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Abstract. We undertake a general study of hash functions secure under
correlated inputs, meaning that security should be maintained when the
adversary sees hash values of many related high-entropy inputs. Such
a property is satisfied by a random oracle, and its importance is illus-
trated by study of the “avalanche effect,” a well-known heuristic in cryp-
tographic hash function design. One can interpret “security” in different
ways: e.g., asking for one-wayness or that the hash values look uniformly
and independently random; the latter case can be seen as a generalization
of correlation-robustness introduced by Ishai et al. (CRYPTO 2003). We
give specific applications of these notions to password-based login and
efficient search on encrypted data. Our main construction achieves them
(without random oracles) for inputs related by polynomials over the in-
put space (namely Zp), based on corresponding variants of the q-Diffie
Hellman Inversion assumption. Additionally, we show relations between
correlated-input secure hash functions and cryptographic primitives se-
cure under related-key attacks. Using our techniques, we are also able to
obtain a host of new results for such related-key attack secure crypto-
graphic primitives.

1 Introduction

In practice is often useful to view a cryptographic hash function like a random
oracle, as formalized in the random oracle model [6]. However, as random oracles
do not exist in reality (and indeed, in general the random oracle model may lead
to insecure schemes [13]), an important line of research suggested by [13] seeks
to formalize various useful properties satisfied by a random oracle and construct
hash functions meeting them under standard assumptions. In this paper, we
do so for what we call correlated-input security, meaning that (various notions
of) security should be maintained when the adversary sees hash values of many
related high-entropy inputs.

The importance of correlated-input security in practice is illustrated by the
so-called avalanche effect, a well-known heuristic in cryptographic hash function
design. (The name “avalanche effect” was coined by Feistel [17], although the
idea goes back to Shannon’s notion of diffusion [26].) Roughly, the avalanche
effect states that making any change to an input should result in a drastically
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different hash value. Clearly, such a hash function should satisfy a notion of
correlated-input security. Our results help to shed light on whether or not this
is feasible from a theoretical perspective.

1.1 Notions of Correlated-Input Security

We get different specific notions of correlated-input security depending on how
we interpret “security.” We first discuss the different interpretations we consider
and and how we formalize the resulting notions.

Three Notions The first and most basic interpretation we consider is “one-
wayness.” To formalize one-wayness under correlated-inputs, we consider a hash
function H and circuits C1, . . . , Cn, where each Ci takes as input some random
coins and outputs a point in the domain of H. The adversary is given hash values
H(x1), . . . , H(xn) where each xi is the output of Ci(r) for random coins r. Note
that each Ci is run on the same random coins. Therefore the xi are correlated.4

The adversary’s goal is to output any one of the xi. Informally, we say that H
is one-way under correlated inputs for a class of circuits {C} if for any n and
any choice of C1, . . . , Cn from {C}, any efficient adversary succeeds with at most
negligible probability.

The next interpretation we consider is “unpredictability.” To formalize unpre-
dictabililty under correlated-inputs, we consider a hash function H and circuits
C1, . . . , Cn+1, where each Ci is as before. Now the adversary is given hash values
H(x1), . . . , H(xn) and tries to output H(xn+1), where each xi is the output of
Ci(r) as before. The notion is defined for a class of circuits {C} analogously to
the one-wayness case. It mainly serves as a stepping-stone to our final notion.

Finally, the last interpretation we consider is “pseudorandomness.” To for-
malize pseudorandomness under correlated-inputs, we consider a hash func-
tion H and circuits C1, . . . , Cn+1, each Ci is as before. Now the adversary is
given hash values H(x1), . . . , H(xn) as well as a “challenge” value that is either
H(xn+1) or a random string of appropriate length, where each xi is the output
of Ci(r) as before. (This of course requires the circuits to have distinct outputs.)
Again, the notion is defined for a class of circuits {C} analogously.

Discussion We make a few observations about these notions. One is that they
are only achievable for a class of circuits {C} such that C(r) for random r has
sufficient min-entropy for any C in the class. In fact, it is not hard to show that a
random oracle satisfies our notions for the class of all such circuits. However, in
the standard model they are in general only achievable by a keyed hash function
H. To see this, fix an unkeyed hash functionH and consider circuits C1, C2 where
C1(r) outputs r and C1(r) outputs H(r). Clearly, no fixed H is even one-way
under correlated-inputs for these circuits. By a similar argument, the circuits
must not depend on the choice of the hash key. We stress that in our notions
the hash function key is public. Similar counter-examples show that in general

4 For example, the xi’s might agree in most bit positions but vary in the others. It
may even be the case that a single input xi completely determines the rest.



pseudorandom generators and functions do not meet our notions (note that the
latter has a secret key); we give details in the full version.

Another point is that when considering non-uniform inputs, these notions
are non-trivial to achieve even in the case of a single input. However, this can
be done; for example [27] considers one-way functions for a non-uniform input
and [16] considers pseudorandom generators (that expand the input, which we do
not require) for non-uniform seed. Additionally, we note for any a priori bounded
number of circuits, pseudorandomness under correlated-input can be met even
under information-theoretic indistinguishability (where the key-size depends on
the bound). This follows from a generalization of the Leftover Hash Lemma [24,
Lemma 6.1] (which follows [22, Lemma 3.2]). On the other hand, the focus of
our work is on correlations among an unbounded number of inputs.

1.2 Applications

We now discuss some specific practical applications for our new notions.

Password-based login An application of our notion of one-wayness under correlated-
inputs is password-based login. For example, UNIX maintains a “password” file
that, for each user in the system, stores a hash of their password that is com-
pared against the hash of a candidate password supplied at login by someone
claiming to be this user. The goal is to prevent an adversary with access to the
password file from gaining the ability to impersonate a user. Informally, it is
often said that the property of the hash function needed to ensure this is one-
wayness. But the standard notion of one-wayness is obviously insufficient here.
Passwords, while they should contain entropy, are certainly not uniformly ran-
dom. Moreover, passwords are typically correlated, both across different users,
and across the same user on different systems (and the adversary may recover
the password file for multiple systems).

This issue seems to be largely ignored in prior work. A paper (which we
already mentioned) that considers the relevance of one-way functions for high
entropy inputs to this application is [27]; however, they do not consider multi-
ple related inputs and relations among them. Our notion of one-wayness under
correlated input seems to be an appropriate security notion for this application.5

Efficient search on encrypted data An application of our notion of pseudoran-
domness under correlated-inputs is efficient search on encrypted data. It is be-
coming increasingly common for companies to store large amounts of data re-
motely on servers maintained by an untrusted third party. To provide privacy for

5 For simplicity, this ignores “salting” the passwords, which can be viewed as consider-
ing a randomized hash function. This may make the problem easier for an approach
based on the Leftover Hash Lemma (using a similar argument to [24, Lemma 6.1]),
but as discussed in [27] such an approach is impractical due to its “entropy loss.”
For our approach it does not make the problem significantly easier, and anyway
it circumvents the core issue that in practice a (deterministic) cryptographic hash
function is assumed to satisfy correlated-input security; indeed, salting passwords is
only meant to slow down dictionary attacks.



the client, the data should be encrypted. However, we still want to allow search
on the data without retrieving and decrypting the entire database. Techniques
like public-key encryption with keyword search [11] make search possible, but it
takes linear time in the database size. On the other hand, practitioners require
search time to be comparable to that for unencrypted data.

This problem was first studied from a cryptographic perspective by Bellare
et al. [2], who introduced deterministic encryption and the more general concept
of efficiently searchable encryption (ESE) as a solution. The basic idea is to
attach a hash of each keyword to an encrypted file. Keywords are obviously not
uncorrelated, and thus our notions are natural to apply. In fact, if a hash function
meets our notion of pseudorandomness under correlated-inputs, then it can be
“bootstrapped” to hide all partial information information by encrypting a hash
value under the one-way trapdoor permutation based deterministic encryption
scheme of [4] (actually, a one-way permutation without a trapdoor suffices here,
since we do not need to decrypt).

1.3 Our Construction and its Security

Next we turn to whether our security definitions can be achieved and under what
cryptographic assumptions.

Our Construction We propose the following construction: Letting G be a group
of prime order p, the hash key is a random generator g ∈ G and random c ∈ Zp,
and the evaluation of the hash on input x ∈ Zp is g1/(x+c) where 1/(x + c)
denotes the inverse of x+ c modulo p.

Security Analysis We show that this construction is secure under each of our
three notions of security assuming (appropriate variants of) the q-Diffie-Hellman
inversion assumption (q-DHI). Roughly speaking, this assumption says that

given gα, gα
2

, . . . , gα
q

, it is hard to compute g1/α. An assumption of this form
was first introduced by Boneh and Boyen [9], who considered it in groups with a
a bilinear map (pairing) e and asked that it be hard to compute (or distinguish
from random) e(g, g)1/x instead of g1/x. However, since our hash function is de-
terministic and thus automatically publically verifiable, we do not need bilinear
maps here.

The class of circuits we consider in our proofs are the ones that are (ef-
ficiently) representable by a polynomial over Zp (the input space of the hash
function). In other words, each xi = pi(x, y, z, . . .) where pi is a polynomial over
Zp the x, y, z, . . . are randomly chosen but fixed for all i. In our main theorems,
we treat the case of univariate polynomials pi over Zp, but it is easy to extend
our proofs to multivariate polynomials as well. This is quite a broad class, in par-
ticular just considering univariate polynomials and taking p1 to be the identity
polynomial covers the well-known attacks on RSA [15].

First, we show that our inversion hash is one-way under correlated inputs
for this class of circuits assuming the q-strong discrete logarithm (q-SDL) as-
sumption (which is weaker than q-DHI in that it need only be hard to compute



α itself).6 For unpredictability and psuedorandomness, we require an additional
assumption that each input to the hash function is individually uniform.7 How-
ever we stress that given other inputs, an input may even be fully computable.
For this class of polynomials, we show the inversion hash is unpredictable un-
der correlated inputs assuming q-DHI. Using standard hardcore bit techniques
this already gives a construction with small output length achieving pseudo-
randomness under correlated inputs with the same assumption. However, we
directly show pseudorandomness under correlated inputs of our construction for
the same class of polynomials assuming the decisional version of q-DHI.

Discussion One may notice the similarity of our construction to the Boneh-
Boyen short signature scheme [10]. Our proof techniques build on those intro-
duced in [10], but note that, as opposed to the latter, we focus on a setting where
there is no secret key, and we use the q-DHI assumption instead of the q-SDH
assumption of [10]. Indeed, our proofs use some new ideas. In particular, the role
of c in our reductions for unpredictability and pseudorandomness is completely
different from that of the message in [10].

We also note that our security proofs are under a notion of “selective” security
where the circuits that sample the inputs do not depend on the public hash key.
As we mentioned, in general this restriction is inherent. However, for restricted
classes of circuits (such as arithmetic circuits we consider) which are not able to
efficiently compute the hash function in question, it may be possible to achieve an
adaptive notion of security even by using an unkeyed hash function. We discuss
a positive result for this case below.

Finally, we note that our construction as defined is not compressing. How-
ever, once we obtain a construction meeting any of our notions, it is easy to
obtain one which is also compressing. In the case of one-wayness we can apply a
collision-resistant hash to the output, and in the case of pseudorandomness we
can truncate the output. It can be shown that the resulting (compressing) hash
function retains correlated-input security.

1.4 Relations to Related-Key Attacks

Security under related-key attacks (RKA), first formalized by [5] in the context
of pseudorandom functions/permutations, is a well-established notion that, like
correlated-input security, asks for security to be maintained under related val-
ues of a “secret” input. We explore elations between pseudorandomness under
correlated-inputs secure hash (which we simply call CI-secure hash below) and
RKA-security of various cryptographic primitives.
6 In fact, for this result the c component of the hash key can be any fixed element in
Zp (for instance, set c = 0).

7 This translates to the requirement that the polynomials individually have uniform
output on uniform input (e.g., this is the case for permutation polynomials). By
making non-standard assumptions, it may be possible to drop this restriction. How-
ever, considering individually uniform but correlated inputs to the hash function is
natural, and we focus on results under standard assumptions.



Equivalence to One-Input RKA-Scure wPRF We first observe that a CI-secure
hash is in some sense equivalent to what we call a “one-input RKA-secure weak
pseudorandom function (wPRF).” To define such a wPRF F , the adversary
is given an input-output pair x, F (K,x) for random x and may query for for
other outputs of the form F (ϕ(K), x) for relations ϕ of its choosing. (Note that
the same x is re-used each time.) Following [20], we note that as compared to
a CI-secure hash, the role of the key and the input are simply “switched.”8

Note that a one-input RKA-secure wPRF is implied by an RKA-secure PRF;
in fact, if we start with an RKA-secure PRF (rather than wPRF), the resulting
CI-secure hash does not need a public key. The latter is significant because [3]
gives RKA-secure PRFs, in particular one under the decisional Diffie-Hellman
assumption for adaptively chosen, group-induced relations (i.e., multiplication
by a constant). We thus obtain an unkeyed adaptively-secure CI-secure hash for
the corresponding class of circuits.

A General Transformation for RKA Security Addtionally, we propose a trans-
formation to “bootstrap” any cryptographic primitive to one that is RKA-secure:
simply hash the coins used to generate the secret key for the former. (This can be
seen as replacing a RO in this transformation with a CI-secure hash.) Note, how-
ever, that in the case the CI-secure hash has a public key, an authentic version
of the latter is then needed by any algorithm that uses the secret key (e.g., the
signing algorithm for a signature scheme), which may not always be practical.
Additionally, while our main construction of CI-secure hash is selectively secure,
leading to selective security under RKA (i.e., relations chosen before seeing the
public parameters). However, by using our techniques in a non-blackbox way,
we can sometimes achieve adaptive security instead and without any public key.
In particular, we show how to do this for RKA-secure symmetric encryption, a
primitive introduced concurrently to our work in [1];9. In this case, we are even
able to handle the entire class of (non-zero) polynomial relations.

1.5 Other Related Work

Our work is related to several other lines of research, as we now discuss.

Realizing Random Oracles As we mentioned, our work can be seen as extending
a research agenda proposed by Canetti, Halevi, and Goldriech [13], in which
one identifies and realizes useful properties of a random oracle (RO). Indeed,
by using the techniques of [2, Theorem 5.1] one can show that a RO meets all
the security definitions we consider (which is why we have sought realizations
under standard cryptographic assumptions). Other useful properties of a RO
that have undergone a similar treatment include perfect one-wayness [12, 14]
and non-malleability [7] We note that none of these works address security under
multiple correlated inputs.

8 Note, however, that CI-input security is more general than RKA-security in that it
considers inputs sampled from a common “history.”

9 We obtained this result after seeing [1], but the rest of our work was concurrent.



In fact, a significant prior work of Ishai et al. [21, Definition 1] considered
a notion of “correlation-robustness” for pseudorandom hash functions, with the
motivation of instantiatng the RO in their oblivious transfer protocols. Their
notion is more restrictive than our notion of pseudorandomness under correlated-
input, as the former is defined only for hash functions that output a single bit
and considers inputs obtained by computing the exclusive-or’s of a “master”
random input s with public random values.

Finally, we note that while realizing the “avalanche effect” satisfied by a RO
forms a major motivation for considering correlated-input security, it is not the
only way the latter could be formalized. In particular, it talks only about the
change in the output behavior relative to any change to an unknown input. The
notion of “(multiple input) correlation intractability” due to [13] is a possible
formalization the effect without this restriction. On the other hand, the latter
notion seems harder to work with and more difficult to achieve.

Deterministic Encryption Our security notions can be viewed as relaxations
or variants of the notions of privacy proposed for deterministic encryption (DE)
in [2, 8, 4, 24] (that seek to hide partial information) in the case of hash functions
rather than encryption schemes. Indeed, the results of of [2, 8, 4, 24] show that
in some sense the “hard part” of realizing DE without random oracles is dealing
with correlations among the inputs. Our work studies this issue at a more basic
level, asking whether it is feasible even without supporting decryption and for
weaker security notions like one-wayness.

Related Security Notions Recently, Rosen and Segev [25] introduced the notion
of correlated-product secure trapdoor functions (TDFs). Correlated-product se-
curity was later considered for hash functions in [20]. Correlated-product security
differs from our notions in that the former refers to security when related inputs
are evaluated under independent instances of the function; in other words, there
does not exist a single function which is evaluated on related inputs (as is the
case for correlated-input security). Indeed, our techniques are quite different and
unrelated to those in [25, 20].

The recent work of Goldenberg and Liskov [19] also considers a form of
correlated-input security (which they call “related-secret” security) for various
primitives. While their work has some similarities to ours (for example, they con-
sider “related-secret” one-way functions), there are some important differences.
Namely, they focus on hardcore bits and pseudorandom functions rather than
hash functions, and they follow the definitional framework for RKA-security in-
troduced in [5]. As mentioned above, this definitional framework is less general
than ours. Additionally, their results are mainly negative.

2 Preliminaries

Notations. Let x
$←− X denote the operation of selecting a random element x

from X. Let by x ← y denote the assignment of a value y to x. Let |X| denote
the size of the set X, and |x| denote the length of the string x. Let λ denote
the security parameter. Let FF(K,D,R) be the set of all families of functions



F : K × D −→ R. For sets X,Y , let Fun(X,Y ) be the set of all functions
mapping X to Y . For brevity, we say that an algorithm outputs a set/function
as a shorthand to mean that it outputs their descriptions.

Complexity Assumptions. We first state our complexity assumptions, namely
q-DHI [9, 10], which is weaker than q-BDHI [9] as well as q-SDH [10], and we
introduce what we call the q-Strong Discrete Logarithm (q-SDL) assumption
which is weaker than all of q-DHI, q-BDHI, and q-SDH assumptions.

Let GrpGen be a PPT algorithm that takes as input the security parameter
1λ and outputs parameters for some cyclic multiplicative group G, including
the group order p which is a poly(λ)-bit integer, a generator g, and an efficient
algorithm (e.g., circuit) for multiplication (and thus also exponentiation). We
denote it as (G, p, g)← GrpGen(1λ).

q-Strong Discrete Logarithm (q-SDL) Problem The q-SDL problem in G is de-

fined as follows: given a (q + 1)-tuple (g, gx, gx
2

, . . . , gx
q

) ∈ (G⋆)q+1 for some
unknown x ∈ Z⋆

p, output x.
An algorithm A solves the q-SDL problem in the group G with advantage ϵ if

SDL AdvA,q := Pr[A(g, gx, gx
2

, . . . , gx
q

) = x] ≥ ϵ

where the probability is over the random choice of generator g ∈ G⋆, the random
choice of x ∈ Z⋆

p, and the random bits consumed by A.
Definition 1. We say that the (q, t, ϵ)-SDL assumption holds in G (or Grp-
Gen satisfies the (q, t, ϵ)-SDL assumption) if no probabilistic t-time algorithm
has advantage at least ϵ in solving the q-SDL problem in G.

It is easy to see that the 1-SDL assumption is equivalent to the standard
Discrete Logarithm assumption.

q-Diffie-Hellman Inversion (q-DHI) Problem The q-DHI problem [9, 10] in G is

defined as follows: given a (q + 1)-tuple (g, gx, gx
2

, . . . , gx
q

) ∈ (G⋆)q+1 for some

unknown x ∈ Z⋆
p, output g

1
x ∈ G.

An algorithm A solves the q-DHI problem in the group G with advantage ϵ if

DHI AdvA,q := Pr[A(g, gx, gx
2

, . . . , gx
q

) = g
1
x ] ≥ ϵ

where the probability is over the random choice of generator g ∈ G⋆, the random
choice of x ∈ Z⋆

p, and the random bits consumed by A.
Definition 2. We say that the (q, t, ϵ)-DHI assumption holds in G (or Grp-
Gen satisfies the (q, t, ϵ)-DHI assumption) if no probabilistic t-time algorithm
has advantage at least ϵ in solving the q-DHI problem in G.

q-DHI Problem can be equivalently stated as follows [10]: given a (q + 2)-

tuple (g, gx, gx
2

, . . . , gx
q

, c) ∈ (G⋆)q+1 × Zp\{x} for some unknown x ∈ Z⋆
p,

output g
1

x+c ∈ G. This definition also clearly points out the distinction between
the q-DHI problem and the q-SDH problem: in case of the q-DHI problem, the
value of c is prescribed in the problem instance itself, whereas in case of the

q-SDH problem, the solver is free to choose c ∈ Zp and output a pair, (c, g
1

x+c ).
Obviously, the q-DHI assumption is weaker than the q-SDH assumption.



Decisional q-Diffie-Hellman Inversion (Decisional q-DHI) Problem The deci-

sional q-DHI problem inG is defined as follows: given a (q+1)-tuple (g, gx, gx
2

, . . . , gx
q

) ∈
(G⋆)q+1 for some unknown x ∈ Z⋆

p, distinguish between g
1
x and a random ele-

ment R
$←− G.

An algorithm A solves the decisional q-DHI problem in G with advantage ϵ if

DDHI AdvA,q := |Pr[A(g, gx, gx
2

, . . . , gx
q

, g
1
x ) = 1]

−Pr[A(g, gx, gx
2

, . . . , gx
q

, R) = 1]| ≥ ϵ

where the probability is over the random choice of generator g ∈ G⋆, the random
choice of x ∈ Z⋆

p, the random choice of R ∈ G⋆, and the random bits consumed
by A. The distribution on the left is referred to as PDDHI and the distribution
on the right as RDDHI .

Definition 3. We say that the decisional (q, t, ϵ)-DHI assumption holds in G
(or GrpGen satisfies the decisional (q, t, ϵ)-DHI assumption) if no probabilistic
t-time algorithm has advantage at ϵ in solving the decisional q-DHI problem in
G.

3 Our Model: Correlated Input Security

In this section, we define our new notion of security for cryptographic hash func-
tions. We would be interested in preserving various properties of hash functions
(like one-wayness and pseudo-randomness) when the function maybe evaluated
on a tuple of inputs which maybe be correlated in an arbitrary way. Standard
notions of security do not provide any guarantee in such a setting. In the full
version, we discuss examples of functions which are secure in the standard sense
but may be completely insecure when evaluated on multiple inputs which are
correlated.

Before we go further, we first discuss how we represent correlations among a
tuple of inputs (m1, . . . ,mn). In general, such an input tuple maybe generated by
a polynomial-size sampler circuit Samp. In other words, Samp takes a random
tape r (of appropriate length) as input such that (m1, . . . ,mn)← Samp(r). Note
such a sampler circuit can generate the input tuple for any type of polynomial-
time computable correlations. Equivalently, one can generate the (correlated)
tuple of inputs using a tuple of polynomial-size circuits (C1, . . . , Cn) when ini-
tialized on the same random tape. In other words, fix a random string r and set
mi ← Ci(r). It is easy to see that both these sampling procedures are equivalent.
For the rest of the paper, we shall stick to the latter mode of using a tuple of
circuits (for convenience, as will be clear later on).

Also, it will be understood that the range of every circuit considered is a
subset of the input-space (or keyspace) in question. We refer to an adversary
as {C}-restricted, if its correlated-input circuits are restricted to the class of
circuits {C}.



We first define the syntax for a general function family (or a hash function
family if the functions are compressing). We will then move on to formalize the
various security properties such a function family might satisfy.

Definition 4 (Function Family). A family of deterministic functions H is
specified by a PPT algorithm Gen. The algorithm Gen, given input 1λ, outputs a
parameter set Ih, domain Dh, and range Rh, and outputs c ∈ Ih as a description
of a function hc : Dh −→ Rh. The sizes of the domain and range sets are each
exponential in the security parameter.
Now, we shall discuss our first notion of security called correlated-input one-

wayness. Informally, we consider a function h(·) such that given (h(m1), . . . , h(mn)),
where inputs (m1, . . . ,mn) maybe correlated, it is hard for any PPT adversary
to output any valid preimage mi. This can be viewed as a generalization of the
standard notion of one-way functions. We allow the adversary to specify the
correlations to the challenger by giving a tuple of circuits (C1, . . . , Cn), where
each circuit is from a class of correlated-input circuits {C}. Note that, for this
definition to be satisfiable, each circuit Ci,∈ {C} individually should have high
min-entropy output distribution for uniform random input distribution. 10 Thus,
we quantify only over such circuits in our definition. We discuss it under both
selective and adaptive security notions. More details follow.

In the following we shall only formalize the selective notion, while we refer
the reader to the full version for definitions of the adaptive notions.

The Selective Correlated-Input Inverting experiment ExpsCI−inv
A,H,{C}. For a family of

deterministic functionsH, an adversaryA, and a family of efficiently-computable
correlated-input circuits {C}, we define the following game between a challenger
and the adversary A.

– Setup Phase 1. Challenger runs the Gen algorithm of H for a security
parameter input 1λ and gets hc : Dh −→ Rh. Challenger gives Dh to A.

– Query Phase. A chooses a positive integer n (= poly(λ)), and gives to the
challenger n circuits {Ci}i∈[n] ⊂ {C}.

– Setup Phase 2. Challenger gives hc(·) to A and chooses r, a uniform
random string of appropriate length.

– Response Phase. ∀i ∈ [n], challenger responds via hc(Ci(r)).

– Invert Phase. A outputs (k̂, ŷ) for k̂ ∈ [n] and ŷ ∈ Dh.

The output of the experiment is defined to be 1 if hc(ŷ) = hc(Ck̂(r)) and 0
otherwise.
We define the advantage of an adversary A in the above game as:

AdvsCI−inv
A,H,{C}(λ) = Pr[ExpsCI−inv

A,H,{C} = 1]

The probability is over the random bits used by the challenger and the adversary.

10 This requirement is similar to one in the standard notion of one-way functions. If
the input does not have sufficient min-entropy, it is easy to see that an adversary
can guess a preimage and succeed with noticeable probability.



Definition 5. A family of functions H is said to be selective correlated-input
one-way with respect to a family of correlated-input circuits {C}, if for all A ∈
PPT there exists a negligible function negl, such that:

AdvsCI−inv
A,H,{C}(λ) ≤ negl(λ)

We now consider two more correlated-input security notions where we talk about
the unpredictability of the output as opposed to that of the input. Informally,
we consider a function hc : Dh −→ Rh with the following properties. Consider a
tuple of correlated inputs (m1, . . . ,mn+1). The adversary is given the function
outputs (hc(m1), . . . , hc(mn)) and it tries to compute hc(mn+1). In the first
security notion called correlated-input unpredictability (CI-unpredictability), we
require that it should be hard for the adversary to output hc(mn+1). In the
next notion called correlated-input pseudorandomness (CI-pseudorandomness),
we require that the adversary should not be able to distinguish hc(mn+1) from a
random element in Rh, given (hc(m1), . . . , hc(mn)). It is easy to show that this
notion of CI-pseudorandomness is equivalent to a notion where an adversary gets
either (hc(m1), . . . , hc(mn+1)) or n+1 independent random elements in Rh and
is required to distinguish the two cases. Note that, for any of these notions to
be satisfiable, besides the requirement that each circuit Ci ∈ {C} individually
should have high min-entropy output distribution for uniform random input
distribution, we also require that, for every two distinct circuits Ci and Cj in
{C}, and for a uniform random input r of appropriate length, Ci(r) = Cj(r)
happens only with negligible probability over the choice of r.

In trying to give more power to the adversary (thus making our definition
stronger), we allow the adversary to specify the correlation by giving a tuple
of circuits (C1, . . . , Cn+1), where Ci ∈ {C}, to the challenger, as before. In
addition, for the selective case, for a tuple of inputs (m1, . . . ,mn+1), we allow
the adversary to get outputs on n adaptively chosen input indices of its choice
before trying to predict the remaining output.11 More details follow.

The definitions of the selective CI-pseudorandomness and adaptive notions
of all the three notions are given in the full version.

The Selective Correlated-Input Predicting experiment ExpsCI−pred
A,H,{C} . For a family of

deterministic functionsH, an adversaryA, and a family of efficiently-computable
correlated-input circuits {C}, we define the following game between a challenger
and the adversary A.

– Setup Phase 1. Challenger runs the Gen algorithm of H for a security
parameter input 1λ and gets hc : Dh −→ Rh. Challenger gives Dh to A.

11 By incurring a security loss of a factor of n, this definition can actually be shown
to be equivalent to a weaker definition where the adversary is required to predict
the output specifically on input mn+1 fixed after it presents its queries but before it
reveives the responses. However, working directly with this definition might lead to
better concrete security guarantees in the real world.



– Query Phase. A chooses a positive integer n (= poly(λ)), and gives to the
challenger n+ 1 distinct circuits {Ci}i∈[n+1] ⊂ {C}.

– Setup Phase 2. Challenger gives hc(·) to A and chooses r, a uniform
random string of appropriate length.

– Partially Adaptive Query-Response Phase.A presents n queries, where
an ith query is ki ∈ [n+ 1]. Challenger responds to it via hc(Cki(r)).

– Predict Phase. The adversary outputs ŷ ∈ Rh.

Let kn+1 ∈ [n + 1] be such that kn+1 ̸= ki ∀ i ∈ [n]. The output of the
experiment is defined to be 1 if ŷ = hc(Ckn+1(r)) and 0 otherwise.
We define the advantage of an adversary A in the above game as:

AdvsCI−pred
A,H,{C} (λ) = Pr[ExpsCI−pred

A,H,{C} = 1]

The probability is over the random bits used by the challenger and the adversary.

Definition 6. A family of functions H is said to be selective correlated-input
unpredictable with respect to a family of correlated-input circuits {C}, if for all
A ∈ PPT there exists a negligible function negl, such that:

AdvsCI−pred
A,H,{C} (λ) ≤ negl(λ)

4 Proposed Construction

In the sequel, we give the construction of our function and prove that it is
correlated-input secure for a class of polynomials over Zp (where p is a prime
number) in the sense of each of the three selective security models defined above.

Our construction is given in Figure 1.

Gen(1λ). Run GrpGen: (G, p, g)← GrpGen(1λ), where p is a prime number.
Gen uniformly samples a random element c from Zp and a random generator
g of group G. It outputs g, c and a function h : Zp −→ G defined by,

h(m) := g
1

m+c

for any m ∈ Zp (where 1
m+c

is computed mod p).

Fig. 1. Our Construction

Our proposed function is extremely simple and efficient to compute. The cost
of computation is dominated by a single exponentiation operation. The construc-
tion can be seen as similar to a short signature scheme by Boneh and Boyen [10].
Our main novelty can be seen in the proofs of security. Indeed, interestingly, our



proofs show that the original signature scheme of Boneh and Boyen is secure even
if an adversary is allowed to obtain messages signed by various correlated secret
signing keys, where the correlations are from a set of polynomials over Zp. We
refer the reader to the full version for a detailed description of this implication.

4.1 Analysis of the above Construction.

We prove that our construction is selectively secure against a class of correlations
computable by polynomials over Zp. In what follows, we introduce some more
notations that will be used in the rest of the paper and then discuss the three
security games with correlated-input circuits computing polynomials over Zp.

Notations Let deg[f(X)] denote the degree of a polynomial f(X) over Zp. If the
output distribution of a polynomial is uniform in Zp (or, in other words, if the
range of the polynomial is Zp itself), then we refer to the polynomial as uniform-
output polynomial. On the other hand, if the output distribution of a polynomial
has high min-entropy in Zp, then we refer to the polynomial as high-min-entropy-
output polynomial (any non-zero polynomial of degree polynomial in the security
parameter has a range of size exponential in the security parameter). We shall
only consider polynomials of degree is at least 1 and polynomial in λ. We only
state our theorems in the following and give the proofs in the full version.

4.2 Selective Correlated-Input one-wayness

Theorem 1. Suppose that (q, t′, ϵ)-SDL assumption holds in G. Let {C} be a
set of non-zero polynomials over Zp. Then, for H as in Figure 1, there exists no

probabilistic t-time adversary A for which AdvsCI−inv
A,H,{C}(λ) is at least ϵ provided

that
d ≤ q and t ≤ t′ −Θ(nqτ)

where d = d(λ) upper bounds the sum of the degrees of the polynomials that A
queries upon and τ is the maximum time for an exponentiation in G and Zp.

4.3 Selective Correlated-Input Unpredictability

Theorem 2. Suppose that (q, t′, ϵ′)-DHI assumption holds in G. Let {C} be a
set of uniform-output polynomials over Zp. Then, for H as in Figure 1, there

exists no probabilistic t-time adversary A for which AdvsCI−pred
A,H,{C} is at least ϵ

provided that

d ≤ q + 1, ϵ ≥ 2(n+ 1)ϵ′ and t ≤ t′ −Θ(nqτ)

where d = d(λ) upper bounds the sum of the degrees the polynomials that A
queries upon and τ is the maximum time for an exponentiation in G and Zp.

The proof for the above theorem and for CI-pseudorandomness is given in
the full version.



5 Relations between CI-Security and RKA-Security

We conclude by examining relations beween correlated-input secure hash func-
tions and security under related-key attacks, whose formal treatement was ini-
tiated by [5]. The latter asks that security of a cryptographic primitive (e.g.,
a pseudorandom function) maintains security when used with related secret
keys. In this section, we only consider our notion of pseudorandomness under
correlated-inputs, so “CI-security” below refers by default to this notion.

5.1 Relations to RKA-Secure Weak PRFs

We start by showing an equivalence between CI-secure hash functions and some
form of RKA-security for weak PRFs we introduce. The idea, following [20], is
to “switch” the input and key for these primitives.

RKA-Secure Weak PRFs Recall that weak PRFs [23], as opposed to normal
ones, handle only random inputs. In defining RKA-security for this primitive,
a modeling choice we need to consider is whether, when the adversary queries
for a value of the function under a related key, a new random input is chosen
(or the previous random-input re-used). We give general definitions that capture
the possibilities. ( However, for our results we only use a notion where the same
random input is re-used. ) We also consider both “selective” and “adaptive”
security; in the former, the adversary chooses the relations applied to the secret
key before receiving any responses.

In defining RKA security for various primitives, we use a non-standard for-
malization based on our framework of circuits, which in this case sample keys.
This is for ease of comparison to our notion of CI-security. For example, by
{C}-RKA-PRF we refer to an RKA-PRF where the secret keys are sampled ac-
cording to circuits in {C} (executed on a common random input). Note that, in
this framework, RKA-security corresponds to a special case of CI-security where
the first circuit samples a random key K and and the remaining circuits operate
only on K (and not the coins used to sample it) to produce a related key. (The
latter is sufficient in the context of RKA-security.)

We also note that a PRF function family is specified by an efficient proba-
bilistic parameter-generation algorithm Genprf which takes as input a security
parameter 1λ and outputs the description of a function including a description
of its keyspace, domain and range. However, for simplicity of exposition, we only
consider a single PRF function in most part of the following discussion as long
as there is no ambiguity.

Definition 7 (qinput − {C}-aRKA-wPRF.). Let F : K×D −→ R be an effi-
ciently computable function. Let {C} ⊆ Fun(K,K) be a set of RKD circuits. F
is said to be qinput − {C}-aRKA-wPRF, if, ∀A ∈ PPT:

AdvaRKA−wPRF
A,F,{C},qinput

(λ) := |Pr[k $←− K : AOweak
F (k,·)(·,·) −→ 1] − Pr[k

$←− K, G $←−

FF(K,D,R) : AOweak
G(k,·)(·,·) −→ 1]|

is negligible in λ, where the related-key-wprf oracle Oweak
f(k,·)(·) takes as input



(indexi, Ci) ∈ ([qinput], {C}), and outputs (xindexi , f(Ci(k), xindexi)), where

xindexi

$←− D.
The definition for selective version appears in the full version.

The Equivalence In the following, for a class of circuits {C} we show an equiv-
alence between a one-input RKA-Secure wPRF for {C} and a CI-secure hash
function for {C}. (The equivalence holds respectively in the cases of selective
and adaptive security notions.) First, we construct a family of functions {F}
from a family of functions H and show that if H is a {C}-aCI-pseudorandom
function family (resp. {C}-sCI-pseudorandom function family) then {F} is a
1− {C}-aRKA-wPRF (resp. 1− {C}-sRKA-wPRF).

Let H be a family of functions specified by Gen. A family of functions {F} is
defined by the following parameter-generation algorithm:
Genprf (1

λ). Genprf runs Gen(1λ) that outputs the description of a parameter
set D, c ∈ D, and a function hc : K −→ R. Genprf outputs K, D and R for
keyspace, domain and range, respectively, of a function F defined by,

F (k, x) := hx(k)

for any k ∈ K and x ∈ D.

Fig. 2. Construction of 1 − {C}-(s/a)RKA-wPRF Family from {C}-(s/a)CI-
pseudorandom Function Family

Theorem 3. {C}-aCI-pseudorandom function family (resp. {C}-sCI-pseudorandom
function family) implies 1− {C}-aRKA-wPRF (resp. 1− {C}-sRKA-wPRF).

The proof is given in the full version.
In the full version, we also give a construction of 1−{C}-aRKA-wPRF (resp.

1−{C}-sRKA-wPRF) from {C}-aCI-pseudorandom function family (resp. {C}-
sCI-pseudorandom function family).

New CI-Secure Hash Functions As an application of the above equivalence, we
obtain new CI-secure hash functions. In particular, note that an adaptive one-
input RKA-secure wPRF for a class of circuits {C} is trivially implied by an
RKA-Secure PRF for {C}. (Here, the latter is defined as expected, namely as in
prior work except cast in our framework of circuits; see the full version for more
details.) We can therefore use the recent constructions of RKA-Secure PRFs
by Bellare and Cash [3] to obtain adaptive CI-secure hash functions. Namely,
the latter are secure under the standard DDH assumption for class of circuits
computing multiplication by a group element or under exponential-hardness of
DDH for addition by a group element.

Though the resulting CI-secure hash functions are secure for much weaker
classes of relations as compared to our main construction, they are remarkable
in that they are both adaptively secure and do not need a public key. (They do



not even need any randomly-generated global parameters, as the constructions
of [3] work in a fixed group.) The latter is because in the case that we start with
an RKA-secure PRF (rather than wPRF), our construction of CI-secure hash
can be modified by applying the PRF to any fixed value in the domain of the
latter (still using the input as the key).

5.2 CI-secure Functions Imply Other RKA-secure Primitives

In this section, we discuss a more general technique for building RKA-secure
cryptographic primitives from a CI-secure hash function. The basic idea is to
hash the coins used to generate keys for the the former, using a CI-secure hash
function.

Informally, let Ψ be a scheme for a cryptographic primitive. Let KeyGen be
a PPT algorithm for Ψ , and let l(λ) be the length of the random string used
by it. Our transformation uses a {C}-pseudorandom function family H specified

by Gen, and the transformation involves modifying KeyGen(1λ; r) where r
$←−

{0, 1}l(λ) to KeyGen(1λ;h(r′)) where r′
$←− {0, 1}t(λ) and (h : {0, 1}t(λ) −→

{0, 1}l(λ))← Gen(1λ). The resulting scheme is then expected to be “ {C}-RKA-
secure” besides preserving the security properties of the underlying untrans-
formed scheme.

More concretely, we exemplify the above technique for digital signatures. We
give our formalization of RKA-security for signatures in the full version.

In what follows, we show that {C}-aCI-pseudorandom function family (resp.
{C}-sCI-pseudorandom function family) implies {C}-aRKA-unforgeable scheme
(resp. {C}-sRKA-unforgeable scheme). The transformation is given in Figure 3.

Let H be a function family specified by Gen. Let Σ′ = (KeyGen′,Sign′,Verify′)
be a signature scheme and let l(λ) be the length of the randomness used in
the KeyGen′. The signature scheme Σ = (KeyGen, Sign,Verify) is defined by:

–– KeyGen(1λ): (h : {0, 1}t(λ) −→ {0, 1}l(λ))← Gen(1λ); sk
$←− {0, 1}t(λ);

(sk′, pk′)← KeyGen′(1λ;h(sk)); output sk as the secret key, and
pk := (h, pk′) as the public key.

– Sign(sk,m): Run KeyGen′(1λ, h(sk)) to obtain sk′. The signature on
message m is set as σ ← Sign′(sk′,m).

– Verify(pk,m, σ): Output valid if Verify′(pk′,m, σ) = valid and output
invalid otherwise.

Fig. 3. Construction of RKA-secure Signature Scheme from CI-secure Pseudorandom
Functions

Theorem 4. {C}-aCI-pseudorandom function family (resp. {C}-sCI-pseudorandom
function family) implies {C}-aRKA-unforgeable scheme (resp. {C}-sRKA-unforgeable
scheme).

The proof is given in the full version.



Discussion In the case that the starting CI-secure hash function has a public
key, the above transformation results in a cryptographic primitive for which al-
gorithms operating on the secret key also need to access an authentic public key.
In some scenarios, e.g. smart cards, this may not always be practical. Moreover,
our main construction of CI-secure hash is only selectively-secure, resulting in
a selectively RKA-secure the cryptographic primitive. On the other hand, it is
sometimes possible to use our techniques (in a “non-blackbox” way) to design
an RKA-secure scheme without a public key and that is adaptively secure. In
particular, we show this for RKA-secure symmetric-key encryption recently in-
troduced in [1] in the full version. We also mention that using the CI-secure
hash functions derived from the Bellare-Cash RKA-secure PRFs [3] avoid these
issues, but for a much weaker class of relations.

Relation to Tampering Attacks We also note that RKA-security for a crypto-
graphic primitive can also be used to to protect against tampering attacks [18],
where, for instance, the secret key stored by a smart card is tampered with and
its behavior is observed while it acts using the tampered secret, with an objec-
tive of gaining advantage against the security of the functionality of the smart
card when using the original secret. However, as discussed in [1], security against
tampering attacks is easier to achieve in general, through some kind of “sanity
check” on the secret key (for instance, by including a signature on the secret key
as a part of the public key, which is verified by any algorithm using the former);
although, as discussed above, this approach may not always be practical. This
does not work for RKA-security, since we actually want related secret keys to
function like independently generated ones.
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