxt
SE1 (Aint) ≤ Advuf-cma

MA (Auf) . (1b)

Moreover there exist efficient adversaries Acca and A′uf such that:

Advind-cca
SE1 (Acca) = 1−Advuf-cma

MA (A′uf) . (1c)

Combining Theorem 1 and Proposition 1 yields the following two separations cor-
responding to the aforementioned relations from [10] and [8].
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Algorithm K

Ke ←$Ke

Km ← Km

σ ← 1, %← 1
K ← Ke ‖ Km

return (K,σ, %)

Algorithm EK(m,σ)

τ ← TKm(〈σ〉` ‖ m)
c← FKe(〈σ〉`)⊕ (m ‖ τ)
σ ← σ + 1 mod 2`

return (c, σ)

Algorithm DK(c, %)

if |c| 6= n then %← 0
if % = 0 then

return (⊥0, %)
w ← FKe(〈%〉`)⊕ c
parse w as m ‖ τ
v ← VKm(〈%〉` ‖ m, τ)
if v = 1

then %← %+ 1 mod 2`

else
%← 0
if m[1] = 0 then m←⊥0

else m←⊥1

return (m, %)

Fig. 7. The scheme SE1 of Theorem 1.

Corollary 1 (IND-CPA∧ INT-CTXT 6−→ IND-CCA). Let F : Ke ×{0, 1}` → {0, 1}n
be a pseudorandom function, and letMA = (Km, T ,V) be a UF-CMA secure MAC
with tag length `tag < n . Then there exists a symmetric encryption scheme that is both
IND-CPA secure and INT-CTXT secure but that is not secure in the IND-CCA sense.

Corollary 2 (IND-CPA ∧ INT-sfCTXT 6−→ IND-sfCCA). Let F : Ke × {0, 1}` →
{0, 1}n be a pseudorandom function, and letMA = (Km, T ,V) be a UF-CMA secure
MAC with tag length `tag < n . Then there exists a symmetric encryption scheme that is
both IND-CPA secure and INT-sfCTXT secure but that is not secure in the IND-sfCCA
sense.

Note that in proving Theorem 1 we resorted to a stateful scheme. Only a stateful scheme
can be INT-sfCTXT secure, and therefore the counterexample used to prove Corollary 2
needs to be stateful. The same cannot be said however about the separation in Corol-
lary 1, and in fact it can be proven more generally using a stateless scheme, but we omit
the details for the sake of brevity.

NEW RELATIONS. We now go on to investigate how chosen-ciphertext security can be
obtained in the multiple-error setting. Given how useful the relations of [10] and [8]
have turned out to be, it would make sense to attempt to derive analogous relations that
hold more generally. The following theorem extends the relation of [10] to schemes
with multiple errors.

Theorem 2 (IND-CVA ∧ INT-CTXT −→ IND-CCA). Let SE = (K, E ,D) be a sym-
metric encryption scheme. For any IND-CCA adversary Acca there exist adversaries
Acva and Aint consuming similar resources to Acca such that:

Advind-cca
SE (Acca) ≤ Advind-cva

SE (Acva) + 2 ·Advint-ctxt
SE (Aint) . (2)

A similar relation can be established for stateful chosen-ciphertext security, and
each of these relations can be re-proven for security notions involving indistinguisha-
bility from random bits. We state these relations below.
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Proposition 2.

IND-CVA ∧ INT-sfCTXT −→ IND-sfCCA

IND$-CVA ∧ INT-CTXT −→ IND$-CCA

IND$-sfCVA ∧ INT-sfCTXT −→ IND$-sfCCA

NECESSITY OF STRONG CIPHERTEXT INTEGRITY. The above relations can be seen
as strengthened variants of the relations from [10] and [8], where we replaced CPA se-
curity with CVA security and adopted the stronger notions of ciphertext integrity. It is
natural to ask whether the left-hand side of each relation can be somehow relaxed. We
have seen in Corollaries 1 and 2 that reverting from CVA security to CPA security is not
an option. However it is not evident whether it is necessary to require the stronger vari-
ants of ciphertext integrity. Theorem 3 answers this question by means of a separation,
proving that strong ciphertext integrity is necessary for Theorem 2 to hold.

Theorem 3 (IND-CVA ∧ INT-CTXT∗ 6−→ IND-CCA). Let SE = (K, E ,D) be a sym-
metric encryption scheme with a large message space M and an error space {⊥0},
such that it is both IND-CVA secure and INT-CTXT∗ secure. Let the length of its ci-
phertexts be bounded above by 2` for some integer `. Consider the scheme SE2 having
message space M and error space {⊥0,⊥1} shown in Figure 8. For any IND-CVA
adversary Acva making qe left-or-right queries, and any INT-CTXT∗ adversary Aint

making qt verification queries, there exist adversaries A1
cva, A2

cva, and A1
int (consuming

similar resources to Acva and Aint) such that:

Advind-cva
SE2 (Acva) ≤ Advind-cva

SE (A1
cva) +

1

2
·Advind-cva

SE (A2
cva) +

qe
|M|

, (3a)

Advint-ctxt∗
SE2 (Aint) ≤ Advint-ctxt∗

SE (A1
int) +

qt
|M|

. (3b)

Moreover there exists an adversary Acca, making at most (` + maxm∈M(|m|) + 1)
decryption queries and one left-or-right query such that:

Advind-cca
SE2 (Acca) = 1 . (3c)

Theorem 3 also serves as a separation between INT-CTXT∗ and INT-CTXT, show-
ing that the latter is strictly stronger. Separations similar to that of Theorem 3 corre-
sponding to the relations of Proposition 2 can also be established.

Proposition 3.

IND-CVA ∧ INT-sfCTXT∗ 6−→ IND-sfCCA

IND$-CVA ∧ INT-CTXT∗ 6−→ IND$-CCA

IND$-sfCVA ∧ INT-sfCTXT∗ 6−→ IND$-sfCCA
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Algorithm K

(K,σ, %)← K
m∗ ←$M
(c∗, σ)← EK(m∗, σ)
K0 ← (K,m∗, c∗)
return (K0, σ, %)

Algorithm EK0(m,σ)

if (m = m∗) then c← c∗

else (c, σ)← EK(m,σ)
return (0 ‖ c, σ)

Algorithm DK0(c, %)

parse c as b ‖ c′
if (b = 0) then

if (c′ = c∗) then m← m∗

else (m, %)← DK(c′, %)
else ψ ← 〈|c∗|〉` ‖ c∗

if 〈c′〉−1 ≤ |ψ| then
d← ψ[〈c′〉−1], m←⊥d

else m←⊥0

return (m, %)

Fig. 8. The scheme SE2 of Theorem 3.

5 Further Relations and the IND$-CCA3 Notion

AUTHENTICATED-ENCRYPTION SECURITY. Following the work of Bellare and Nam-
prempre [10], chosen-plaintext security and ciphertext integrity were identified as the
two security goals for symmetric encryption. Rogaway and Shrimpton [26] presented
a single security notion, sometimes referred to as IND$-CCA3 and more commonly
called authenticated-encryption security, that is equivalent to the combination of cho-
sen plaintext security and ciphertext integrity. We now present a natural extension of
this notion to the multiple error setting. Then in Theorem 4 we show that this charac-
terisation is equivalent to the combination of chosen-plaintext security, weak chosen
ciphertext integrity, and error invariance.

Definition 9 (IND$-CCA3 notion for multiple-error symmetric encryption). Let SE
= (K, E ,D) be a multiple-error symmetric encryption scheme with error space S⊥. For
an adversary A, an error ⊥∈ S⊥ and a bit b, define experiment Expind$-cca3-b

SE,⊥ (A) as
shown in Figure 9. First K is called to generate a key K, an initial encryption state
σ, and an initial decryption state %. The adversary A is then given access to a special
encryption oracle Enc$(·) and a special decryption oracle Dec∅(·). When b = 1 both
oracles behave as normal encryption and decryption oracles. When b = 0 then Enc$(·)
will return a random bit string (of the same length as an actual ciphertext would have
been), and Dec∅(·) will always return ⊥ (unless the queried ciphertext was output by
Enc$(·), in which case it will return  ).

The adversary’s goal is to output a bit b′, as its guess of the challenge bit b. The
experiment returns b′ as well and, for ⊥∈ S⊥ and an adversary A, the advantage is
defined as:

Advind$-cca3
SE,⊥ (A) = Pr

[
Expind$-cca3-1

SE,⊥ (A) = 1
]
− Pr

[
Expind$-cca3-0

SE,⊥ (A) = 1
]
.

The scheme SE is said to be IND$-CCA3 secure if there exists ⊥∈ S⊥ such that for
every adversary A with reasonable resources its advantage Advind$-cca3

SE,⊥ (A) is small.

Note: An IND-CCA3 notion can be defined by replacing the Enc$(·) oracle with a real-
or-random encryption oracle (cf. [5]). Such an oracle returns either an encryption of the
queried message or an encryption of a random message of the same length.
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Expind$-cca3-b
SE,⊥ (A)

(K,σ, %)← K
i← 0, C← ()

b′ ← AEnc$(·),Dec∅(·)

return (b′)

Enc$(m)

(c, σ)← EK(m,σ)

if b = 0 then c← {0, 1}|c|
i← i+ 1, Ci ← c
return c

Dec∅(c)

(m, %)← DK(c, %)
if b = 0 then m←⊥
if c ∈ C then m←  
return m

Fig. 9. IND$-CCA3 experiment for multiple-error symmetric encryption schemes.

Theorem 4 (IND$-CPA ∧ INT-CTXT∗ ∧ INV-ERR −→←− IND$-CCA3). Let SE =
(K, E ,D) be a symmetric encryption scheme with error space S⊥.

– For any ⊥∈ S⊥ and any adversary Acca3 there exist adversaries Acpa, Aint and
Aerr (consuming similar resources to Acca3) such that:

Advind$-cca3
SE,⊥ (Acca3) ≤ Advind$-cpa

SE (Acpa)+Advint-ctxt∗
SE (Aint)+Advinv-err

SE,⊥ (Aerr) .
(4)

– For any ⊥∈ S⊥ and any three adversaries A′cpa, A′int and A′err there exist three
corresponding adversaries A1

cca3, A2
cca3 and A3

cca3 (consuming similar resources to
A′cpa, A′int and A′err, respectively) such that:

Advind$-cpa
SE (A′cpa) ≤ Advind$-cca3

SE,⊥ (A1
cca3) , (5a)

Advint-ctxt∗
SE (A′int) ≤ 2 ·Advind$-cca3

SE,⊥ (A2
cca3) , (5b)

Advinv-err
SE,⊥ (A′err) ≤ 2 ·Advind$-cca3

SE,⊥ (A3
cca3) . (5c)

It can be similarly shown that:

Proposition 4. IND-CPA ∧ INT-CTXT∗ ∧ INV-ERR −→←− IND-CCA3 .

The question remains whether IND$-CCA3 security guarantees IND$-CCA security
in the multiple error setting, which is the ultimate target security notion. Proposition 5
tells us that this is indeed the case. In fact it says something stronger, in that it relates
IND$-CCA3 to the security notions from Proposition 2.

Proposition 5. IND$-CCA3 −→ IND$-CVA ∧ INT-CTXT −→ IND$-CCA

6 The Security of Encode-then-Encrypt-then-MAC

The works of Bellare and Namprempre [10] and Krawczyk [20] provide formal ev-
idence for preferring Encrypt-then-MAC (EtM) over other generic compositions like
MAC-then-encrypt (MtE). However we believe that the merits of EtM as a generic
composition technique go beyond the implications of their work. By combining results
from [20] and [7], we know that MtE is actually IND-CCA secure when instantiated with
CBC or counter-mode encryption. Thus the analysis of [10, 20] does not explain why
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Algorithm K

(Ke, σ, %)← Ke

Km ← Km

K ← Ke ‖ Km

return (K,σ, %)

Algorithm EK(m,σ)

w ← EC(m)
(c, σ)← EKe(w, σ)
τ ← TKm(c)
return (c ‖ τ, σ)

Algorithm DK(ψ, %)

if |ψ| < `tag + 1 then
return (⊥0, %)

parse ψ as c ‖ τ
v ← VKm(c, τ)
if v ∈ Q⊥ then

return (v, %)
(w, %)← DKe(c, %)
if w ∈ S⊥ then

return (w, %)
m← DC(w)
return (m, %)

Fig. 10. The generic Encode-then-Encypt-then-MAC composition SEEEM with distinguishable
decryption failures.

EtM should be more secure than MtE when both are instantiated with CBC or counter-
mode encryption. Nonetheless practical cryptosystems (employing CBC and counter-
mode encryption) based on EtM have so far proved themselves less vulnerable to attack
than ones based on MtE. For example, the attacks in [11, 13, 2, 3] exploit features of the
encoding schemes used in specific MtE constructions and the fact that an adversary can
distinguish among distinct decryption failures. Neither of these aspects were considered
in [10]. Reconsidering the generic compositions in the light of multiple-error messages
(or equivalently distinguishable decryption failures) provides new formal grounds for
preferring the EtM composition. More specifically we consider an encode-then-encrypt-
then-MAC (EEM) composition to account for the pre-processing (such as padding) that
is common in practical schemes. The EEM composition is specified in Figure 10. The-
orem 5 shows that EEM is a robust composition, in the sense that it provides IND-CVA
and INT-CTXT security, and therefore IND-CCA security, in the multiple-error setting,
irrespective of the encoding scheme used (and the error messages it returns) and the
error messages that the encryption component may return, as long as the encryption
component is IND-CPA and the MAC is SUF-CMA. In fact, we can prove that EEM
provides IND-CCA3 security if its MAC component only has a single error message.

Theorem 5 (EEM provides IND-CVA + INT-CTXT). Suppose SE = (Ke, E ,D) is a
symmetric encryption scheme with message spaceM and error space S⊥. LetMA =
(Km, T ,V) be a MAC with error space Q⊥ producing tags of length `tag. Let ES =
(EC,DC) be a length-regular encoding scheme with domain M, codomain M, and
error space U⊥. Figure 10 then defines a symmetric encryption scheme SEEEM with
message spaceM and error space S⊥= S⊥∪ Q⊥∪ U⊥∪ {⊥0}, for some ⊥0 6∈ S⊥∪
Q⊥∪U⊥. For any IND-CVA adversaryAcva and any INT-CTXT adversaryAint against
SEEEM, there exist adversaries Acpa, A1

suf, and A2
suf such that:

Advind-cva
SEEEM

(Acva) ≤ Advind-cpa
SE (Acpa) +Advsuf-cma

MA (A1
suf) , (6)

Advint-ctxt
SEEEM

(Aint) ≤ Advsuf-cma
MA (A2

suf) . (7)
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Moreover, these adversaries consume similar resources to Acva and Aint.

It is instructive to consider some distinguishable decryption failure attacks that have
been discovered on instantiations of the MAC-then-Encode-then-Ecrypt (MEE) compo-
sition, in order to see how such implementation flaws are captured by our treatment. The
attacks on TLS [11] and on DTLS [2] use timing differences to distinguish a MAC fail-
ure from a padding failure. In the case of IPsec [13], the encoding includes a padding
portion as well as a header portion, and it is the ability to discern between malformed
padding and a malformed header that gives rise to the attack. The recent Lucky 13 at-
tack on TLS [3] exploits timing differences in the verification algorithm of HMAC.
More specifically each compression function evaluation in HMAC results in additional
processing time during decryption that can be detected by the adversary from the time
delay in returning TLS’s MAC failure message; the size of the delay relates to the
amount of TLS padding previously removed and can be used to infer plaintext in an ex-
tension of Vaudenay’s padding oracle attack [27]. This timing channel can be modelled
in our framework by transforming HMAC into a multiple-error MAC. Then the error
messages that HMAC returns can be easily predicted from the length of the string on
which the tag is to be verified. It follows from this observation that any proof of SUF-
CMA security for the usual single-error HMAC can be extended to this multiple-error
version of HMAC. So, while this multiple-error HMAC is still SUF-CMA secure, its in-
teraction with the TLS padding renders the MEE composition used in TLS insecure. By
contrast, as established in Theorem 5, an EEM composition would not be compromised
by such an implementation flaw.

7 More Separations

We now present a separation showing that IND-CVA is strictly stronger than IND-
CPA. We actually show something slightly stronger, in that the separation also holds
for schemes which are error invariant. This separation further serves to point out that,
even for single-error schemes, Theorem 2 does not reduce to the relation of Bellare and
Namprempre from [10].

Theorem 6 (IND-CPA ∧ INV-ERR 6−→ IND-CVA). Let F : Ke × {0, 1}` → {0, 1}n
be a pseudorandom function, where ` is sufficiently large. Then the symmetric encryp-
tion scheme SE3 having message space ∪k≥1{0, 1}nk and error space {⊥} shown in
Figure 11 is such that, for any IND-CPA adversary Acpa making q encryption queries
totalling µ bits of plaintext, there exists a corresponding adversary Aprf (consuming
similar resources to Acpa) with:

Advind-cpa
SE3

(Acpa) ≤ 2 ·Advprf
F (Aprf) +

(µ
n
+ q
)(q − 1

2`

)
. (8a)

Moreover there exists an efficient adversary Acva such that:

Advind-cva
SE3 (Acva) = 1 . (8b)
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Algorithm K

K ←$Ke

σ ← ε, %← ε
return (K,σ, %)

Algorithm EK(m,σ)

if |m| 6∈ {αn : α ≥ 1} then
return ⊥

p← |m|/n
parse m as m1 ‖ . . . ‖ mp

mp+1 ← 0n, c0 ←$ {0, 1}`
for i← 1 to p+ 1 do

ci ← FK(c0 + i)⊕mi

c← c0 ‖ c1 ‖ . . . ‖ cp+1

return (c, σ)

Algorithm DK(c, %)

if |c| 6∈ {`+ αn : α ≥ 2} then
return ⊥

q ← (|c| − `)/n
parse c as c0 ‖ . . . ‖ cq
for i← 1 to q do

mi ← FK(c0 + i)⊕ ci
if mq 6= 0n then m←⊥
else m← m1 ‖ . . . ‖ mq−1

return (m, %)

Fig. 11. The scheme SE3 of Theorem 6.

In Section 3 it was noted that if the IND-sfCVA experiment is defined in the obvious
way, it would be syntactically equivalent to the IND-CVA experiment. In the case of
indistinguishability from random bits, an analogous equivalence is not evident from the
syntax. Theorem 7 settles this in the negative.

Theorem 7 (IND$-CVA∧INV-ERR 6−→ IND$-sfCVA). Let F : Ke×{0, 1}` → {0, 1}n
be a pseudorandom function, where ` is sufficiently large. LetMA = (Km, T ,V) be
a single-error MAC where T : Km × {0, 1}∗ → {0, 1}`tag is pseudorandom. Consider
the symmetric encryption scheme SE4 having message space ∪k≥1{0, 1}nk and error
space {⊥} shown in Figure 12. For any IND$-CVA adversaryAcva making q encryption
queries totalling µ bits of plaintext, there exist three adversaries A1

prf, A2
prf, and Auf

with:

Advind$-cva
SE4

(Acva) ≤ Advprf
F (A1

prf) +Advprf
T (A2

prf) +Advuf-cma
MA (Auf)

+
µ

n
·
(
q − 1

2`

)
+
q(q − 1)

2`+n+1
.

Moreover there exist efficient adversaries Asfcva and A′uf such that:

Advind$-sfcva
SE4

(Asfcva) = 1−Advuf-cma
MA (A′uf) . (9a)
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Algorithm K

Ke ←$Ke

Km ←$Km

K ← Ke ‖ Km

σ ← ε, %← ε
return (K,σ, %)

Algorithm EK(m,σ)

if |m| 6∈ {αn : α ≥ 1} then
return ⊥

p← |m|/n
parse m as m1 ‖ . . . ‖ mp

c0 ←$ {0, 1}`
for i← 1 to p do

ci ← FK(c0 + i)⊕mi

c← c0 ‖ c1 ‖ . . . ‖ cp
τ ← TKm(c)
return (c ‖ τ, σ)

Algorithm DK(ψ, %)

if |ψ| 6∈ {`+ `tag + αn : α ≥ 1} then
return (⊥, %)

parse ψ as c ‖ τ
v ← VKm(c, τ)
if (v 6= 1) then

return (⊥, %)
q ← (|c| − `)/n
parse c as c0 ‖ . . . ‖ cq
for i← 1 to q do

mi ← FK(c0 + i)⊕ ci
m← m1 ‖ . . . ‖ mq

return (m, %)

Fig. 12. The scheme SE4 of Theorem 7.
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