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Abstract. We show a general framework for constructing password-
based authenticated key exchange protocols with optimal round com-
plexity — one message per party, sent simultaneously — in the standard
model, assuming a common reference string. When our framework is
instantiated using bilinear-map cryptosystems, the resulting protocol is
also (reasonably) efficient. Somewhat surprisingly, our framework can be
adapted to give protocols in the standard model that are universally
composable while still using only one (simultaneous) round.

1 Password-Based Authenticated Key Exchange

Protocols for authenticated key exchange enable two parties to generate a shared,
cryptographically strong key while communicating over an insecure network un-
der the complete control of an adversary. Such protocols are among the most
widely used and fundamental cryptographic primitives; indeed, agreement on
a shared key is necessary before “higher-level” tasks such as encryption and
message authentication become possible.

Parties must share some information in order for authenticated key exchange
to be possible. It is well known that shared cryptographic keys — either in the
form of public keys or a long, uniformly random symmetric key — suffice, and
several protocols in this model, building on the classic Diffie-Hellman proto-
col [16] (which protects only against an eavesdropping adversary and provides
no authentication at all) are known; see, e.g., [7, 4].

Password-based protocols allow users to “bootstrap” even a very weak (e.g.,
short) shared secret into a (much longer) cryptographic key. The canonical ap-
plication here is authentication using passwords, though protocols developed in
this context can be useful even when the shared secret has high min-entropy
(but is not uniform) [9]. The security guaranteed by password-based protocols
(roughly speaking) is that if the password is chosen uniformly1 from a dictionary
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tocols work with passwords chosen from any (efficiently sampleable) distribution.



of size D then an adversary who initiates Q “on-line” attacks — i.e., who actively
interferes in Q sessions — has “advantage” at most Q/D. (This is inherent, as
an adversary can always carry out Q impersonation attempts and succeed with
this probability.) In particular, “off-line” dictionary attacks where an adversary
enumerates passwords from the dictionary of potential passwords, and tries to
match observed protocol executions to each one, are of no use.

Early work [20, 24] considered a “hybrid” setting where users share public
keys in addition to a password. In the setting where only a password is shared,
Bellovin and Merritt [6] proposed the first protocols for password-based authen-
ticated key exchange (PAK) with heuristic arguments for their security. Several
years later, provably secure PAK protocols were constructed [3, 10, 31] in the ran-
dom oracle/ideal cipher models, and many improvements and generalizations of
these protocols are known. In contrast, only a handful of PAK protocols are
known in the so-called “standard model” (i.e., without random oracles):

– General assumptions: Goldreich and Lindell [19] gave the first PAK proto-
col in the standard model. Subsequent work of Barak et al. [2] shows a general
feasibility result for computation over unauthenticated networks which im-
plies a solution for PAK as a special case. These approaches gives the only
PAK protocols for the plain model where there is no setup. (Nguyen and
Vadhan [33] show efficiency improvements to the Goldreich-Lindell protocol,
but achieve a weaker notion of security.) These approaches are impractical
in terms of communication, computation, and round complexity. Moreover,
they do not tolerate concurrent executions by the same party (unless addi-
tional setup is assumed). A recent protocol of Goyal et al. [21] addresses the
issue of concurrent executions, but is still far from practical.

– Efficient protocols: Katz, Ostrovsky, and Yung [28] demonstrated the first
efficient PAK protocol with a proof of security based on standard assump-
tions; extensions and improvements of their protocol were given in [18, 13,
27, 17, 30]. Different constructions of efficient PAK protocols are given in [26,
22]. In contrast to the works mentioned earlier, these approaches are secure
even under concurrent executions by the same party. On the other hand,
they require a common reference string (CRS). In practice, however, a CRS
does not appear to be a serious drawback in the context of PAK where the
CRS can be hard-coded into an implementation of the protocol. We note
also that reliance on a CRS (or some other setup) is inherent for achieving
universally composable PAK [13].

Round/message complexity of existing protocols. We distinguish between
rounds and messages. Differing somewhat from the usual convention in the two-
party setting (but matching the usual convention in the multi-party setting), we
let a round consist of one message sent by each party simultaneously; note that
in a one-round protocol each honest party’s message (if any) cannot depend on
the other party’s message. We stress, however, that even for one-round protocols
the adversary is always assumed to be rushing ; i.e., the adversary may wait to
receive an honest party’s first-round message before sending its own.



Determining the optimal round complexity of key-exchange protocols is of
both theoretical and practical interest, and has been studied in various set-
tings. The original Diffie-Hellman protocol [16], which provides security against
a passive eavesdropper, can be run in one round; one-round authenticated key
exchange based on shared public/symmetric keys is also possible [25, 34]. One-
round protocols for PAK are also known (e.g., [3]) in the random oracle model.
All prior PAK protocols based on standard assumptions, though, require three or
more rounds. We remark that the protocols in [26, 22] achieve explicit authen-
tication in three rounds (whereas the protocols of [28, 18, 17, 30] achieve only
implicit authentication in three rounds, and require an additional round for ex-
plicit authentication), but the round complexity of these protocols cannot be
reduced even if only implicit authentication is desired.

1.1 Our Results

We show a new framework for constructing one-round PAK protocols in the
standard model (assuming a CRS), where each party may send their message
simultaneously. (Once again, we stress that our security model allows for a “rush-
ing” adversary who waits to see the message sent by a party before sending its
response.) Our protocols achieve implicit authentication but can be extended
to give explicit authentication using one additional round; it is not hard to see
that explicit authentication is impossible in one round without stronger setup
assumptions (e.g., a global clock).

Our framework relies on non-interactive zero-knowledge proofs (NIZK) and
so, in general, may be computationally inefficient. When instantiating our frame-
work using bilinear maps, however, we obtain a reasonably efficient solution (e.g.,
communicating a constant number of group elements).

Somewhat surprisingly, we can extend our framework to give a universally
composable PAK protocol [12] without increasing the round complexity at all
(and still without relying on random oracles). In contrast, the work of [13] shows
a method (used also by [22]) for obtaining universal composability that requires
additional messages/rounds. Abdalla et al. [1] show a universally composable
PAK protocol, proven secure in the random oracle model, that requires three
rounds. To the best of our knowledge, no prior universally composable protocol
(whether in the random oracle model or not) can be run in only one round.

1.2 Our Techniques

At a basic level, we rely on smooth projective hash functions [14], as used in [18]
(and implicitly in [28]); see Section 2.2 for a definition. The basic structure of
previous protocols [28, 18], omitting many important details, is as follows:

First round: The client sends an encryption C of the password pw.
Second round: The server sends an encryption C ′ of pw, and a projected

key s′ = α(k′, C, pw).
Third round: The client sends a projected key s = α(k,C ′, pw).



The client computes the session key as Hk(C ′, pw) ·Hs′(C, pw, r), and the server
computes the session key as Hs(C

′, pw, r′)·Hk′(C, pw). (Here, r, r′ is the random-
ness used to compute C,C ′, respectively.) Properties of the smooth projective
hash function ensure that these are equal.

Two difficulties must be overcome in order to collapse a protocol of the above
form to one round:

– In the smooth projective hash functions used in prior work, the “projection
function” α was adaptive, and depended on both the hash key k and the
element being hashed (i.e., (C, pw) in the above example). This leads to
protocols requiring three rounds just to ensure correctness.

Here we show a construction of CCA-secure encryption schemes with asso-
ciated smooth projective hash functions whose projection function is non-
adaptive, and depends only on the hash key k. This allows us to obtain the
functionality of PAK in a single round, by having the client send (α(k), C)
and the server send (α(k′), C ′) simultaneously.

– The above addresses correctness, but says nothing about security. The tech-
nical difficulty here is that an honestly generated client message msg = (s, C)
might be forwarded by an adversary to multiple server instances (and vice
versa), and it is required that the session keys computed in all these instances
look random and independent to the adversary. (This issue does not arise in
prior work because, roughly speaking, messages are bound to a single session
by virtue of a signature verification key sent in the first round [28, 18] or a
MAC derived from the shared session key [17]. Neither approach is viable if
we want the entire protocol to take place in a single round.)

Due to the above difficulty, the proof of security is the most technically
challenging part of our work. Our proof relies on a technical lemma related
to re-using both the hash keys and the inputs to the smooth projective hash
function, and may be of independent interest.

Additional ideas are needed to obtain a universally composable protocol with-
out increasing the number of rounds. We refer the reader to Section 5.1 for an
overview of the techniques used there.

1.3 Outline of the Paper

In Section 2 we present a standard definition of security for PAK due to Bellare
et al. [3]. We also review there the notion of smooth projective hashing, and
prove a technical lemma regarding its usage. In Section 3 we describe our basic
framework for constructing one-round PAK protocols, and prove security of this
approach according to the definition of [3]. We discuss in Section 4 two instanti-
ations of our framework: one based on the decisional Diffie-Hellman assumption,
and a second, more efficient instantiation based on bilinear maps. In Section 5
we describe an extension of our framework that yields one-round, universally
composable password-based authenticated key-exchange protocols.



2 Definitions and Background

Throughout, we denote the security parameter by n.

2.1 Password-Based Authenticated Key Exchange

Here we present a definition of security for PAK due to Bellare, Pointcheval,
and Rogaway [3], based on prior work of [4, 5]. The text here is taken almost
verbatim from [28].

Participants, passwords, and initialization. Prior to any execution of the
protocol there is an initialization phase during which public parameters and a
CRS are established. We assume a fixed set User of protocol participants (also
called principals or users). For every distinct U,U ′ ∈ User, users U and U ′

share a password pwU,U ′ . We assume that each pwU,U ′ is chosen independently

and uniformly from the set [D]
def
= {1, . . . , D} for some integer D. (Our proof

of security extends to more general cases, and we implicitly consider arbitrary
password distributions in the setting of universal composability.)

Execution of the protocol. In the real world, a protocol determines how
principals behave in response to input from their environment. In the formal
model, these inputs are provided by the adversary. Each principal can execute
the protocol multiple times (possibly concurrently) with different partners; this
is modeled by allowing each principal to have an unlimited number of instances
with which to execute the protocol. We denote instance i of user U as Πi

U . Each
instance may be used only once. The adversary is given oracle access to these
different instances; furthermore, each instance maintains (local) state which is
updated during the course of the experiment. In particular, each instance Πi

U is
associated with the following variables:

– sidiU , pidiU , and skiU denote the session id, partner id, and session key for an
instance, respectively. The session id is simply a way to keep track of different
executions; we let sidiU be the (ordered) concatenation of all messages sent
and received by Πi

U . The partner id denotes the user with whom Πi
U believes

it is interacting. (Note that pidiU can never equal U .)
– acciU and termi

U are boolean variables denoting whether a given instance has
accepted or terminated, respectively.

The adversary’s interaction with the principals (more specifically, with the
various instances) is modeled via access to oracles that we describe now:

– Send(U, i,msg) — This sends message msg to instance Πi
U . This instance

runs according to the protocol specification, updating state as appropriate.
The message output by Πi

U is given to the adversary.
The adversary can “prompt” instance Πi

U to initiate the protocol with part-
ner U ′ by querying Send(U, i, U ′). In response to this query, instance Πi

U

outputs the first message of the protocol.



– Execute(U, i, U ′, j) — If Πi
U and Πj

U ′ have not yet been used, this oracle
executes the protocol between these instances and gives the transcript of this
execution to the adversary. This oracle call represents passive eavesdropping
of a protocol execution.

– Reveal(U, i) — This outputs the session key skiU , modeling leakage of session
keys due to, e.g., improper erasure of session keys after use, compromise of
a host computer, or cryptanalysis.

– Test(U, i) — This oracle does not model any real-world capability of the
adversary, but is instead used to define security. A random bit b is chosen;
if b = 1 the adversary is given skiU , and if b = 0 the adversary is given a
session key chosen uniformly from the appropriate space.

Partnering. Let U,U ′ ∈ User. Instances Πi
U and Πj

U ′ are partnered if: (1) sidiU =

sidjU ′ 6= null; and (2) pidiU = U ′ and pidjU ′ = U .

Correctness. To be viable, a key-exchange protocol must satisfy the following
notion of correctness: if Πi

U and Πj
U ′ are partnered then acciU = accjU ′ = true

and skiU = skjU ′ , i.e., they both accept and conclude with the same session key.

Advantage of the adversary. Informally, the adversary succeeds if it can guess
the bit b used by the Test oracle. To formally define the adversary’s success, we
first define a notion of freshness. An instance Πi

U is fresh unless one of the follow-
ing is true at the conclusion of the experiment: (1) at some point, the adversary
queried Reveal(U, i); or (2) at some point, the adversary queried Reveal(U ′, j),
where Πj

U ′ and Πi
U are partnered. We allow the adversary to succeed only if

its Test query is made to a fresh instance; this is necessary for any reasonable
definition of security.

An adversary A succeeds if it makes a single query Test(U, i) to a fresh
instance Πi

U , and outputs a bit b′ with b′ = b (recall that b is the bit chosen by
the Test oracle). We denote this event by Succ. The advantage of A in attacking

protocol Π is given by AdvA,Π(k)
def
= 2 · Pr[Succ] − 1, where the probability is

taken over the random coins used by the adversary and the random coins used
during the course of the experiment (including the initialization phase).

It remains to define a secure protocol. A probabilistic polynomial-time (ppt)
adversary can always succeed with probability 1 by trying all passwords one-by-
one; this is possible since the size of the password dictionary is small. Informally,
a protocol is secure if this is the best an adversary can do. Formally, an instance
Πi
U represents an on-line attack if both the following are true at the time of

the Test query: (1) at some point, the adversary queried Send(U, i, ∗); and (2) at
some point, the adversary queried Reveal(U, i) or Test(U, i). The number of on-
line attacks represents a bound on the number of passwords the adversary could
have tested in an on-line fashion.

Definition 1. Protocol Π is a secure protocol for password-based authenticated
key exchange if, for all dictionary sizes D and for all ppt adversaries A making
at most Q(n) on-line attacks, it holds that AdvA,Π(n) ≤ Q(n)/D + negl(n).



2.2 Smooth Projective Hash Functions

We provide a self-contained definitional treatment of smooth projective hash
functions. These were introduced by Cramer and Shoup [14], and our discussion
here is based on that of Gennaro and Lindell [18]. Rather than aiming for utmost
generality, we tailor the definitions to our application.

Hard subset membership problems. Fix some integer D. Let (Gen,Enc,Dec)
be a CCA-secure labeled encryption scheme. For a given public key pk, we let
Cpk denote the set of pairs of valid labels and valid ciphertexts with respect
to pk, and require that this set be efficiently recognizable. For a given public key
pk, define sets X and {Lpw}pw∈[D] as follows:

1. X
def
= {(label, C, pw)}, where (label, C) ∈ Cpk and pw ∈ {1, . . . , D}.

2. Lpw
def
= {(label,Encpk(label, pw), pw)}, where label ∈ {0, 1}∗.

Let L =
⋃D
pw=1 Li, and note that L ⊂ X. It follows from CCA security of

(Gen,Enc,Dec) that the following is negligible for any polynomial-time A:∣∣∣∣∣∣Pr

 (pk, sk)← Gen(1n);
(label, pw)← ADecsk(·,·)(pk);

C ← Encpk(label, pw)
: ADecsk(·,·)(C) = 1


− Pr

 (pk, sk)← Gen(1n);
(label, pw)← ADecsk(·,·)(pk);

C ← Encpk(label, 0)
: ADecsk(·,·)(C) = 1

∣∣∣∣∣∣ , (1)

where A is disallowed from querying (label, C) to its decryption oracle.

Smooth projective hash functions. Fix pk and sets X, {Li} as above. A
smooth projective hash function H = {Hk}k∈K is a keyed function mapping
elements in X to elements in some group G, along with a projection function
α : K → S. Informally, if x ∈ L then the value of Hk(x) is uniquely determined
by s = α(k) and x, whereas if x ∈ X \ L then the value of Hk(x) is statistically
close to uniform given α(k) and x (assuming k was chosen uniformly in K).
A smooth projective hash function is formally defined by a sampling algorithm
that, given pk, outputs (K,G,H = {Hk : X → G}k∈K , S, α : K → S) such that:

1. There are efficient algorithms for (1) sampling a uniform k ∈ K, (2) com-
puting Hk(x) for k ∈ K and x ∈ X, and (3) computing α(k) for k ∈ K.

2. For all (label, C, pw) ∈ L, the value of Hk(label, C, pw) is uniquely deter-
mined by α(k). Moreover, there is an efficient algorithm that takes as in-
put s = α(k) and (label, C, pw, r) for which C = Encpk(label, pw; r), and
outputs Hk(label, C, pw). (In other words, when (label, C, pw) ∈ L then
Hk(label, C, pw) can be computed in two ways: either using k itself, or using
α(k) and the randomness used to generate C.)

3. For any (even unbounded) function f : S → X\L, the following distributions
have statistical difference negligible in n:{
k ← K; s := α(k) :

(
s,Hk(f(s))

)}
and {k ← K; s := α(k); g ← G : (s, g)}



We stress that in the above we modify the definition from [18] in two ways: first,
α is non-adaptive, and depends on k only (rather than both k and x); second,
we require the above to hold even for adaptive choice of f(s) 6∈ L. Intuitively,
the first modification helps us compress the number of rounds to one, whereas
the second is necessary for proving security.

A technical lemma. We now prove a technical lemma regarding smooth pro-
jective hash functions. Somewhat informally, Gennaro and Lindell [18] showed
that, for randomly generated pk and any label, pw, the distribution{

k ← K; s := α(k);C ← Encpk(label, pw) :
(
s, C,Hk(label, C, pw)

)}
is computationally indistinguishable from the distribution

{k ← K; s := α(k);C ← Encpk(label, pw); g ← G : (s, C, g)} .

(Note this holds even though Hk(label, C, pw) is uniquely determined by s and C)
Here we show that this continues to hold even if hash keys and ciphertexts are
re-used multiple times. That is, at a high level (ignoring labels and technical
details), we show that the distribution{

k1, . . . , k` ← K;∀i : si := α(ki);
C1, . . . , C` ← Encpk(pw)

:
(
{si}, {Ci}, {Hki(Cj , pw)}`i,j=1

)}
is computationally indistinguishable from the distribution{

k1, . . . , k` ← K;∀i : si := α(ki);
C1, . . . , C` ← Encpk(pw); gi,j ← G

:
(
{si}, {Ci}, {gi,j}`i,j=1

)}
.

Formally, fix a function ` = `(n), let A be an adversary, and let b ∈ {0, 1}.
Consider the following experiment Exptb:

1. Compute (pk, sk) ← Gen(1n) and let (K,G,H = {Hk : X → G}k∈K , S,
α : K → S) be a smooth projective hash function for pk. Give pk to A.

2. Sample k1, . . . , k` ← K, and let si := α(ki) for all i. Give s1, . . . , s` to A.
3. A may adaptively query a (modified) encryption oracle that takes as input

(label, pw) and outputs a ciphertext C ← Encpk(label, pw) along with

(a) If b = 0, the values Hki(label, C, pw) for i = 1 to `.
(b) If b = 1, random values g1, . . . , g` ← G.

4. A can also query a decryption oracle Decsk(·, ·) at any point, except that it
may not query any pair (label, C) where C was obtained from the encryption
oracle on query (label, pw).

5. At the end of the experiment, A outputs a bit b′. We say A succeeds if b′ = b.

A proof of the following appears in the full version of this work [29]:

Lemma 1. Let (Gen,Enc,Dec) be a CCA-secure labeled encryption scheme. For
any polynomial ` and polynomial-time A, we have Pr[A succeeds ] ≤ 1

2 +negl(n).



Public parameters: pk

User U User U ′

k ← K; s := α(k)

label := (U,U ′, s)

C ← Encpk(label, pw)

k′ ← K; s′ := α(k′)

label′ := (U ′, U, s′)

C′ ← Encpk(label′, pw)s, C -

s′, C′�

label′ := (U ′, U, s′)

skU := Hk(label′, C′, pw)

·Hk′(label, C, pw)

label := (U,U ′, s)

skU′ := Hk(label′, C′, pw)

·Hk′(label, C, pw)

Fig. 1. A one-round protocol for password-based authenticated key exchange.

3 A Framework for One-Round PAK Protocols

Our protocol uses a chosen ciphertext-secure (CCA-secure) labeled public-key
encryption scheme (Gen,Enc,Dec), and a smooth projective hash function as
described in Section 2.2.

Public parameters. The public parameters consist of a public key pk generated
by Gen(1n). No one need know or store the associated secret key. (For the specific
instantiations given in Section 4, a public key can be derived from a common
random string.) Let (K,G,H = {Hk : X → G}k∈K , S, α : K → S) be a smooth
projective hash function for pk.

Protocol execution. Consider an execution of the protocol between users U
and U ′ 6= U holding a shared password pw. Our protocol is symmetric, and so
we describe the execution from the point of view of U ; see also Figure 1.

First, U chooses random hash key k ← K and computes s := α(k). It then
sets label := (U,U ′, s) and computes the ciphertext C ← Encpk(label, pw). It
sends the message (s, C).

Upon receiving the message (s′, C ′), user U does the following. If C ′ is not
a valid ciphertext or s′ 6∈ S, then U simply rejects. Otherwise, U sets label′ :=
(U ′, U, s′) and computes

skU := Hk(label′, C ′, pw) ·Hk′(label, C, pw).

U computes Hk(label′, C ′, pw) using k, and can compute Hk′(label, C, pw) us-
ing s′ = α(k′) and the randomness it used to generate C. Correctness follows
immediately from the definition of smooth projective hashing.

Theorem 1. If (Gen,Enc,Dec) is a CCA-secure labeled encryption scheme and
(K,G,H = {Hk : X → G}k∈K , S, α : K → S) is a smooth projective hash



function, then the protocol in Figure 1 is a secure protocol for password-based
authenticated key exchange.

The proof is in the full version of this work [29].

4 Instantiating the Building Blocks

We now discuss two possible instantiations of the building blocks required by
the protocol of the previous section. Our first instantiation is based on the de-
cisional Diffie-Hellman (DDH) assumption and (generic) simulation-sound non-
interactive zero-knowledge (NIZK) proofs. (It could be based on the quadratic
residuosity assumption or the Paillier assumption as well, much like in [18]. We
omit further details.) Our second, more efficient construction is based on the
decisional linear assumption [8] in groups with a bilinear map.

4.1 A Construction Based on the DDH Assumption

We first describe an encryption scheme and then the associated smooth projec-
tive hash function.

A CCA-secure encryption scheme. We construct a CCA-secure encryption
scheme by applying the Naor-Yung/Sahai paradigm [32, 35] to the El Gamal
encryption scheme. Briefly, the public key defines a group G of prime order p
along with generators g1, h1, g2, h2 ∈ G. The public key also contains a common
random string crs for a (one-time) simulation-sound NIZK proof system [35].

Fixing G, let ElGamalg,h(m) denote an El Gamal encryption of m ∈ G with
respect to (g, h); namely, ElGamalg,h(m)→ (gr, hr ·m), where r ∈ Zp is chosen
uniformly at random. To encrypt a message m ∈ G in our CCA-secure scheme,
the sender outputs the ciphertext (ElGamalg1,h1(m), ElGamalg2,h2(m), π), where
π is a simulation-sound NIZK proof that the same m is encrypted in both cases.
Labels can be incorporated by including the label in the proof π; we omit the
standard details.

Decryption of the ciphertext (c1, d1, c2, d2, π) rejects if c1, d1, c2, d2 6∈ G or if
the proof π is invalid. (Note that the space of valid label/ciphertext pairs is effi-
ciently recognizable without the secret key.) If the ciphertext is valid, then one
of the two component ciphertexts is decrypted and the resulting message is out-
put. The results of [35] show that this yields a CCA-secure (labeled) encryption
scheme based on the DDH assumption and simulation-sound NIZK.

A smooth projective hash function. Fix a group G and a public key pk =
(g1, h1, g2, h2, crs) as above, and define sets X and {Li} as in Section 2.2. Define
a smooth projective hash function as follows. The set of keys K consists of all
four-tuples of elements in Zp. Given a valid label/ciphertext pair (label, C =
(c1, d1, c2, d2, π)) and key k = (x1, y1, x2, y2), the hash function is defined as:

H(x1,y1,x2,y2)

(
label, (c1, d1, c2, d2, π), pw

)
= cx1

1 · (d1/pw)
y1 · cx2

2 · (d2/pw)
y2 .



(Thus, the range of H is the group G.) The projection function α is defined as:

α(x1, y1, x2, y2) = (gx1
1 · h

y1
1 , g

x2
2 · h

y2
2 ) .

A proof of the following is given in the full version of this work [29].

Lemma 2. (K,G,H = {Hk}k∈K , S, α) as defined above is a smooth projective
hash function for the hard subset membership problem (X, {Li}).

4.2 A Construction Based on the Decisional Linear Assumption

We now present a more efficient construction based on bilinear maps. The ef-
ficiency advantage is obtained by using a specific simulation-sound NIZK proof
system, built using techniques adapted from [23, 11]. Our construction here relies
on the decisional linear assumption as introduced by Boneh et al. [8]; we refer
the reader there for a precise statement of the assumption.

A CPA-secure encryption scheme. We start by describing a semantically
secure encryption scheme, due to Boneh et al. [8], based on the decisional linear
assumption; we then convert this into a CCA-secure encryption scheme via the
same paradigm as above, but using an efficient simulation-sound NIZK proof
system. The bilinear map itself is used only in the construction of the simulation-
sound NIZK.

Fix groups G,GT of prime order p, and a bilinear map e : G×G→ GT . The
public key is pk = (f, g, h) ∈ G3, and the secret key is (α, β) such that f = h1/α

and g = h1/β . A message m ∈ G is encrypted by choosing random r, s ∈ Zp
and computing the ciphertext (fr, gs, hr+s ·m). Given a ciphertext (c1, c2, c3),

we can recover m as c3/c
α
1 c
β
2 .

A simulation-sound NIZK proof of plaintext equality. We can construct a
(one-time) simulation-sound NIZK proof of plaintext equality for the encryption
scheme described above using the techniques of [23, 11]. Details of the construc-
tion (which, while not entirely straightforward, are not the focus of this work)
are given in Appendix A.

A CCA-secure encryption scheme. We obtain a CCA-secure encryption
scheme by using the Naor-Yung/Sahai paradigm, as described previously. (The
following discussion relies on the results of Appendix A.) The public key consists
of group elements (f1, g1, f2, g2, h) used for encryption, in addition to any group
elements needed for the CRS of the simulation-sound NIZK proof. Encryption
of m, as described in Appendix A, is done by choosing r1, s1, r2, s2 ∈ Zp and
computing the ciphertext

(fr11 , gs11 , h
r1+s1 ·m, fr22 , gs22 , h

r2+s2 ·m, π),

where π denotes a simulation-sound NIZK proof that the same m was encrypted
both times. (Once again, the space of valid label/ciphertext pairs is efficiently
recognizable without the secret key.) It follows from [32, 35] that this yields a



CCA-secure scheme under the decisional linear assumption. Ciphertexts consist
of 66 group elements altogether.

A smooth projective hash function. Fix G,GT , and a public-key pk =
(f1, g1, f2, g2, h) as above, and define sets X and {Li} as in Section 2.2. We de-
fine a smooth projective hash function as follows. The set of keys K is the set
of six-tuples of elements in Zp. Given a valid label/ciphertext pair (label, C =
(c1, d1, e1, c2, d2, e2, π)) and a key k = (x1, y1, z1, x2, y2, z2) ∈ Z6

p, the hash func-
tion is defined as

H(x1,y1,z1,x2,y2,z2)(label, C, pw) = cx1
1 · d

y1
1 · (e1/pw)

z1 · cx2
2 · d

y2
2 · (e2/pw)

z2 .

(The range of H is G itself.) The projection function α : K → G4 is defined as:

α(x1, y1, z1, x2, y2, z2) = (fx1
1 hz1 , gy11 h

z1 , fx2
2 hz2 , gy22 h

z2) .

In Appendix B we show:

Lemma 3. (K,G,H = {Hk}k∈K , S, α) as defined above is a smooth projective
hash function for the hard subset membership problem (X, {Li}).

5 A One-Round, Universally-Composable PAK Protocol

Canetti et al. [13] gave a definition of security for password-based authenticated
key exchange in the universal composability (UC) framework [12]. Their defini-
tion guarantees a strong, simulation-based notion of security that, in particular,
guarantees that security is maintained even when multiple protocols are run con-
currently in an arbitrary network. For the specific case of password-based key
exchange, the definition also has the advantage of automatically handling arbi-
trary (efficiently sampleable) distributions on passwords, and even correlations
between passwords of different users. We refer to [13] for a more complete discus-
sion, and a description of the password-based key-exchange functionality FpwKE.

We let F̂pwKE denote the multi-session extension of FpwKE.

5.1 Overview of the Construction

We do not know how to prove that the protocol from Section 3 is universally
composable. The main difficulty is that the definition of PAK in the UC frame-
work requires simulation even if the adversary guesses the correct password. (In
contrast, in the proof of security in Section 3 we simply “give up” in case this
ever occurs.) To see the problem more clearly, consider what happens in the UC
setting when the simulator sends the first message of the protocol to the adver-
sary, before the simulator knows the correct password. The simulator must send
some ciphertext C as part of the first message, and this “commits” the simulator
to some password pw. When the adversary sends the reply, the simulator can
extract the adversary’s “password guess” pw′ and submit this guess to the ideal



functionality. If this turns out to be the correct password, however, the simu-
lator is stuck: it needs to compute a session key that matches the session key
the adversary would compute, but the simulator is (information-theoretically!)
unable to do so because it sent an incorrect ciphertext in the first message.

In prior work [13], the issue above was resolved by having one party send a
“pre-commitment” to the password, and then running a regular PAK protocol
along with a proof that the password being used in the protocol is the same as
the password to which it “pre-committed”. (The proof is set up in such a way
that the simulator can equivocate this proof, but the adversary cannot.) This
requires at least one additional round.

We take a different approach that does not affect the round complexity at
all. Roughly, we modify the protocol from Figure 1 by having each party include
as part of its message an encryption C1 of its hash key k, along with a proof
that C1 encrypts a value k for which α(k) = s. Now, even if the simulator is
wrong in its guess of the password it will still be able to compute a session key
by extracting this hash key from the adversary’s message. A full description of
the protocol is given in the following section.

While we do not describe in detail any instantiation of the components, we
remark that it should be possible to use the same techniques as in Appendix A to
construct (reasonably) efficient realizations of the necessary components using
bilinear maps. We leave this for future work.

5.2 Description of the Protocol

In addition to the building blocks used in Section 3, here we also rely on an
unbounded simulation-sound [15] NIZK proof system (CRSGen,P,V) for a lan-
guage L∗ defined below.

Public parameters. The public parameters consist of two public keys pk1, pk2
generated by Gen(1n) and a common random string crs for the simulation-sound
NIZK proof system. Let (K,G,H = {Hk : X → G}k∈K , S, α : K → S) be a
smooth projective hash function for pk2.

Protocol execution. Consider an execution of the protocol between users U
and U ′ 6= U holding a shared password pw and a common session identifier ssid.
(The ssid is an artifact of the UC framework, and it is guaranteed that (1) parties
communicating with each other begin holding matching ssids, and (2) each ssid
is used only once. Existence of these ssids is not essential to our proof of security,
though it does make the proof somewhat simpler.) Our protocol is symmetric,
and so we describe the execution from the point of view of U ; see Figure 2.

First, U chooses a random hash key k ← K and computes s := α(k). It then
computes an encryption of k, namely C1 ← Encpk1(k). Define a language L∗ as
follows.

L∗
def
= {(s, C1) : ∃k ∈ K and ω s.t s = α(k) and C1 = Encpk1(k;ω)}.



Public Parameters: (pk1, pk2, crs)

User U User U ′

k ← K; s := α(k)

C1 ← Encpk1(k)

π := Pcrs((s, C1) ∈ L∗)
label := (ssid, U, U ′, s, C1, π)

C2 ← Encpk2(label, pw)

k′ ← K; s′ := α(k′)

C′1 ← Encpk1(k′)

π′ := Pcrs((s
′, C′1) ∈ L∗)

label′ := (ssid, U ′, U, s′, C′1, π
′)

C′2 ← Encpk2(label′, pw)s, C1, π, C2 -

s′, C′1, π
′, C′2�

label′ := (ssid, U ′, U, s′, C′1, π
′)

skU := Hk(label′, C′2, pw)

·Hk′(label, C2, pw)

label := (ssid, U, U ′, s, C1, π)

skU′ := Hk(label′, C′2, pw)

·Hk′(label, C2, pw)

Fig. 2. A universally composable protocol for password-based authenticated key ex-
change.

U computes an NIZK proof π that (C1, s) ∈ L∗, using crs. It then sets label :=
(ssid, U, U ′, s, C1, π) and computes the ciphertext C2 ← Encpk2(label, pw). The
message it sends is (s, C1, π, C2).

Upon receiving the message (s′, C ′1, π
′, C ′2), user U does the following. If the

message is invalid (i.e., if verification of π′ fails, or C ′2 is not a valid ciphertext, or
s′ 6∈ S), then U simply rejects. Otherwise, U sets label′ := (ssid, U ′, U, s′, C ′1, π

′)
and computes skU := Hk(label′, C ′2, pw) ·Hk′(label, C2, pw). Note U can compute
Hk(label′, C ′2, pw) since it knows k, and can compute Hk′(label, C2, pw) using
s′ = α(k′) and the randomness used to generate C2. Correctness follows from
the definition of smooth projective hashing. A proof of the following is given the
full version of this work [29].

Theorem 2. If (Gen,Enc,Dec) is a CCA-secure public-key encryption scheme,
(CRSGen,P,V) is an unbounded simulation-sound NIZK proof system, and fur-
thermore (K,G,H = {Hk : X → G}k∈K , S, α : K → S) is a smooth projective
hash family, then the protocol in Figure 2 securely realizes F̂pwKE in the Fcrs-
hybrid model.
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A A Simulation-Sound NIZK Proof of Plaintext Equality

Fix groups G,GT of prime order p, and a bilinear map e : G × G → GT as in
Section 4.2. Fix also two public keys pk1 = (f1, g1, h) and pk2 = (f2, g2, h). We



encrypt a message m with respect to pk1 by choosing random r, s and computing
the ciphertext (fr1 , g

s
1, h

r+s ·m). We encrypt a message m with respect to pk2 by
choosing random r, s ∈ Zp and computing the ciphertext (fr2 , g

s
2, h

r+s ·m). We
stress that the public keys use the same value h.

We first describe a (potentially malleable) NIZK proof of plaintext equality.
That is, given two ciphertexts (F1, G1, H1) and (F2, G2, H2) encrypted with re-
spect to pk1, pk2, respectively, we describe a proof that these ciphertexts encrypt
the same message. The observation is that plaintext equality is equivalent to the
existence of r1, s1, r2, s2 ∈ Zp such that:

F1 = fr11 (2)

G1 = gs11 (3)

F2 = fr22 (4)

G2 = gs22 (5)

H1/H2 = hr1+s1−r2−s2 . (6)

As shown in [23] (see also [11, Section 4.4] for a self-contained description), NIZK
proofs of satisfiability (with a CRS) can be constructed for a system of equations
as above; since, in our case, we have 5 (linear) equations in 4 variables, proofs
contain 22 group elements.2

Camenisch et al. [11] show a construction of an unbounded simulation-sound
NIZK. For our purposes, a simpler construction that is one-time simulation
sound [35] suffices. Let (Gen,Sign,Vrfy) be a one-time signature scheme, where
for simplicity we assume verification keys are elements of G (this can always
be achieved using an extra step of hashing). To make the above (one-time)
simulation-sound, we add group elements (f, g, h, F,G,H) to the CRS. Roughly,
proofs of plaintext equality now contain:

1. A fresh signature verification key vk.
2. A proof that either there exists a satisfying assignment to Equations (2)–(6),

or that the given tuple (f, g, h, F,G,H) is an encryption of vk. I.e., there
exist r, s such that:

F = fr, G = gs, H/vk = hr+s. (7)

3. A signature σ (with respect to vk) on the proof from the previous step.

Noting that Equation (7) describes a system of 3 (linear) equations in 2 variables,
and using the techniques from [11, Appendix A.2], an NIZK proof as required
in step 2 can be done using 58 group elements, for a total of 60 group elements
for the entire simulation-sound NIZK proof (assuming signatures are one group
element for simplicity). See also footnote 2.

2 Our calculations here are based on the decisional linear assumption (the 2-linear as-
sumption in the terminology of [11]). If we are willing to use the 1-linear assumption,
the efficiency of our proofs can be improved.



B Proof of Lemma 3

Sampling a uniform k ∈ K, computing Hk(x) given k ∈ K and x ∈ X and
computing α(k) for k ∈ K are all easy.

We show that if (label, C, pw) ∈ L, then Hk(label, C, pw) can be computed
efficiently given α(k) and the randomness that was used to generate C. Since
(label, C, pw) ∈ L, we have that C = (fr11 , gs11 , h

r1+s1fpw1 , fr22 , gs22 , h
r2+s2fpw2 )

for some r1, s1, r2, s2 ∈ Zp. For k = (x1, y1, z1, x2, y2, z2) we have

Hk(label, C, pw) = cx1
1 d

y1
1 · (e1/f

pw
1 )

z1 · cx2
2 · d

y2
2 · (e2/f

pw
2 )

z2

= (fx1
1 hz1)

r1 · (gy11 hz1)
s1 · (fx2

2 hz2)
r2 · (gy22 hz2)

s2 .

This can be computed easily given r1, s1, r2, s2, and

α(k)
def
= (fx1

1 hz1 , gy11 h
z1 , fx2

2 hz2 , gy22 h
z2) .

Next, we show that if (label, C, pw) ∈ X\L, then the value of Hk(label, C, pw)
is uniform conditioned on α(k). (This holds even if (label, C, pw) are chosen
adaptively depending on α(k).) Fix any α(k) = (S1, S2, S3, S4). Letting αi =
logh fi and βi = logh gi, this value of α(k) constrains k = (x1, y1, z1, x2, y2, z2)
to satisfy


α1 0 1 0 0 0
0 β1 1 0 0 0
0 0 0 α2 0 1
0 0 0 0 β2 1



x1
y1
z1
x2
y2
z2

 =


γ1
γ2
γ3
γ4

 , (8)

where γi = logh Si. For any (label, C, pw) ∈ X \ L, we can write

C = (fr11 , gs11 , h
r1+s1fpw

′

1 , fr22 , gs22 , h
r2+s2fpw

′

2 , π)

for some pw′ 6= pw. (We assume for simplicity that the same pw′ is encrypted
twice; since π is valid, this is the case with all but negligible probability.) We
then have

Hk(label, C, pw)

= fr1x1
1 · gs1y11 · h(r1+s1)z1 ·

(
f∆1
)z1 · fr2x2

2 · gs2y22 · h(r2+s2)z2 ·
(
f∆2
)z2

= Sr11 S
s1
2 S

r2
3 S

s2
4 · (f

z1
1 fz22 )

∆
, (9)

where ∆ = pw′ − pw 6= 0. For any g ∈ G, we have fz11 fz22 = g iff

α1 · z1 + α2 · z2 = logh g. (10)

Since the system of equations given by (8) and (10) is under-defined, the prob-
ability that fz11 fz22 = g is exactly 1/|G| even conditioned on the value α(k).
Looking at Equation (9), and noting that Sr11 S

s1
2 S

r2
3 S

s2
4 is determined by α(k)

and C, we conclude that the distribution of Hk(label, C, pw) is uniform in G.


