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Abstract. This paper studies the design of cryptographic schemes that
are secure even if implemented on untrusted machines that fall under
adversarial control. For example, this includes machines that are infected
by a software virus.
We introduce a new cryptographic notion that we call a one-time com-
putable pseudorandom function (PRF), which is a PRF FK(·) that can
be evaluated on at most one input, even by an adversary who controls
the device storing the key K, as long as: (1) the adversary cannot “leak”
the key K out of the device completely (this is similar to the assump-
tions made in the Bounded-Retrieval Model), and (2) the local read/write
memory of the machine is restricted, and not too much larger than the
size of K. In particular, the only way to evaluate FK(x) on such device, is
to overwrite part of the key K during the computation, thus preventing
all future evaluations of FK(·) at any other point x′ 6= x. We show that
this primitive can be used to construct schemes for password protected
storage that are secure against dictionary attacks, even by a virus that
infects the machine. Our constructions rely on the random-oracle model,
and lower-bounds for graphs pebbling problems.
We show that our techniques can also be used to construct another prim-
itive, called uncomputable hash functions, which are hash functions that
have a short description but require a large amount of space to compute
on any input. We show that this tool can be used to improve the com-
munication complexity of proofs-of-erasure schemes, introduced recently
by Perito and Tsudik (ESORICS 2010).

1 Introduction

A recent trend in cryptographic research is to construct cryptographic schemes
that have some provable security properties, even when they are implemented
on devices that are not fully trusted. In general, two types of adversarial models
are considered in this area. In the passive one, the adversary can get some partial
information (“leakage”) about the internal data stored on a cryptographic ma-
chine M. This line of research, motivated by various side-channel attacks [24]
was initiated in the seminal papers of Ishai et al. [28] and Micali and Reyzin
[32], and followed by many recent works [22,1,35,29,33,12,37,13,14,25,8,7]. Some
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papers have also been motivated by the attacks of the malicious software (like
viruses) against computers [11,18,17,10,21,3,2]. What all these works have in
common is that they provide a formal model for reasoning about the adversary
that can obtain some information about the cryptographic secrets stored onM.
It is easy to see that some restrictions on the information that the adversary can
learn is necessary, as the adversary that has an unlimited access to the internal
data of M can simply “leak” the internals in their entirety, which is usually
enough to completely break any type of security. A common assumption in this
area is the bounded-retrievability property, which states that the adversary can
retrieve at most some input-shrinking function f of the secret K stored on the
device, i.e. he can learn a value f(K) such that |f(K)| � |K|. The second class
of models considered in the literature [27,26,23,30] are those where the adversary
is active, which corresponds to the so-called tampering attacks. In these models
the adversary is allowed to maliciously modify the internals of the device. For
example, in the model of [27] the adversary that can tamper a restricted number
of wires of the circuit that performs the computation (in a given time-frame),
and in [26] it is assumed that a device is equipped with a small tamper-free
component.

The above discussion motivates the following question:

Can we achieve security against an adversary that has complete ac-
tive/passive control over a device M storing cryptographic secrets, by
only relying on simple physical characteristics of the device? For which
cryptographic primitives can this be achieved and what characteristics
are needed?

In this work, we focus on answering the above question for new primitive
called a one-time computable pseudorandom function. That is, we consider a de-
vice that stores a key K for a function FK(·) and allows the user to evaluate
the function at a single arbitrary input x. Moreover, even if an adversary gains
complete control of the device, he should be unable to learn any information,
beyond a single value FK(x) at a single point x. We rely on the following two
physical characteristics of the deviceM on which the secret key K is stored: (1)
M satisfies the bounded-retrievability property, and (2) the read/write memory
of M is restricted in size and not much larger than the size of the key K. Intu-
itively, the first property ensures that the attacker cannot leak the key K out of
the device, while the second property will prevent the attacker from evaluating
FK(·) at multiple inputs using the resources of the device itself. The main ap-
plication of this primitive is a scheme for password-protected storage. We also
construct another, related primitive, that we call uncomputable hash functions,
and use it construct an improved protocol for proofs-of-erasure, a concept re-
cently introduced in [34].

1.1 One-Time Computable Functions

In this section we informally define the concept of a one-time computable PRF
FK(·) implemented on a resource-constrained device M. Firstly, for correct-



ness/functinality, we need to ensure that the key K of the PRF can be stored
on the device M and that there is a method for honestly evaluating FK(·) on
a single arbitrary input x, using the resources of the device M. Secondly, for
security, we consider an attacker that gains control of the device M. Such an
adversary may learn the value FK(x) for some arbitrary point x, but should not
have any other information about FK(x′) for any other point x′ 6= x.

So far we have not been very specific about the type of constraints placed
on the resources of the device M, and the type of control that the adversary
gets over the device. One could imagine settings in which the above would be
easy to implement. For example, if the adversary only gets black-box access to
M then we can use an arbitrary PRF to achieve the above goal; simply have
the device only perform only one evaluation of the PRF and then set a flag to
stop responding to all future inputs. However, if the adversary can perform even
relatively simple tampering attacks, it may be possible for it to “reset” the flag
on the device and thus break security of the above solution.

In this work, we consider an adversary that has complete control over the
device M. That is, for the purpose of security, we can consider the device M
itself to be a resource-constrained adversarial entity that gets the key K, and
can communicate with an external unconstrained adversary A. In this case, we
must place some constraints on the resources of M. Firstly, we must bound the
amount of outgoing communication available to the device M, as otherwise the
M can just “leak” the entire key K to the external adversary A, who can then
evaluate FK(·) at arbitrarily many points. Secondly, we must also place some
limits on the computational resources available to M, to prevent it from e.g.
evaluating FK(x0), FK(x1) at two points x0 6= x1 and leaking the first bit of
each output to the external adversary A. In this work, we will assume that the
amount of read/write memory available to the device M is bounded, and not
much larger than the size of the key K. (The device can have arbitrary additional
read-only or write-only memory).

Putting this together, our goal is to design a PRF FK(·) which can be ef-
ficiently evaluated at any single point x on a memory-constrained device, but
cannot be evaluated at any additional point x′ 6= x afterward. Roughly, our main
idea is to construct FK in such a way that any computation of FK(x) has to
(at least partially) destroy K, by overwriting it, and thus prevents future com-
putations of the function. That is, we assume that the key K itself is stored on
the read/write memory of the device and takes up m = |K| bits of space, which
is a large fraction of the total. We design the PRF in such a way that there is
an honest computation of FK(x) that uses (almost) no extra space beyond that
on which K was originally stored, but overwrites K with various intermediate
values during the computation. On the other hand, assuming the total memory
on the device is s < 2m, we show that there is no method for computing of
FK(x) at any single point x, without erasing part of the key K and preventing
evaluation at any other input. Note that it is necessary for us to require that the
key takes up more than half of the available read/write memory of the device, as
otherwise it is possible to make a “copy” of the key that does not get damaged



during the computation FK(x). In fact, we show a stronger result along these
lines, where we also allow the adversarial memory-constrained deviceM to com-
municate up to c < m bits to an external unconstrained adversary A (and we
allow unbounded communication from A to the device).

One-time computable functions – a generalization. We also construct a general-
ization of the concept described above, where a single key K defines T different
pseudorandom functions: (F1,K , . . . .FT,K). Using the resources of the device, the
honest user can evaluate each of the function Fi,K at a single arbitrary point (i.e.
the user first chooses an arbitrary x1 and evaluates F1,K(x1), then adaptively
chooses x2 and evaluates F2,K(x2) . . .). However, even if the device is under
full adversarial control, the attacker cannot get information about any of the
T functions at more than one point – i.e. the attacker cannot get information
about Fi,K(x), Fi,K(x′) for any two distinct points x 6= x′ and the same index
i. The construction is given in Section 5. The maximal T that we can have is
approximately equal to c+s

2(c+s−m) (cf. (3)).

Application: Password-protected storage Let us now describe an applica-
tion of the primitives described above. Our application is related to password-
based cryptography, which is an area that deals with the protocols where the
secrets used by the parties are human-memorizable passwords. The crucial dif-
ference between a password and a cryptographic key is that the latter is usually
assumed to be chosen uniformly at random from a large domain, while the for-
mer may come from some relatively small (polynomial sized) dictionary set D.
One of the main problems in constructing the password-based protocols is that
one needs to consider the so-called offline dictionary attacks, where the adver-
sary simply tries to break the scheme by analyzing all of the passwords from D
one-by-one.

In this paper we are particularly interested in designing schemes for password-
protected storage, which are schemes for secure encryption of data using pass-
words. A typical scheme of this type works as follows: let π ∈ D be a password. To
encrypt a message X we apply a key-derivation function H to π and then encrypt
X with H(π) using some standard symmetric encryption scheme (Enc,Dec). To
decrypt a ciphertext C = Enc(H(π), X) one simply calculates Dec(H(π), C).

A typical choice for H is a hash function. This solution is vulnerable to a
following offline dictionary attack. An attacker simply tries, for every π′ ∈ D to
decrypt C until he finds π′ such that Dec(H(π′), C) “makes sense”. Most likely
there will be only one such π′, and hence, with a good probability, this will be
the correct π that the user has chosen to compute C.

A common way to make this attack harder is to design H in such a way that
it is moderately expensive to compute it. The time needed to compute H should
be acceptable for a legitimate user, and to high for the adversary if he has to do
it for all passwords in D. A drawback of this solution is that it depends on the
amount of computing power available to the adversary. Moreover, the algorithm
of the adversary can be easily parallelized.



An interesting solution to this problem was proposed in [9]. Here, a compu-
tation of H requires the user to solve the CAPTCHA puzzles [38], which are
small puzzles that are easy to solve by a human, and hard to solve be a machine.
A disadvantage of this solution is that it imposes additional burden on the user
(he needs to solve the CAPTCHAs when he wants to access his data). Moreover,
experience shows that designing secure CAPTCHAs gets increasingly difficult.

In this paper we show an alternative solution to this problem. Our solution
works in a model where the data is stored on some machine that can be infected
by a virus. In this model, the virus can get a total control over the machine, but
he can retrieve only c bits from it. The main idea is that we will use a one-time
computable function F (secure against an adversary with c-bounded commu-
nication and s-bounded storage) as the key-derivation function. To encrypt a
message X with a password π we first choose randomly a key R for a one-time
computable PRF. We then calculate K = FR(π). The ciphertext stored on the
machine is Enc(K,X). It is now clear that the honest user can easily compute
K in space bounded by c − δ. On the other hand, the adversary can compute
K only once, even if he has space c. Of course, the adversary could use a part
of the ciphertext Enc(K,X) as his additional storage. This is not a problem if
X is short (shorter than δ). If X is long, we can solve this problem by assuming
that Enc(K,X) is stored on a read-only memory.

A problem with this solution is that if an honest user makes an error and types
in a wrong password then he does not have a chance to try another password.
This can be solved by using the generalized version of the one-time computable
functions. The scheme works as follows. First, we choose a key K for symmetric
encryption. Then, we choose randomly R and for each i = 1, . . . , T we calculate
Ki = FRi(π) ⊕ K (where the keys Ri are derived from R). The values that
are stored on the machine are (R, (K1, . . . ,KT ),Enc(K,M)). Now, to decrypt
the message, the user first calculates K = FR1

(π) ⊕ K1, and then decrypts
Enc(K,M) using K. If a user makes an error and calculates K1 using a wrong
π he still has a chance to calculate K2, and so on.

1.2 Uncomputable functions

We also introduce a notion of uncomputable hash functions, which we explain
here informally. A hash function H is (s, ε)-uncomputable, if any machine that
uses space s and takes a random input x ∈ {0, 1}∗ outputs H(x) with prob-
ability at most ε. We say that H is s′-computable if it can be computed in
space s′. Note that in this case we assume that the adversary cannot use any
external help to compute H (using the terminology from the previous sections:
his communication is 0-bounded). Informally, we are interested in constructing
(s, ε)-uncomputable, s′-computable functions for a small ε and s′ being only
slightly larger than s.

This notion can be used to construct an improved scheme for the proof of
erasure, a concept recently introduced in [34]. Essentially the proof of erasure is
a protocol between two parties: a powerful verifier V and a weak prover P (that
can be, e.g., an embedded device). The goal of the verifier is to ensure that the



prover has erased all the data that he stores in his RAM (we assume that P can
also have a small ROM). This is done by forcing P to overwrite his RAM. Let
m be the size of RAM. Then, a simple proof of erasure consists of V sending to
P a random string R such that |R| = m, and then V replying with R. In [34]
the authors observe that the communication from P to V can be reduced in the
following way: instead of asking P to send the entire R, we can just verify his
knowledge of R using a protocol for the “proof of data possession” (see, e.g.,
[4]). Such a protocol still requires the verifier to send a large string R to the
prover, hence the communication from the verifier to the prover is m. Using our
uncomputable functions we can reduce this communication significantly.

Our idea as follows. Suppose we have a function H that is m-computable
and (m− δ, ε)-uncomputable (for some small δ ∈ N and a negligible ε ∈ [0, 1]).
Moreover, assume that H has a short domain and co-domain, say: H : {0, 1}w →
{0, 1}w for some w � m. We can now design the following protocol:

1. V selects X ← {0, 1}w at random and sends it to P,
2. P calculates Y = H(X) and sends it back to V,
3. V accepts if Y = H(X).

Clearly, an honest prover can calculate Y , since he has enough memory for
this. On the other hand, from the (m − δ, ε)-uncomputability of H we get that
a cheating prover cannot calculate Y with probability greater than ε without
overwriting m − δ bits. The total communication between P and V has length
2w. Note, that we need to assume that an adversary that controls the prover
cannot communicate any data outside of the machine (therefore we are interested
only in protocols with 0-bounded communication). This is because otherwise he
could simply forward X to some external party that has more memory. The
same assumption needs to be made in the protocols of [34]. What remains is to
show a construction of such an H. We do it in Section 6.

1.3 Related work

Most of the related work was already described in the previous sections. In our
paper we will use a technique called graph pebbling (see e.g. [36]). This technique
has already been used in cryptography in an important work of [16], some of
our methods were inspired by this paper. The assumption that the adversary is
memory-bounded has been used in the so-called bounded-storage model [31,5,20].
As similar assumption was also used in [15]. The proof of erasures can be viewed
as a special case of the remote attestation protocols (see [34] for a list of relevant
references).

1.4 Notation

For a sequence R = (R1, . . . , RN ) and for indices i, j such that 1 ≤ i ≤ j ≤ N ,
we define R[i, . . . , j] = (Ri, . . . , Rj).



2 Model of Computation

To make our statements precise, we must fix a model of computation. We will
usually consider an adversary that consists of two parts: a “space-bounded” com-
ponent Asmall which gets access to the internals of an attacked device and has
“bounded communication” to an external, and otherwise unrestricted, adversary
Abig.

Since the lower bounds on the computational complexity of functions are
usually hard to prove, it seems difficult to show any meaningful statements in
this model using purely complexity-theoretic settings. We will therefore use the
random-oracle model [6]. Recall, that in this case a hash function is modeled as
an external oracle containing a random function, and the oracle can be queried
by all the parties in the protocol (including the adversary).

Using the random-oracle model in our case is a little bit tricky. To illustrate
the problem consider a following protocol for the proof of erasure: (1) V sends to
P a long random string R, (2) P replies with H(R), where H is a hash function.
Now, this protocol is obviously not secure for most of the real-life hash functions.
For example, if H is designed using the Merkle-Damg̊ard paradigm, then it can
be computed “on fly”, and hence there is no need to store the whole R before
starting the computation of H.

On the other hand, if we model H as a random oracle, then the protocol
described above can be proven secure, as the adversary has to wait until he gets
the complete R before sending it to the oracle. We solve this problem in the
following way: we will require that the only way in which the hash function is
used is that it is applied to small inputs, i.e. if w is the length of the output
of a hash function (e.g.: w = 128) then the hash function will have a type
H : {0, 1}ξw → {0, 1}w, for some small ξ. Observe that if ξ = 2 then the function
H can simply be a compression function used to construct the hash function).

We model our adversary A = (Abig,Asmall) as a pair of interactive algo-
rithms1 with oracle-access to a random-oracle H(·). The algorithm Abig will
only be restricted in the number of oracle calls made. On the other hand, we
impose the following additional restrictions on Asmall:
– s-bounded space: The total amount of space used by Asmall is bounded by
s. That is, we can accurately describe the entire configuration of Asmall at
any point in time using s bits.2

– c-bounded communication: The total number of outgoing bits communicated
by Asmall is bounded by c. 3

1 Say ITMs, interactive RAMs, . . . The exact model will not matter.
2 This is somewhat different than standard space-complexity considered in complexity

theory, even when we restrict the discussion to ITMs. Firstly, the configuration of
Asmall includes the value of all tapes, including the input tape. Secondly, it includes
the current state that the machine is in and the position of all the tape heads.

3 To be precise, we assume that we can completely describe the patters of outgoing
communication of Asmall using c bits. That is, Asmall cannot convey additional
information in when it sends these bits, how many bits are sent at a given time and
so on. . .



We use the notation AH(·)(R) =
(
AH(·)
big () � AH(·)

small(R)
)

to denote the in-

teractive execution of Abig and Asmall, where Asmall gets input R and both
machines have access to the oracle H(·).

3 Definitions

Let WH(·) be an algorithm that takes as input R ∈ {0, 1}m and has access to the
oracle H. Let (FH1,R, . . . .F

H
T,R) be sequence of functions that depend on H and R.

Assume that WH(·) is interactive, i.e. it may receive queries from the outside. Let
x1, . . . , xT be the sequence of queries that WH(·) received. The algorithm WH(·)

replies to such a query by issuing a special output query to the oracle H. We
assume that after receiving each xi ∈ {0, 1}∗ the algorithm WH(·) always issues
an output query to H of a form ((FHi,R(xi), (i, xi)), out). We say that WH(·) is a
(c, s,m, q, ε, T )-onetime computable PRF if:

– WH(·) has m-bounded storage, and 0-bounded communication.
– for any AH(·)(R) that makes at most q queries to H and has s-bounded

storage and c-bounded communication, the probability that AH(·)(R) (for a
randomly chosen R← {0, 1}m) issues two queries ((FHi,R(x), (i, x)), out) and

((FHi,R(x′), (i, x′)), out), for x 6= x′, is at most ε.

Basically, what this definition states is that no adversary with s-bounded
storage and c-bounded communication can compute the value of any Fi,R on two
different inputs. It may look suspicious that we defined the secrecy of a value
in terms of the hardness of guessing it, instead of using the indistinguishability
paradigm. We now argue why our approach is ok. There are two reasons for this.
The first one is that in the schemes that we construct that output of each FH is
always equal to some output of H (i.e. the algorithm F simply outputs on the
the responses he got from H). Hence A cannot have a “partial knowledge” of
the output (either he was lucky and he queried H on the “right” inputs, or not
– in the latter case the output is indistinguishable from random, from his point
of view).

The second reason is that, even if it was not the case — i.e. even if FH

outputted some value y that is a more complicated function of the responses he
got from H — we could modify FH by hashing y with H (and hence if y is “hard
to guess” then H(y) would be completely random, with a high probability).

Now, suppose that V H(·) is defined identically to WH(·) with the only dif-
ference that it receives just one query x ∈ {0, 1}∗, and afterwards it issues one
output query ((FH(x), x), out) (for some function F that depends on H). We
say that V H(·) is an (s, w, q, δ, ε)-uncomputable hash function if:

– V H(·) has s-bounded storage, and 0-bounded communication.
– for any AH(·)(R) that makes at most q queries to H and has (s−δ)-bounded

storage and c-bounded communication, the probability that AH(·)(R) (for a
randomly chosen R ← {0, 1}w) issues a query ((FH(x), xi), out) is at most
ε.



4 Random Oracle Graphs and the Pebbling Game

We show a connection between an adversary computing a “random oracle graph”
and a pebbling strategy for the corresponding graph. A similar connection ap-
pears in [16].

4.1 Random-Oracle Labeling of a Graph.

Let G = (V,E) be a DAG with |V | = N vertices. Without loss of generality,
we will just assume that V = {1, . . . , N} (we will also consider infinite graphs,
in which case we will have N = ∞). We call vertices with no incoming edges
input vertices, and will assume there are M ≤ N of them. A labeling of G is a
function label(·), which assigns values label(v) ∈ {0, 1}w to vertices v ∈ V .
We call w the label-length. For any function H : {0, 1}∗ → {0, 1}w and input-
labels R = (R1, . . . , RM ) with Ri ∈ {0, 1}w, we define the (H,R)-labeling of G
as follows:

– The labels of the M distinct input vertices v1 < v2 < . . . < vM are given by

label(vi)
def
= Ri.

– The label of every other vertex v is defined recursively by

label(v)
def
= H(label(v1), . . . , label(vd), v)

where v1 < . . . < vd are the d parents of v.

A random oracle labeling of G is an (H,R)-labeling of G where H is a random-
function and R is chosen uniformly at random.

For convenience, we also define preLabel(v)
def
= (label(v1), . . . , label(vd), v),

where v1 < . . . < vd are the parents of v, so that label(v) = H(preLabel(v)).
The output vertices of G are the vertices that have no children. Let v1, . . . , vK

be the output vertices of G. Let Eval(G,H, (R1, . . . , RM )) denote the sequence
of labels (label(v1), . . . , label(vK)) of the output vertices calculated with the
procedure described above (with R1, . . . , RM being the labels of the input ver-
tices v1, . . . , vM and H being the hash function).

Our main goal is to show that computing the labeling of a graph G requires a
large amount of resources in the random-oracle model, and is therefore difficult.
We will usually (only) care about the list of random-oracle calls made by Abig
and Asmall during such an execution. We say that an execution AH(·)(R) labels
a vertex v, if a random-oracle call to preLabel(v), is made by either Abig or
Asmall.

4.2 Pebbling Game

We will consider a new variant of the pebble game that we call the “red-black”
pebble game over a graph G. Each vertex of the graph G can either be empty,
contain a red pebble, contain a black pebble, or contain both types of pebbles.
An initial configuration consists of (only) a black pebble placed on each input
vertex of G. The game proceeds in steps where, in each step, one of the following
four actions is taken:



1. A red pebble can be placed on any vertex already containing a black pebble.
2. If all the parents of a vertex v have a red pebble on them, a red pebble can

be placed on v.
3. If all the parents of v have some pebble on them (red or black), a black

pebble can be placed on v.
4. A black pebble can be removed from any vertex.

We define the black-pebble complexity of a pebbling strategy to be the maximum
number of black pebbles in use at any given time. We define the red-pebble com-
plexity of a pebbling strategy to be the total number of steps in which action 1
is taken. We also define the all-pebble complexity of a pebbling strategy to be the
sum of its black- and red-pebble complexities. By heavy-pebbles we will mean the
black pebbles, or the red-pebbles that appeared on the graph because of action
1. Note, that these are exactly the pebbles that count when we calculate the
all-pebble complexity of a strategy.

Remark 1. Let G be a graph with N vertices and M input vertices. Let v be an
output vertex of G and let vi1 , . . . , vid be a subset of the set of input vertices.
Suppose there exists a pebbling strategy that (1) pebbles v while keeping the
pebbles on the vertices vi1 , . . . , vid , and (2) has black-pebble complexity b and
it does not use the red pebbles, i.e. its red-pebble complexity 0. Then the value
of Eval(G,H, (R1, . . . , RM )) can be computed by a machine with bw-bounded
storage and an access to a random oracle that computes H. This is because
the only thing that the machine needs to remember are the labels of at most
b vertices (each of those labels has length at most w). The computation may
overwrite some part of the input (R1, . . . , RM ), however, it does not overwrite
the input corresponding to the vertices vi1 , . . . , vid , i.e.: (Rv1 , . . . , Rvd).

It is more complicated to show a connection in the opposite direction, namely
to prove that if a graph cannot be pebbled with a strategy with low black- and
red-complexities, then it cannot be computed by a machine with a restricted
storage and communication. The following lemma establishes such a connection
(its proof, that appears in [19], is an extension of the proof of Lemma 1 in [16].)

Lemma 1. Let G be a DAG with M input vertices and K output vertices. Let
r and b be arbitrary parameters. Suppose that G is such that there does not exist
a pebbling strategy such that (1) its all-pebble complexity is at most a, and that
(2) pebbles at least α output vertices (for some α ∈ {1, . . . ,K}).

Then, for any c, s, w such that c+s+w
w−log(q) < a, and for any A = (Abig,Asmall)

that makes at most q oracle calls and has s-bounded space and c-bounded com-
munication the probability that A labels more than α − 1 output vertices is at
most (q+ 1) · 2−w (where the probability is taken over the randomness of A and
the random choice of H and R).

5 One-time computable functions

In this section we show specific examples of graphs that are hard to pebble in
limited space and bounded communication. Let M,M ′ be a parameters such



that M ′ < M . The (M,M ′)-lambda graph (denoted LamM
M ′) is defined in the

following way (cf. Fig. 1). Its set of vertices is equal to V0 ∪ V1, where V0 =

(M ′,M ′)
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Fig. 1. An (M,M ′)-lambda graph for M ′ = 4 and M = 7. The sub-graph on
the left-hand side of the dashed line is an M ′-pyramid.

{(i, j) : 1 ≤ i ≤ j ≤ M ′} and V1 = {1, 2} × {M ′ + 1, . . . ,M}. The set of input
vertices is equal to {1} × {1, . . . ,M}. The output vertex is (2,M). The set of
edges is equal to the following sum: {((i− 1, j − 1), (i, j)) : (i− 1, j − 1), (i, j) ∈
V0} ∪ {((i− 1, j), (i, j)) : (i− 1, j), (i, j) ∈ V0} ∪ {((M ′,M ′), (2,M ′ + 1))} ∪
{((1, j−1), (1, j)) : (1, j−1), (1, j) ∈ V1} ∪ {((1, j), (2, j)) : (1, j), (2, j) ∈ V1}. If
M ′ = M then a (M,M)-lambda graph is defined as above, with V1 = ∅ and with
the set of edges consisting only of the first two summands of the sum above. Its
output vertex is (M,M). Such a graph is also called an M -pyramid graph.

Lemma 2. For any X < M ′ − 1 there exists a strategy that pebbles the output
vertex of LamM

M ′ that satisfies the following:

– it uses M+M ′−1−X black pebbles (remember that all the M input vertices
are initially pebbled with a black pebble, and therefore using M +M ′−1−X
means having M ′ − 1−X extra pebbles),

– it uses no red pebbles, and
– at the moment when the output vertex is pebbled there are still pebbles on the

last M −X input vertices, i.e.: vertices from the set {1} × {X + 1, . . . ,M}.

Proof. The pebbling strategy consists of the following steps:

pebble the second row of the pyramid In this step we pebble the second
row of the pyramid, i.e. the vertices from the set {2} × {2, . . . ,M ′}. We do
it by removing X pebbles from the input of the pyramid, and by using the
M ′ − 1−X extra pebbles that we have. The procedure is as follows:

1. First, we put pebbles on the vertices from the set {2} × {2, . . . , X + 1}.
We do it in the following way: for j = 2, . . . , X ′ + 1 we put a pebble on
(2, j) and remove it from (1, j − 1).



2. We then put pebbles on the vertices from the set {2}×{X + 2,M ′}. We
do it just using the extra pebbles, without removing any pebble from the
input. Clearly we have enough extra pebbles, since |{2}×{X+2,M ′}| =
M ′ − 1−X.

pebble the rest of the pyramid In this step we pebble the pyramid row-by-
row, starting from the third row, and ending with the top of the pyramid
(M ′,M ′). We do it in the by executing the following procedure for i =
3, . . . ,M ′:
– for j = i, . . . ,M ′ do the following: put a pebble on (i, j) and remove it

from (i− 1, j − 1).
pebble the rest of the graph We now pebble the rest of the graph in the

following way. First, we put a pebble on (2,M ′ + 1) and remove it from
(M ′,M ′). Then, for j = M ′+2, . . . ,M we put a pebble on (2, j) and remove
it from (2, j − 1). At the end of this loop there output vertex is pebbled.

It is easy to see that the above procedure results in a correct pebbling strategy.
Moreover, it uses only M ′ − 1 − X extra pebbles, and it removes the pebbles
only from the first X vertices of the input. ut

5.1 Hardness of pebbling

Consider a configuration of the red and black pebbles on some DAG G. Let v
be a vertex of G. We say that v is input-dependent in this configuration if, after
removing all the pebbles from the input it is impossible to pebble the vertex v.
If v is not input-dependent then we say that it is input-independent.

Lemma 3. For M ≥ 2 consider an M -pyramid graph LamM
M and some config-

uration of pebbles on it. If the output vertex (M,M) is input-dependent then the
number of heavy pebbles is at least M .

Proof. We prove it by induction on M = 2, 3, . . .. To root the induction we first
consider the case when M = 2. In this case the graph consists of 3 vertices only:
2 input vertices, and 1 output vertex. If it is input-dependent then the output
vertex is not pebbled. Hence both input vertices need to have a pebble.

Now, let us assume the hypothesis for M − 1 and consider GM = LamM
M .

Take some configuration γ of pebbles. Denote the set of heavy pebbles in γ by
X . Let GM−1 be a subgraph of GM induced by all the vertices of GM except
of the input row (in other words: GM−1 is equal to GM with the bottom row
“cut”). Of course GM−1 is LamM−1

M−1.
Now, put black pebbles on the vertices of the input row of GM−1 in the

following way: put a pebble on a vertex v whenever v has both parents in X
(and keep the old pebbles from the configuration γ). It is easy to see that the
number of black pebbles in this new configuration is at most |X | − 1.

Clearly the resulting configuration of pebbles on GM−1 satisfies the following:
(1) the output vertex can be pebbled from this configuration, and (2) the output
vertex on GM−1 is input-dependent (if it was not input-dependent then also
the configuration γ would not be input-dependent). Hence, by the induction
hypothesis |X | − 1 ≥M − 1, which implies that |X | ≥M . ut



Lemma 4. Suppose M > 2. Consider a pebbling strategy for LamM
M that peb-

bles the vertex (M,M). In the first configuration in which (M,M) is input-
independent we have that: (1) the total number of the heavy pebbles that are not
on the input row is at least M − 1, and (2) there is no pebble on (M,M).

Proof. Let GM = LamM
M , and let GM−1 be defined as in the proof of Lemma

3. Let γ be the first configuration in which (M,M) is input-independent, and
let γ′ be the configuration that directly precedes γ, i.e. the last configuration
that is input-dependent. Keep on the vertices of GM−1 all the pebbles from
the configuration γ. We now show that in such a configuration of the pebbles on
GM−1 the output of GM−1 is input-dependent. After showing it we will be done:
part (1) will follow directly from Lemma 3 (applied to GM−1), and part (2) will
follow from the fact that (for M−1 > 1) if the output vertex is input-dependent
then it cannot be pebbled.

To finish the proof assume that the output of GM−1 is input-independent.
We obtain contradiction by showing that in this case also GM needs to be input-
independent. Clearly the only way in which γ′ was transformed into γ was that
a pebble was added on the input row of GM−1. However, by our assumption the
output of GM−1 (and hence also of GM ) does not depend on this row. Therefore
also in the configuration γ′ the output cannot depend on the two bottom rows
of GM . This gives us a contradiction. ut

Lemma 5. Consider a pebbling strategy that pebbles the output of LamM
M ′ . As

long as the vertex (M ′,M ′) has not been pebbled, there has to be a heavy pebble
on every input vertex on the second part of LamM

M ′ (i.e. the vertices (1, j) such
that j ∈ {M ′ + 1, . . . ,M}).

Proof. This follows easily from the construction of the LamM
M ′ graph: if one

removes a pebble from any vertex (1, j) such that j ∈ {M ′+ 1, . . . ,M} then one
cannot put a pebble on it in the future. Therefore it will never be possible to
pebble (2, j), and hence also (2,M). ut

For ` ∈ N ∪ {∞} consider a family of ` DAGs {Gk = (Vk, Ek)}`k=1 such
that every DAG in this family has the same set of input VI of input vertices.
Define V ′k = Vk \ VI . The graph G = (V,E) is a sum of {Gk = (Vk, Ek)}`k=1 if
is defined as follows: the set of vertices V is equal to VI plus the disjoint sum
of the sets V ′k. More precisely: V := VI ∪

⋃`
k=1{k} × Vk. The set E of edges is

defined as: E := {((k, v), (k, v′)) : v, v′ ∈ V ′k and (v, v′) ∈ Ek} ∪ {(v, (k, v′)) :
v ∈ VI and v′ ∈ V ′k and (v, v′) ∈ Ek}. The set of input vertices of G is equal to
VI , and the set of the output vertices is equal to VO,L ∪ VO,R, where VO,L and
VO,R are the sets of the output verices of GL and GR, respectively.

Lemma 6. Consider a family {Gk}`k=1 of (M,M ′)-lambda graphs. Let G be a
sum of the graphs in this family. Then there does not exist a pebbling strategy
with all-pebble complexity bounded by M + M ′ − 2 that pebbles more than one
output of G.



Proof. For the sake of contradiction suppose that such a strategy exists. Pebbling
the output of LamM

M ′ requires first pebbling the top of the pyramid graph that
is a part of LamM

M ′ . Therefore there has to exist a pebbling strategy with all-
pebble complexity bounded by M + M ′ − 2 that pebbles two different vertices
that are the tops of the pyramids in some Gk and Gh (i.e. vertices (k, (M ′,M ′))
and (h, (M ′,M ′))).

Clearly, at the beginning of any pebbling strategy the top of each pyramid is
dependent on the input of this pyramid. Consider the first configuration where
the top of one of the pyramids, the one belonging to Gk, say, gets independent
from the input of this pyramid. In this moment, by Lemma 4 the total number
of the heavy pebbles that are not on the input row of Gk is at least M ′ − 1.
Since in this moment the top vertex of Gh is still dependent on the input, hence,
by Lemma 3 the total number of the heavy primary red pebbles and the black
pebbles on Gk is at least M ′. Therefore the number of the heavy pebbles on the
two pyramids is at least 2M ′ − 1.

On the other hand, by the second part of Lemma 4 the vertex (M ′,M ′) is
not yet pebbled in this configuration. Hence, by Lemma 5, there needs to be a
heavy pebble on every vertex from the second part of the input of Gh and Gk,
i.e. on the vertices (1, j)) such that j ∈ {M ′ + 1, . . . ,M}. Therefore altogether
we have 2M ′ − 1 + (M −M ′) = M +M ′ − 1 pebbles on the sum of Gh and Gk.
This yields a contradiction with the assumption that the all-pebble complexity
of the strategy is bounded by M +M ′ − 2. ut

Combining Lemma 1 with Lemma 6 we get the following.

Corollary 1. Consider a family {Gk}`k=1 of (M,M ′)-lambda graphs. Let G be a
sum of the graphs in this family. Then, for any s, c, w and q, such that c+s+w

w−log(q) <

M + M ′ − 2, and any adversary A that has s-bounded storage and c-bounded
communication, and makes at most q queries to the oracle, the probability that
A labels more than one output of G is at most (q + 1) · 2−w.

5.2 The construction

In our construction the hash function will depend on an additional parameter
a. Formally, let H : {0, 1}∗ × {0, 1}∗ → {0, 1}w be a function that is modeled
as a random oracle. For any a ∈ {0, 1}∗ let Ha denote a function defined as
Ha(z) = H(a, z). Let M,U and T be some positive integer parameters such
that

T <
U − 1

2∆
(1)

where ∆ := U −M . We now construct an interactive algorithm COMPH
U ,M,T,w

that has access to a random oracle H and stores a key consisting of M blocks
(of length w). That is, the input to the algorithm is R = (R1, . . . , RM ), and it
behaves as follows. Suppose it is queried on some inputs x1, . . . , xT . Then, after
receiving each xi it computes the value of

Eval(Lam
M−(i−1)∆
i∆+2 , H(i,xi), (R[1 + (i− 1)∆, . . . ,M ]). (2)



The algorithm COMPH
U ,M,T,w(R) simply computes each (2) one-by-one for i =

1, . . . , T . Each of these steps destroys ∆ values Rj from the input. Thus, before
the i-th step we keep in the memory only R[1 + (i − 1)∆, . . . ,M ]. This means
that the space used by the remaining part of the input (R[1, . . . , (i−1)∆]) is now
free and it can be used as additional storage for computation. So, just before
the beginning of the i-th step the free storage (i.e. storage not including kept
fragment of the input) is bounded by ei = Ei · w, where Ei := 1 + (i − 1)∆.
The algorithm in the i-th step is just a simple application of Remark 1 from
Section 4.2. Observe that from Lemma 2 we get a pebbling strategy that pebbles

output vertex of Lam
M−(i−1)∆
i∆+2 using Ei extra pebbles and removes the first

(i∆+2)−1−Ei input pebbles. From the definition of Ei we have (i∆+2)−1−Ei =
∆. So, from Remark 1 we get that there is an algorithm that computes (2)
overwriting ∆ · w first bits of remaining input. So, after this step the algorithm
can keep R[1 + i∆, . . . ,M ] to be used in the next steps.

Theorem 1. For any integers c, s,m,w, let U
def
= b c+s+w

w−log(q)c and M
def
= bmw c− 1.

Then, for any integer T < U−1
2(U−M) the algorithm COMPH

U ,M,T,w is a (c, s,m, q, (q+

1) · 2−w, T )-one-time computable PRF.

Asymptotically, as c, s,m� w � log(q), the maximal T becomes

T ≈ c+ s

2(c+ s−m)
. (3)

Proof (of Theorem 1). Suppose (R1, . . . , RM ) is chosen uniformly at random.
Let A = (Abig, Asmall) be an arbitrary adversary with oracle access to H that
has s-bounded space and c-bounded communication and makes at most q oracle
calls. Consider an execution AH(·)(R). Let E be an event that for some i and for

two different x and x′ the adversary labeled the output vertex of Lam
M−(i−1)∆
i∆+2

in the (H(i,x), R)-labeling and (H(i,x′), R)-labeling. To prove the theorem we
need to show the following.

P (E) ≤ T · (q + 1) · 2−w. (4)

Fix some ĩ, and let Eĩ denote the event that E happened for i = ĩ. Let G be equal

to the sum of following infinite sequence of graphs
{

Lam
M−(̃i−1)∆
ĩ∆+2

}
x∈{0,1}∗

.

We now show an adversary Ã with an s-bounded space and c-bounded com-
munication that has access to an oracle H̃ and makes at most q queries to it,
and satisfies the following: for a randomly-chosen R̃ = (R1+(̃i−1)∆, . . . , RM ) ∈
({0, 1}w)M−(̃i−1)∆ in the execution ÃH̃(·)(R̃) the probability that the adversary
labels at least two different output vertices of G is equal to P (Eĩ).

The adversary Ã simulates A in the following way. First, since A “expects”
the input to have length M , it fills-in the “missing” elements of R̃, i.e. he selects
randomly (R1, . . . , R(̃i−1)∆) and sets R = (R1, . . . , R(̃i−1)∆)||R̃. Next, it simply
runs A. The only thing that we need to take care of is to “translate” the oracle



queries issued by A to H into oracle queries issued by Ã to H̃. Let Q be a query
issued by A. Consider the following cases:

– Q has a form ((̃i, x), (label1, . . . , labeld, v)) (for some x, label1, . . . , labeld)
— in this case we translate it into a a query (label1, . . . , labeld, ((i, x), v),

– Q has a form or ((̃i, x), (label, v, out)) (for some x and label) — in this
case we translate it into a a query (label, ((̃i, x), v), out).

– if Q does not have any of the forms above — we translate it in some arbitrary
(deterministic and injective) way.

It is easy to see that Ã labels an output vertex ((̃i, x), v) of G if and only if

his simulated copy of A labeled v in the graph Lam
M−(̃i−1)∆
ĩ∆+2

. Therefore the

probability that Ã labeled two output vertices of G is equal to P (Eĩ). Now,
by Corollary 1 we get that this probability is at most (q + 1) · 2−w as long as
s+c+w
w−log(q) < M − (̃i − 1)∆ + 1 + ĩ∆ + 1 − 2 = M + ∆ = U , which is exactly

the assumption that we made in the statement of the lemma. Since E = ∪Ti=1Ei,
therefore, by the union-bound we get that P (E) ≤ T · ((q + 1) · 2−w). Therefore
(4) is proven.

6 Arrowhead functions

In this section we define a class of DAGs that we call the arrowhead graphs. For
every M ∈ N let ArrM be a graph consisting of defined previously M -pyramid
with one additional vertex (0, 0) and additional edge from (0, 0) to (1, x) for
x ∈ 1, . . .M . More precisely, ArrM = (VM , EM ), where V = {(0, 0)} ∪ {(i, j) :
1 ≤ i ≤ j ≤M . A graph ArrM consists of one input vertex (0, 0) and one output
vertex (M,M). The follwoing figure shows an example of an M -arrowhead graph
for M = 4. The subgraph on the upper side of the dashed line is an M -pyramid.
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Lemma 7. For any a and R = (R1, . . . , RM ) the value of Eval(ArrM , H,R)
can be computed by an algorithm that has access to a random oracle H and has
(M + 1) · w-bounded storage.

Proof. Using Remark 1 it suffices to show a strategy that pebbles ArrM using
M + 1 pebbles. Such a strategy is straighforward and appears in the full version
of this paper [19].



The following lemma shows the optimality of the algorithm given in Lemma 7.

Lemma 8. For any s, λ and q, such that s+λ
w−log(q) < M + 1, and any adversary

A that has s-bounded storage and 0-bounded communication, and makes at most
q queries to the oracle, the probability that A labels the output of ArrM is at
most q · 2−w + 2−λ.

This lemma follows from the fact that every strategy that pebbles the output
of ArrM , and does not use the red pebbles, must use at least M−1 black pebbles.
The proof of this fact is very similar to the proof of Lemma 10.2.1 in the book of
John Savage ([36]), and it appears in the full version of this paper [19]. Lemma
7 and 8 imply the following.

Theorem 2. The hash function that takes as input R and outputs Eval(ArrM ,
H,R) is ((M + 1) · w,w, q, log(q)(M + 1) + λ, q · 2−w + 2−λ)-uncomputable.
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