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Abstract. We establish new hardness amplification results for one-way
functions in which each input bit influences only a small number of out-
put bits (a.k.a. input-local functions). Our transformations differ from
previous ones in that they approximately preserve input locality and at
the same time retain the input size of the original function.
Let f : {0, 1}n → {0, 1}m be a one-way function with input locality d,
and suppose that f cannot be inverted in time exp(Õ(

√
n · d)) on an

ε-fraction of inputs. Our main results can be summarized as follows:
– If f is injective then it is equally hard to invert f on a (1−ε)-fraction

of inputs.
– If f is regular then there is a function g : {0, 1}n → {0, 1}m+O(n)

that is d + O(log3 n) input local and is equally hard to invert on a
(1− ε)-fraction of inputs.

A natural candidate for a function with small input locality and for
which no sub-exponential time attacks are known is Goldreich’s one-way
function. To make our results applicable to this function, we prove that
when its input locality is set to be d = O(logn) certain variants of the
function are (almost) regular with high probability.
In some cases, our techniques are applicable even when the input locality
is not small. We demonstrate this by extending our first main result to
one-way functions of the “parity with noise” type.

keywords: one-way function, input locality, hardness amplification, parity
with noise

1 Introduction

In this paper we are interested in amplifying the hardness of inverting a one-way
function. Our goal is to do so without significantly deteriorating the function’s
parallel complexity and/or efficiency. To the best of our knowledge, these ob-
jectives are not simultaneously achieved by any of the previous methods for
amplifying hardness.

Our results assume the function is regular, and sub-exponentially hard to
invert. They crucially rely on it being input-local, meaning that each input bit
affects only a small number of output bits. Under these assumptions we show
how to amplify hardness while preserving the function’s input length and input
locality. In some cases we achieve this without modifying the function altogether.
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1.1 Hardness Amplification

The problem of hardness amplification can be described as follows: given a one-
way function f(x), construct a function, g(y), so that if f(x) is hard to invert on
an ε fraction of inputs, then g(y) is hard to invert on some 1− δ > ε fraction of
inputs. Amplification of hardness is established by exhibiting a reduction from
the task of inverting f to the task of inverting g. The overall quality of the ampli-
fication is determined by: (1) the complexity of the construction (in particular,
the relationship between |x| and |y|), (2) the complexity of the reduction, and
(3) the exact asymptotic relationship between ε and 1− δ.

The most basic method for amplifying hardness is due to Yao [16]. It consists
of independently evaluating the function f(x) many times in parallel. Using this
transformation, it is essentially possible to obtain an arbitrary level of ampli-
fication. However, this comes at the cost of significantly blowing up the input
size. For instance, if we wish to amplify from error ε > 0 to error 1 − δ > ε,
evaluating g(y) will involve applying f(x) to O((1/ε) log(1/δ)) small pieces of y,
each of size |x| (resulting in |y| = O(|x| · (1/ε) log(1/δ))).

A better tradeoff between security and efficiency is achieved by Goldreich
et al (GILVZ), for the special case of regular one-way functions [9]. In their
construction, the evaluation of g(y) consists of repeatedly applying f in sequence,
where every two successive applications are interleaved with a randomly chosen
step on an expander graph. The starting point of g’s evaluation is an input
x to f , and intermediate steps on the graph are determined by an auxiliary
random string whose total length is O((1/ε) log(1/δ)). This results in |y| =
|x|+O((1/ε) log(1/δ)), but renders the evaluation of g(y) inherently sequential.

A related transformation was analyzed by Haitner et al (HHR), also for
the case of regular functions [11,10]. Their transformation sequentially iterates
the function with intermediate applications of a hash function, and has the
advantage of not requiring knowledge of the regularity of f . Similarly to the
GILVZ transformation, it is sequential in nature.

One last category of amplification results relies on random self-reducibility.
It applies to functions that allow an efficient randomized mapping from f(x) to
f(y), where y is a random value from which one can efficiently retrieve x. When
satisfied, random self-reducibility enables very simple worst-case to average-case
hardness amplification, without having to modify the original function. However,
it is not known to be satisfied by one-way functions in general.

1.2 Highly Parallelizable One-Way Functions

Applebaum, Ishai and Kushilevitz (AIK) give strong evidence for the existence
of one-way functions that can be evaluated in as little as constant parallel time.
They first present one-way functions with constant output locality, meaning that
each output bit depends on a most a constant number of input bits [3]. These
functions are constructed using randomized encodings, a tool that allows them
to transform well known candidate one-way functions that have low (but not
necessarily constant) parallel complexity into ones with constant output locality.



They then go on and show that, in some specific cases, the functions resulting
from their randomized encodings also satisfy constant input locality [4].

An alternative source for candidate one-way functions with small input and
output locality is given by Goldreich [8]. These candidates are arguably more
natural than the ones resulting from the AIK transformations. They also seem
to offer a more attractive tradeoff between input length and security (as in many
cases randomized encodings necessitate a significant blow up in the input size
of the original function). Goldreich’s constructions are quite general, and allow
flexibility in the choice of the function, both in terms of the way in which inputs
are connected to outputs, as well as in the choice of the predicates used to
compute the function’s output bits. To date, no sub-exponential time inversion
algorithm is known for any variant of his functions.

Known hardness amplification methods are not well suited for functions of
the above sort. Being inherently sequential, the GILVZ and HHR transforma-
tions do not preserve parallelism. Yao’s transformation, on the other hand, does
not increase parallel time, but it does incur a significant loss in efficiency (cf.
Lin et al. [15]). This presents us with the challenge of coming up with efficient
hardness amplification methods that are well suited for parallelizable functions.
Our approach to the problem will be to utilize properties implied by the highly
parallel structure of the function, and specifically small input-locality.

1.3 Main Results

Let f : {0, 1}n → {0, 1}m be a one-way function with input locality d, and sup-
pose that f cannot be inverted in time exp(Õ(

√
n ·d)) on an ε-fraction of inputs.

Our first main result falls into the category of self-amplification, meaning that
the hardness amplification does not require modifying the underlying function.

Theorem 1 (Self-amplification for injective functions): Suppose that f is
injective. Then, f cannot be inverted in time exp(Õ(

√
n ·d)) on a (1−ε)-fraction

of inputs.

Based on the ideas used in the proof Theorem 1, we prove an analogous
theorem for functions of the “parity with noise” type. Specifically, consider a
family, {Mn}, of m(n) × n matrices with entries in {0, 1} and let p ∈ [0, 1]
be a parameter. Define a function family fn : {0, 1}n → {0, 1}m as fn(x, e) =
Mnx+e ( mod 2), where x is a vector chosen uniformly at random from {0, 1}n,
and e ∈ {0, 1}m is a vector of hamming weight at most 2pm chosen from the
following distribution: Each entry of e is chosen independently from a p-biased
distribution, conditioned on e having hamming weight at most 2pm.

We assume that {fn} is one-way against randomized time exp(Õ(
√
m)) on

some ε fraction of inputs. We also require that the functions fn are 1-1. This
happens when Mn is a generator matrix of a code of minimum distance 4pm. In
such a case, the input locality of fn will be as large as Ω(n). Nevertheless, we
can prove the following analogue of Theorem 1.



Theorem 2 (Self-amplification for parity with noise): Suppose that {fn}
is injective. Then, (under appropriate constraints on parameters) {fn} cannot
be inverted in randomized time exp(Õ(

√
m)) on a (1− ε)-fraction of inputs.

To make our results applicable to a wider class of functions, we also consider a
generalization of Theorem 1 to the case where the function we wish to amplify is
regular (every output has the same number of preimages). As before, we assume
that the function f : {0, 1}n → {0, 1}m has input locality d, and that f cannot
be inverted in time exp(Õ(

√
n·d)) on an ε-fraction of inputs. This time, however,

we are not able to prove self-amplification and settle for some increase in output
length and input locality, while still preserving input length.

Theorem 3 (Amplification for regular functions): Suppose that f is reg-
ular. Then, there is a function g : {0, 1}n→{0, 1}m+O(n) that is d + O(log3 n)
input local and that cannot be inverted in time exp(Õ(

√
n·d)) on a (1−ε)-fraction

of inputs.

A natural candidate for a function with small input locality and for which
no sub-exponential time attacks are known is Goldreich’s one-way function [8].
Given a bipartite graph G with n vertices on the left, m vertices on the right,
and regular right-degree dout and given a predicate P : {0, 1}dout → {0, 1}, the
function fG,P : {0, 1}n → {0, 1}m is defined by setting the ith bit of fG,P (x)
to be equal to P (xΓ (i,1), . . . , xΓ (i,dout)), where Γ(i,j) is the jth neighbor of right
vertex i of G. Goldreich proposed setting m = n and considered dout ranging
from a constant to O(log n). He conjectured that when G is a good expander
graph and P is randomly chosen, with high probability fG,P is one-way when n
is sufficiently large.

We consider instantiations of Goldreich’s functions with a certain class of
balanced predicates, which we call dout-parity-blowup predicates, and assume
that G is chosen at random. Relying on Theorem 3 we can prove the following.

Theorem 5 (Amplification for Goldreich’s function): Suppose that for at
least half the graphs G, the function fG,P is hard to invert on an ε-fraction of

inputs for circuits of size exp(Õ(
√
n)). Then there exists a function g : {0, 1}n →

{0, 1}n+O(log(1/ε)) of circuit size O(n log n) that is hard to invert on a (1 − ε)-
fraction of inputs by circuits of size exp(Õ(

√
n)).

By observing that parity-blowup predicates can be represented by constant
degree polynomials overGF (2) we can apply the randomized encodings of AIK [3],
and obtain a function with constant output locality and slightly longer input and
output length.

Finally, we state a result that applies in the setting where dout is constant
and m ≥ Dn, where D = D(dout) is a sufficiently large constant. Invoking a
recent result of Bogdanov and Qiao [6], we prove that for any P and with high
probability over the choice of G if fG,P is hard to invert on an ε fraction of

inputs in time exp(Õ(
√
n)), then fG,P is hard to invert on a 1 − ε fraction of

inputs in time exp(Õ(
√
n)).



1.4 Applicability

Generally speaking, our results are not applicable to functions that are obtained
via the randomized encodings of AIK. This is because these encodings typically
incur at least a quadratic blow up in the input size. Thus, even if the original
function is exponentially hard to invert, we cannot hope to prove that the re-
sulting function is more than exp(O(

√
n)) hard to invert (at least not based on

the hardness of the original function).
It is conceivable that in some specific cases the randomized encodings can

be performed in a way that does not significantly increase the input length of
the original function. However, even if such cases exist, we are currently not
aware of any natural candidate one-way function that would potentially satisfy
Theorem 1’s hypothesis. While AIK give several injective functions with constant
output locality, none of these seems to have small input locality, and moreover
they are all known to be invertible in time less than exp(Õ(

√
n)) (e.g., ones that

are based on the hardness of factoring and of finding discrete-logarithms). Other,
presumably harder to invert, candidates are not known to be injective (though
they may be regular, making Theorem 3 applicable).

Nevertheless, we feel that Theorem 1 is worth stating and proving. First
of all, the fact that we could not think of any appropriate example does not
mean that such does not exist. Secondly, the proof of the theorem contains the
core ideas behind our reductions, and gives us the opportunity to present them
without any irrelevant complications. Finally, and most importantly, using the
main ideas of the theorem, we are able to prove an analogous result for functions
of the ”parity with noise” type, which are generally not known to be invertible
in less than exp(O(n/ log n)) time [5].

As we mentioned above, there is no known sub-exponential time algorithm
that succeeds in inverting Goldreich’s function on a non-negligible fraction of
inputs. Applebaum, Barak, and Wigderson [2] prove that, when based on d-
parity blowup predicates, the output of Goldreich’s function is pseudorandom
against linear functions, low-degree polynomials, and constant-depth circuits. In
light of this, it currently seems reasonable to conjecture that no algorithm can
invert such variants of the function on a small ε = ε(n) fraction of inputs in
time exp(Õ(

√
n · d)). Under this assumption, we obtain a function with poly-

logarithmic input locality and constant output locality that cannot be inverted
by algorithms with comparable running time on a significantly larger, (1 − ε),
fraction of inputs.

Even though not stated explicitly in Section 1.3, our reductions offer a con-
crete tradeoff between the running time of the reduction and the error ε = ε(n)
we are able to amplify from. The actual overhead incurred by the reduction is
exp(O(

√
n · log(1/ε)·d·log n)). Thus, assuming that the original function is hard

to invert in roughly this time, we can amplify starting from errors as small as say

ε(n) = 2−n
O(1)

. Note that previous amplification methods are not applicable for
such ranges of parameters, even if we assume sub-exponential hardness. This is
because the input lengths of the functions resulting from their transformations
grows proportionally to Õ(1/ε).



1.5 Ideas and Techniques

Our self-amplification result is based on the following simple idea. Suppose f is
a 1-1 function with input locality d and x and x′ are two inputs that differ in
one coordinate. Suppose we can invert f(x). Then with a little bit more work
we can invert f(x′): By input locality, f(x) and f(x′) can differ in at most d
coordinates. We change d coordinates of f(x′) until we find f(x), recover x, and
change x in one coordinate to recover x′.

By repeating this argument r times, we can invert f(x′) where x and x′ are
within distance r using O(ndr) invocations to the original inverter. So if we can
invert f at x, we can also invert f at any x′ within distance r of x. Therefore,
assuming f is easy to invert on some set that covers an ε-fraction of {0, 1}n, we
can also invert f at any input within distance r of this set. By setting r = O(

√
n),

we obtain Theorem 1, the self-amplification result for 1-1 functions.

Amplifying regular functions. The assumption that f is 1-1 is important in
this argument. If f was not 1-1, the inverter could return some other preimage
which is very far from x and therefore also far from x′. In Theorem 3 we show
that if the function f : {0, 1}n → {0, 1}m is not 1-1 but regular (i.e. K-to-1 for
some K), then there exists a new function f ′ : {0, 1}n → {0, 1}m′

, m′ = m+O(n)
such that if f is hard on an small fraction of inputs, then f ′ is hard on almost
all of its inputs.

The transformation from f to f ′ effectively isolates inputs by applying an
appropriate hash function. Hashing is a standard way to reduce a regular func-
tion to a 1-1 function [13,12]. However, applying a pairwise-independent hash
increases input locality by Ω(logK) (see Section 5.1) and makes Theorem 1
inapplicable when K is large. In Claim 1 we describe a new construction of a
hash function which increases input locality only by O((log n)3) and maps most
preimages of f to unique values. Combining this hash with Theorem 1, we obtain
Theorem 3, our amplification result for regular input-local functions.

Parity with noise. In Section 4 we apply our ideas to show self-amplification
for functions of the parity with noise type. Although these functions do not
have low-input locality, we are able to apply our techniques. The reason is that
these functions consists of two parts: A linear component, which is randomly
self reducible, and the noise component, which is input-local. By combining an
application of Theorem 1 to the noise component with a random self-reduction
on the linear component, we prove Theorem 2.

Goldreich’s function. As we explain in Section 6, Goldreich’s function is
unlikely to be 1-1 (except in special cases which are easy to invert), so Theorem 1
does not apply directly. However, we show that when m/n is a sufficiently large
constant, if f(x1) = f(x2), then x1 and x2 must be substantially correlated.
Assuming f can be inverted on an ε-fraction of inputs, using our self-reduction
from Theorem 1, for most x′ we can invert f(x) at some x that is close to x′. The
inverse we obtain may not be equal to x, but it will be substantially correlated to
x′. Using a result of Bogdanov and Qiao [6], we then recover an inverse for f(x′).



Our second application concerns functions f : {0, 1}n → {0, 1}m where m =
n, but the degree is O(log n) and the predicate that f is based on is a “parity
blowup” predicate (see Section 6). First we prove that such functions are likely to
be at most K-to-1 for some constant K. Using the hash from Claim 1, we obtain
a new function f ′ that is almost 1-1 and is almost as hard to invert. Finally,
using the randomized encodings of Applebaum et al. [3], we can transform f ′

into a function with constant output locality at a polylogarithmic cost in the
input and output length.

1.6 Open Questions

We believe it is interesting to investigate if our methods apply to a wider class
of candidate one-way functions. In Section 6 we show that our amplification
methods apply to variants of Goldreich’s function where either (1) the degree
is constant but the output to input length ratio is sufficiently large, or (2) the
function is length-preserving, but the degree is logarithmic (so the function is
not output-local) and the predicate is of a special form.

It would be interesting to investigate the range of parameters where the
function is length-preserving and the degree is constant. We conjecture that
when the predicate is balanced, such functions are “almost 2cn-to-1” for some
constant c, in the sense that for most x, f(x) has 2cn±o(n) preimages. If this was
the case, we could apply Theorem 3 (and Corollary 1) to obtain very hard to
invert functions with better locality parameters.

1.7 Paper Organization

Section 2 contains the most basic definitions relating to input locality, output
locality, and regularity. The proof of Theorem 1, which holds the key ideas for
our results, as well as the proof of Theorem 3, which deals with the regular case
and involves the construction of a new input local hash function, are included in
the main body of the paper. Other results are stated in corresponding sections.
Due to lack of space, their proofs are deferred to the full version.

2 Definitions

Let f : {0, 1}n → {0, 1}m be a function. We say that the ith output f(x)i depends
on the jth input xj if there exists a setting of the inputs x1, . . . , xj−1, xj+1, . . . , xn
such that f(x1, . . . , xj−1, 0, xj+1, . . . , xn)i 6= f(x1, . . . , xj−1, 1, xj+1, . . . , xn)i. We
define the degree of the jth input to be the number of outputs that depend on
the jth input. We say f has input locality d if the degree of every input is at
most d. We define the degree of an output as the number of inputs it depends
on and the output locality as the maximum degree of an output.

We say that f is K-to-1 if for every x ∈ {0, 1}n, there exist exactly K inputs
x′ ∈ {0, 1}n such that f(x′) = f(x). We say f is regular if it is K-to-1 for some
K. We say f is at most K-to-1 (resp., at least K-to-1) if for every x there are



at most K (resp., at least K) x′ such that f(x′) = f(x). We say f is ε-close
to K-to-1 if for at least a (1 − ε) fraction of the inputs x ∈ {0, 1}n, there exist
exactly K inputs x′ ∈ {0, 1}n such that f(x′) = f(x).

In this work we consider both uniform and non-uniform constructions of
one-way functions. The security of such functions can be defined against deter-
ministic, randomized, and non-uniform inverters. We do not attempt to state
our results in the most general setting. Instead, we use the definition that is
most natural for the proof, in order to avoid distracting technical issues. For our
purposes, it will be sufficient to define non-uniform one-way functions against
non-uniform adversaries and uniform one-way functions against uniform (possi-
bly randomized) adversaries.

In the non-uniform setting, we say f : {0, 1}n → {0, 1}m is hard against
circuits of size s on an α-fraction of inputs if for every circuit C of size at most
s, f(C(f(x))) = f(x) for at most α · 2n inputs x ∈ {0, 1}n.

In the uniform setting, a function family f = {fn : {0, 1}n → {0, 1}m(n)} is
one-way against (randomized) time t(n) on an α(n)-fraction of inputs if (1) f is
computable in deterministic polynomial time and (2) for every (randomized) al-
gorithmA that runs in time t(n) and every sufficiently large n, fn(A(1n, fn(x))) =
fn(x) for at most an α(n)·2n fraction of inputs x ∈ {0, 1}n (and with probability
at most 1/2 over the coin tosses of A). (To simplify notation, we will omit the
length parameter 1n as an input to the inverter in our proofs.)

3 Self-amplification for 1-1 functions

Let f : {0, 1}n → {0, 1}m be any 1-1 function, and let dj be the degree of the
jth input. Set ∆ =

∑n
j=1 d

2
j .

Theorem 1. Let f = {fn : {0, 1}n → {0, 1}m(n)} be a 1-1 function family.
Suppose f is one-way against time exp(O(

√
r∆ log n)) on a e−r-fraction of inputs

(r = r(n)). Then f is one-way against time exp(O(
√
r∆ log n)) on a (1− e−r)-

fraction of inputs.3

When f is a 1-1 function with input locality d, we get that if f is one-way
against time exp(O(

√
rn · d log n)) for a e−r-fraction of inputs, then the same

function is also one-way for a (1− e−r)-fraction of inputs.
The proof is based on the following idea. For simplicity let us consider the

case where the degree of every input is at most d. Assume that f can be inverted
in time exp(O(

√
r∆ log n)) on an e−r-fraction of inputs and let S′ be the set of

inputs on which this inversion algorithm succeeds. Let us consider all inputs x
that are within hamming distance

√
2rn from S′. By a standard probabilistic

argument (Lemma 1, based on Theorem 7.5.3 in [1]) it follows that at least

3 Usually, hardness amplification results are stated in terms of two parameters, the
initial hardness ε and the “derived hardness” (1 − δ). Since the complexity of our
inverter is dictated by the minimum of ε and δ, without loss of generality we state
our results for the special case ε = δ = e−r.



1 − e−r fraction of inputs x have this property. Now if x and x′ ∈ S′ differ in
at most

√
2rn coordinates, then y = f(x) and y′ = f(x′) will differ in at most√

2rnd coordinates. Therefore we can invert f at y = f(x) by flipping the given
set of

√
2rnd coordinates on which y and y′ differ, inverting f at y′ to obtain x′,

and then moving back from x′ to x by changing at most
√

2rn coordinates.
We first state and prove the probabilistic inequality which is the technical

heart of our argument. We prove the inequality in slightly more general form
than is needed to prove Theorem 1 for later applications.

Lemma 1. Consider the space {0, 1}n with the p-biased distribution (i.e., each
coordinate takes value 1 independently at random with probability p) for some
p ∈ [0, 1]. Let X ⊆ {0, 1}n be any set of measure e−r and let d1, . . . , dn be positive
numbers. Let

Z =
{
z :
∑
j∈[n] : xj 6=zj dj ≤

√
2r∆ for some x in X

}
.

where ∆ =
∑n
i=1 d

2
i . Then Z has measure at least 1− e−r.

Proof. Define d(z) = minx∈S
∑
j∈[n] : xj 6=zj dj . Then any change in zj changes

d(z) by at most dj . By Azuma’s inequality, we have

Pr[d(z) ≤ E[d(z)]− t] < e−2t
2/∆ and Pr[d(z) ≥ E[d(z)] + t] < e−2t

2/∆

Setting t = E[d(z)], from the first inequality we get e−2t
2/∆ > e−r, and therefore

t <
√
r∆/2. From the second one, Pr[z 6∈ Z] = Pr[d(z) ≥

√
2r∆] < e−r. ut

Alternatively, Lemma 1 follows from a simple application of Talagrand’s in-
equality.

Proof (of Theorem 1). Let ε = e−r. We prove the contrapositive. Assume A
inverts fn on an ε-fraction of inputs in time exp(O(

√
r∆ logm)). We construct

an algorithm B that inverts fn on a (1−ε)-fraction of inputs as follows: On input
y, perform the following procedure: For any set of at most

√
2r∆ coordinates of

[m], flip the value of y in these coordinates to obtain y′, compute x′ = A(y′),
then flip any set of

√
2r∆ coordinates of x′ to obtain x. If fn(x) = y, output x.

The running time of B is(
m√
2r∆

)
· (running time of A) ·

(
n√
2r∆

)
· (eval. time of fn) = exp(O(

√
r∆ log n)).

We now argue that B inverts f on a (1− ε)-fraction of inputs. Let S′ be the
set of those x′ such that A(f(x′)) = x′. For each j ∈ [n], let dj denote the degree
of the jth input. Now let

S =
{
x :
∑
j∈[n] : xj 6=x′

j
dj ≤

√
2r∆ for some x′ in S′

}
.

If x′ is in S′ and x is its closest element in S, then f(x) and f(x′) differ in at
most

√
2r∆ coordinates. Moreover, x and x′ can also differ in at most this many

coordinates. It follows that if x is in S, then B successfully inverts f(x′). By
Lemma 1, S contains at least a 1− ε fraction of inputs. ut



Remark 1. The proof of Theorem 1 easily generalizes to function families that
are e−r/2-close to 1-1. A non-uniform version, where “running time” is replaced
by “circuit size”, is also straightforward. We will use these extensions in our
applications in Sections 5 and 6.

Theorem 1 gives a non-trivial result only when the sum of the squares of the
input degrees D is at most o(n2/ log n). This assumption could be violated even
if there is a single input of f whose degree is Ω(n). It is natural to ask if the
self-amplification argument could be modified so as to allow for a small number
of inputs that have unusually large degree.

We argue that this is unlikely to be the case: In the full version of the paper,
we give an example showing that if non-trivial self-amplification can be achieved
for functions where all but one of their inputs have degree at most d + 1, then
every function of input locality d has a non-trivial inversion algorithm.

4 Linear functions with noise

We now state a self-amplification result for functions of the “parity with noise”
type. We consider the following type of function. Let {Mn} be a family of m(n)
by n matrices with entries in {0, 1} and p ∈ [0, 1] be a parameter. We define the
function family fn : {0, 1}n → {0, 1}m(n) as follows:

fn(x, e) = Mnx+ e

where x is a vector chosen uniformly at random from {0, 1}n, and e ∈ {0, 1}m is
a vector of hamming weight at most 2pm chosen from the following distribution:
Each entry of e is chosen independently from a p-biased distribution, conditioned
on r having hamming weight at most 2pm. The matrix multiplication and vector
addition are performed modulo two.

We will consider functions fn that are 1-1. This happens when Mn is a
generator matrix of a code of minimum distance 4pm. In such a case, the input
locality of fn will be as large as Ω(n). Nevertheless, we can prove an analogue of
Theorem 1 in this setting. One difference is that our self-amplification argument
here is randomized, so we require that the function family is hard to invert even
for randomized adversaries.

Theorem 2. Suppose the function family {fn : fn(x, e) = Mnx + e} is 1-1
and one-way against randomized time exp(O(

√
rm logm)) on a e−r fraction of

inputs. Assume r < pm/10. Then {fn} is one-way against randomized time
exp(O(

√
rm logm)) on a 1− e−r fraction of inputs.

The proof of Theorem 2 is given in the full version of this paper.



5 Hardness amplification for regular functions

Theorem 1 shows how to achieve self-amplification for functions with small input
locality that are 1-1. The assumption that the function is 1-1 was crucial in the
argument for the following reason. Suppose f is a 1-1 function with input locality
d and x and x′ are two inputs that differ in exactly one coordinate. Suppose we
can invert f(x). Then with a little bit more work we can invert f(x′): Since f(x)
and f(x′) can differ in at most d coordinates, we change d coordinates of f(x′)
until we find f(x), recover x, and move back from x to x′.

An important point in this argument is that because f is 1-1, the inversion
algorithm is guaranteed to return x and not some other preimage for f(x). If f
were not 1-1, the inverter could return some other preimage which is very far
from x and therefore also far from x′. So in general we do not know how to
achieve self-amplification for input-local functions that are not 1-1.

We now argue that if f : {0, 1}n → {0, 1}m is not 1-1 but regular, then there
exists a new function f ′ : {0, 1}n → {0, 1}m′

, m′ = m + O(n) such that if f is
hard on an small fraction of inputs, then f ′ is hard on almost all of its inputs.
Moreover, the input locality of f ′ is not much larger than the input locality of f .

To simplify notation, let α(d, r, log n) = (d+ r + (log n)3) · (log n).

Theorem 3. Suppose there exists a K-to-1 function f : {0, 1}n → {0, 1}m with
input locality d which is hard against circuits of size exp(O(

√
rn · α(d, r, log n))

on a e−r-fraction of inputs. Then there exists f ′ : {0, 1}n → {0, 1}m+log2K+O(r),
with input locality d + O(r + (log n)3) which is hard against circuits of size
exp(O(

√
rn · α(d, r, log n))) on a (1 − e−r)-fraction of inputs. Moreover, if f

is computable by a circuit of size s, then f ′ is computable by a circuit of size
s+O(n(log n)3).

The construction of f ′ from f is non-uniform. In fact, our proof provides a
randomized construction but for simplicity we present the argument in the non-
uniform setting. We follow the standard approach of turning a general function
into an almost 1-1 function via hashing [13,12]. The function f ′ will have the
form f ′(x) = (f(x), h(x)), where h is a suitably chosen hash function that does
not increase input locality by much. If f is regular, then f ′ will be almost 1-1 in
the sense that for most x, f(x) has a unique preimage. Moreover, if f has input
locality d, then f ′ will have input locality d+O(r + (log n)3). We then amplify
the hardness of f using Theorem 1 (and Remark 1).

Theorem 3 can be combined with the randomized encodings of Applebaum et
al. [3,4] to obtain a hardness amplification result that preserves output locality,
at the expense of increasing the input length by logarithmic factors.

Corollary 1. Suppose there exists a regular function f : {0, 1}n → {0, 1}m with
input locality din and output locality dout ≥ 3 that is hard against circuits of size
exp(O(

√
rn·α(din, r, log n))) on a e−r-fraction of inputs. Then there is a function

f ′ : {0, 1}n′ → {0, 1}m′
, where n′ = O(n(log n)3) and m′ = m+O(n(log n)3) with

output locality dout that is hard against circuits of size exp(O(
√
rn·α(din, r, log n)))

on a (1− e−r)-fraction of inputs. If f is computable by a circuit of size s, then
f ′ is computable by a circuit of size s+O(n(log n)3).



5.1 A hash with small input locality

A standard way to reduce a K-to-1 one-way function to a 1-1 one-way func-
tion is by hashing. Namely, we would like to define f ′(x) = (f(x), h(x)), where
h : {0, 1}n → {0, 1}log2K+O(1) is a pairwise independent hash function. However,
known constructions of pairwise independent hash functions have input locality
as large as Ω(log2K). This is in fact necessary: Mansour et al [14] showed that
pairwise independent hash functions have average sensitivity Ω(n). By averaging,
it follows that the input locality of such functions must be Ω(log2K).

We need to construct a function f ′ from f which preserves not only the
hardness of f but also its small input locality. Our function f ′ will also have the
form f ′(x) = (f(x), h(x)), where h is a suitably chosen hash function. However,
our hash function h will only be approximately pairwise independent, chosen in
a manner to have small input locality.

We note that Appelbaum et al. [4] (Appendix C in the journal version)
give a different construction of an “almost pairwise-independent” hash function.
However, the almost pairwise independence property they establish for their
construction, while sufficient for their application, appears too weak to derive
Claim 1.

Claim 1 Suppose f : {0, 1}n → {0, 1}m is at most K-to-1, where 2k−1 ≤ K <
2k. Then there exists a function h : {0, 1}n → {0, 1}k+3r+3 such that the function
f ′(x) = (f(x), h(x)) is e−r/2-close to 1-1. Moreover, h is a linear function over
{0, 1}n with input locality O(r) + min{k,O((log n)3)}.

We now prove Claim 1. The construction of h will be probabilistic.

Construction of h. Assume that f is at most K-to-1, where 2k−1 ≤ K < 2k.
The function h has the form h(x) = (ha(x), hb(x)) where

ha(x) = (ak · x+ a′k, ak−1 · x+ a′k−1, . . . , ak0+1 · x+ a′k0+1)

hb(x) = (b1 · x+ b′1, b2 · x+ b′2, . . . , b3r+k0+3 · x+ b′3r+k0+3).

and k0 = min{8(log n)2, k}. (In particular, if k < 8(log n)2, h only consists of
the hb part.)

To generate a random h, we choose the vectors ai, bi ∈ {0, 1}n from the
following distributions: Each ai is chosen independently at random from the pi-
biased distribution over {0, 1}n, where pi = 4(log n)2/i < 1/2. Each bi is chosen
independently at random from the uniform distribution over {0, 1}n, and a′i, b

′
i

are uniformly random bits.
We now argue that if f is regular, then with probability at least 1/2 over the

choice of h, f ′ is regular over all but an e−r/2 fraction of its inputs.
The proof will have two stages. In the first stage, we argue that for all

but an e−r/8 fraction of inputs x, there are at most 2r+k0 inputs x′ such that
(f(x), ha(x)) = (f(x′), ha(x′)). In the second stage, we finish the proof by show-
ing that hb hashes all but an e−r/8 fraction of those xs uniquely.



The first stage. If k0 = k, the conclusion is trivial, so let us assume that
k0 < k. Let us fix an input x and let S = {x′ : f(x) = f(x′)}. Without loss of
generality, we may assume that 2k−1 ≤ |S| < 2k. (If |S| is smaller, we disregard
the effect of the first few hashes in ha.) We consider the following sequence of
random sets defined recursively: Sk = S, Ti = {x′ ∈ Si : ai · x′ = ai · x)} and

Si−1 =

{
Ti, if (1− 1/n)|Si|/2 ≤ |Ti−1| ≤ (1 + 1/n)|Si|/2
Si, otherwise.

Here is the intuition for this definition: We want to think of the ith hash ai as
“successful” if it decreases the size of siblings of x by roughly a factor of two (not
much more and not much less). If all but r of the hashes are successful, then the
size of S0 can not be much more than 2r, and so x will not have more than 2r

siblings that map to (f(x), ha(x)). It is sufficient to show that the probability
that more than r of the hashes fail to be successful is quite small.

Notice that by definition of the sets Si, it must be that Si ≥
∏k
j=i(1− 1/n) ·

2i−1 ≥ 2i−2. So we are left with the following question: Given a set S of size at
least 2i−2, how likely is it to be split successfully at stage i?

Lemma 2. Assume |R| ≥ 2i−2. Let a ∼ {0, 1}np , b ∼ {0, 1}1/2, where p =
4(log n)2/i < 1/2. Then for n sufficiently large and any ε > 0,

Pr
[
#{y ∈ R : a · y + b = 0} 6∈ (1± ε)|R|/2

]
≤ 1

n4ε2
.

Applying this lemma with R = Si and ε = 1/n, we have that each hash is suc-
cessful with probability at least 1− 1/n2, and the events are independent of one
another. By a union bound, the probability of having more than r unsuccessful
splits is at most

(
n
r

)
· (1/n2)r ≤ n−r < e−r/8. So for any x ∈ {0, 1}n,

Pr
[
|Sk0 | ≥ 2k0+r

]
≤ e−r/8.

Proof. Let X =
∑
y∈R(−1)a·y+b. Then E[X] = 0 and

E[X2] =
∑
y,z∈R

E[(−1)a·(y+z)]

≤ |R|maxz
∑
y∈R

E[(−1)a·(y+z)]

= |R|maxz
∑
y∈Rz

E[(−1)a·y]

= |R|maxz
∑
y∈Rz

(1− 2p)|y|

where Rz = {y + z : y ∈ T}, and |y| denotes the hamming weight of y. Notice
that the summation is maximized when Rz is a threshold set T – the set of all



strings of hamming weight up to k− 1 and possibly some of hamming weight k.
Then we have

E[X2] ≤ |R| ·
∑
y∈T

(1− 2p)|y| ≤ |R| ·
k∑

w=0

(
n

w

)
· (1− 2p)w.

We look at two cases: If i ≥ n, then

E[X2] ≤ |R|
n∑

w=0

(
n

w

)
· (1− 2p)w = |R| · 2n · (1− p)n ≤ 4|R|2 · e−pn ≤ |R|2/n4,

for n sufficiently large. If i < n, the ratio of consecutive terms in the summation
is (

n

w + 1

)
(1− 2p)w+1

/(
n

w

)
(1− 2p)w = (1− 2p) · n− w

w + 1
> 1

for every w ≤ k, and so

E[X2] ≤ |R| · k ·
(
n

k

)
· (1− 2p)k ≤ |R|2 · n · (1− 2p)k ≤ |R|2 · n · e−2pk.

Since k ≥ i/ log n, we get that E[X2] ≤ |R|2/n4 in this case also. By Chebyshev’s
inequality, it follows that

Pr
[
#{y ∈ R : a · y + b = 0} 6∈ (1± ε)|R|/2

]
= Pr

[
|X| > ε|R|

]
≤ 1/n4ε2. ut

The second stage and conclusion. Now fix an x such that |Sk0 | < 2k0+r. We
now argue that by the end of the second stage, x is very likely to have a unique
hash:

Pr[∃x′ ∈ Sk0 − {x} : h(x′) = h(x)] ≤
∑

x′∈Sk0
−{x}

Pr[h(x′) = h(x)] < e−r/8.

Putting the analysis of both stages together, it follows that by the end of stage
2, for any specific x,

Prh[∃x′ : f ′(x′) = f ′(x)] ≤ e−r/4.

Averaging over x and applying Markov’s inequality, we get that for at least half
the functions h,

Prx[∃x′ : f ′(x′) = f ′(x)] ≤ e−r/2.
Now let us calculate the locality of a typical function h. For any fixed input bit,
say x1, let Ya and Yb be the number of occurrences of x1 in ha and hb respectively.
Then E[Ya] =

∑k
i=k0

4(log n)2/i ≤ 4(log n)3 and E[Yb] = (3r + k0 + 3)/2, so

E[Ya + Yb] = O((log n)3 + r). By Chernoff bounds and a union bound, we get
that with probability at least 3/4, no input bit has more than O((log n)3 + r)
occurrences in h.

Therefore, there exists a hash function h that has input localityO((log n)3+r)
and such that f ′ is 1-1 on all but e−r/2 fraction of its inputs.

Remark 2. The conclusion of Claim 1 also holds under the weaker assumption
that the function h is e−r/4-close to at most K-to-1. We will use this general-
ization in Section 6.



5.2 Proof of Theorem 3

We now prove Theorem 3. To do so, first we show that the transformation from
f to f ′ is hardness-preserving in the following sense: If f is hard to invert on an
e−r-fraction of inputs, then f ′ is hard to invert on an Ω(e−r)-fraction of inputs.
Since f ′ is almost 1-1, we can apply self-amplification to conclude that f ′ is in
fact hard on a 1− e−r fraction of inputs.

Claim 2 Assume f : {0, 1}n → {0, 1}m is K-to-1 where 2k−1 ≤ K < 2k. Let f ′

and h be as in Claim 1. Assume that f ′ can be inverted on an (1 − e−r/400)-
fraction of inputs by a circuit of size s. Then f can be inverted on a (1− e−r)-
fraction of inputs by a circuit of size O(s · r · 23r).

The proof of Claim 2 can be found in the full version of this paper.

Proof (of Theorem 3). Suppose f : {0, 1}n → {0, 1}m is a regular function with
input locality d which is hard against circuits of size exp(O(

√
rn ·α(d, r, log n)))

on a e−r-fraction of inputs. Let f ′(x) = (f(x), h(x)), where h is chosen as in
Claim 1. It is easy to check that f ′ has the desired input locality and circuit
complexity.

Now suppose f ′ can be inverted by a circuit of size exp(O(
√
rn·α(d, r, log n)))

on a e−r fraction of its inputs. By Claim 1, f ′ is e−r/2-close to 1-1. By Theorem 1
and Remark 1, f ′ can be inverted on a (1−e−r/400)-fraction of inputs by a circuit
of size s = exp(O(

√
rn ·α(d, r, log n))). By Claim 2, f can then be inverted on a

(1− e−r) fraction of inputs by circuits of size exp(O(
√
rn · α(d, r, log n))). ut

Proof (of Corollary 1). Since h(x) is a linear function, we can apply the ran-
domized encoding of Applebaum et al. to reduce its output locality at the cost of
increasing the input and output length of f ′. Specifically, we perform the follow-
ing transformation on f ′ to obtain a new function f ′′. Suppose the ith output
h(x)i has the form

h(x)i = xi1 + xi2 + · · ·+ xiki .

We introduce new inputs ri1, ri2, . . . , ri(ki−1) and replace the output h(x)i by
the sequence of outputs:

(xi1 + ri1, ri1 + xi2 + ri2, . . . , ri(ki−1) + xiki).

It is easy to check that f ′′ has the desired input and output length, and its
output locality is max{dout, 3}.

Applebaum et al. [3,4] show that if f ′′ can be inverted on an ε-fraction
of inputs by a circuit of size s, then f ′ can be inverted on a Ω(ε)-fraction of
inputs by a circuit of size O(s/ε). Plugging in ε = e−r and s = exp(O(

√
rn ·

α(din, r, log n))), the corollary follows. ut



6 Goldreich’s function on a random graph

We now consider two applications of our techniques to the candidate one-way
function proposed by Goldreich [8]. Given a bipartite graph G with n vertices
on the left, m vertices on the right, and regular right-degree dout and a predicate
P : {0, 1}dout → {0, 1}, the function fG,P from {0, 1}n to {0, 1}m is defined by

fG,P (x)i = the ith bit of f(x) = P (xΓ (i,1), . . . , xΓ (i,dout))

where Γ(i,j) is the jth neighbor of right vertex i of G.
Goldreich [8] considered such constructions for the setting of parameters

m = n and dout ranges from a constant to O(log n). He conjectured that when
G is a good expander graph and P is a randomly chosen predicate, with high
probability fG,P is one-way.

Cook et al. [7] showed that when G is random and P is suitably chosen,
fG,P is secure against adversaries that implement myopic algorithms. Bogdanov
and Qiao [6] studied a variant of Goldreich’s function in the setting where G is
random, d is constant, and m = Dn, where D = D(dout) is a sufficiently large
constant. They showed that for a large class of predicates P (those that correlate
with one or a pair of their inputs) and for most G, fG,P can be inverted on most
inputs. It is conceivable that fG,P could be one-way for all predicates P that are
not linear and do not belong to the class ruled out by Bogdanov and Qiao.

We establish two results regarding local hardness amplification of Goldreich’s
function. Informally, we show that

1. In the setting where d is constant and m ≥ Dn, where D = D(dout) is
a sufficiently large constant, for any P and with high probability over the
choice of G if fG,P is hard to invert on an e−r fraction of inputs in time
exp(O(

√
rn · dout · log n)), then fG,P is hard to invert on a 1 − e−r fraction

of inputs in time exp(O(
√
rn · dout · log n)).

2. When dout = O(log n) and m = n, for a certain class of predicates P and
with high probability over G, if fG,P is hard to invert on a e−r fraction of

inputs, then there exists a function f ′ : {0, 1}n′ → {0, 1}m′
, where n′,m′ =

n · polylogn, of similar complexity to f and constant output locality that is
hard to invert on a 1− e−r fraction of inputs.
Our result applies to all O(log n)-parity-blowup predicates, which we define as
follows. Let Pc : {0, 1}c → {0, 1} be any balanced predicate, where c is some
constant. The dout-parity-blowup of Pc is the predicate P : {0, 1}dout → {0, 1}
which is obtained by replacing each of the variables in Pc by a parity of
bdout/cc inputs, where all the inputs are distinct. Applebaum, Barak, and
Wigderson [2] showed that the output of Goldreich’s function based on such
predicates is pseudorandom against linear functions, low-degree polynomials,
and constant-depth circuits.

The random graph G is chosen from the following distribution: For each
of the m right vertices of G, choose all of its dout neighbors independently at
random among the n left vertices of G. We will call such graphs (n,m, dout)
random graphs.



6.1 Self-reducibility for functions with long output

Theorem 4. Let D ≥ 2Kdout where K is a sufficiently large constant, and
P : {0, 1}dout → {0, 1} be any predicate. Let G be an (n,m, dout) random graph.
With probability at least 1−o(1) over the choice of G, if fG,P is hard for circuits
of size exp(O(

√
rn ·Ddout log n)) on an e−r-fraction of inputs, then fG,P is hard

for circuits of size exp(O(
√
rn ·Ddout log n)) on a 1− e−r-fraction of inputs.

We prove Theorem 4 (in the full version of this paper) by an argument similar
to the one used in the proof of Theorem 1. The principal obstacle to applying
Theorem 1 here is that with high probability, the function fG,P is not 1-1. There
are several reasons for this. One reason is that fG,P is likely to contain inputs
that do not appear in any output. A more important reason is that unless the
predicate P is linear, for most inputs x, it is likely that there is a linear number
of coordinates i such that the ith coordinate does appear in the output, but
changing the value of xi does not change the value of fG,P (x).

We show that although fG,P is unlikely 1-1, with high probability every pair
of inputs that map to the same output is highly correlated (or anticorrelated),
that is they agree (or disagree) in value on most of the coordinates. Using the
argument from the proof of Theorem 1, we show that if fG,P can be inverted on
an ε-fraction on inputs by a circuit of suitable size, then for a 1 − ε fraction of
inputs x, it is possible to find an x′ such that x and x′ are highly correlated. We
then use a result of Bogdanov and Qiao [6] which says that for most inputs x,
given x′ that is correlated with x, then we can invert fG,P (x).

6.2 Amplification for certain length-preserving functions

Let P : {0, 1}c → {0, 1} be a balanced predicate. The dout-parity-blowup of P
is the predicate obtained by replacing each variable in P by bdout/cc variables,
where all the new variables are disjoint.

Theorem 5. Let c ≥ 3 and dout = max{130c log n, 4c2}. Let P be the dout-
parity-blowup of some balanced predicate on c bits and let G be an (n, n, dout)-
random graph. Suppose that for at least half the graphs G, fG,P : {0, 1}n →
{0, 1}n is hard to invert on an e−r-fraction of inputs against circuits of size
exp(O(r3/2

√
n log n)). Then there exists

1. A function f ′ : {0, 1}n → {0, 1}n+O(r) of circuit size O(n log n + r) that is
hard on a 1−e−r-fraction of inputs for circuits of size exp(O(r3/2

√
n log n)).

2. A function f ′′ : {0, 1}n′ → {0, 1}m′
, where n′,m′ = O(n · d(n)c), f ′′ is hard

on a 1− e−r-fraction of inputs for circuits of size exp(O(r3/2
√
n log n)) and

where every output of f ′′ depends on at most c+ 1 inputs.

Theorem 5 is proved in the full version of this paper. To prove part 1, we
first show that the function fG,P is likely to be e−r/4-close to O(er)-to-1. Using
Claim 1, we then transform fG,P into a function f ′ : {0, 1}n → {0, 1}n+O(r) which
is e−r/2-close to 1-1. Using the self-reduction of Theorem 1, we then argue that



if f ′ is easy to invert on an e−r fraction of inputs, then it is also easy to invert
on a 1 − e−r-fraction of inputs, and so fG,P is also easy to invert on the same
fraction of inputs by circuits of similar size. To prove part 2, we observe that
parity-blowup predicates can be represented constant degree polynomials over
GF (2). Applying the randomized encodings of Applebaum et al. [3] to these
polynomials, we obtain a function with constant output locality and slightly
longer input and output length.
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