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Abstract. We show that an encryption scheme cannot have a simple
decryption function and be homomorphic at the same time, even with
added noise. Specifically, if a scheme can homomorphically evaluate the
majority function, then its decryption cannot be weakly-learnable (in
particular, linear), even if the probability of decryption error is high.
(In contrast, without homomorphism, such schemes do exist and are
presumed secure, e.g. based on LPN.)
An immediate corollary is that known schemes that are based on the
hardness of decoding in the presence of low hamming-weight noise cannot
be fully homomorphic. This applies to known schemes such as LPN-based
symmetric or public key encryption.
Using these techniques, we show that the recent candidate fully homo-
morphic encryption, suggested by Bogdanov and Lee (ePrint ’11, hence-
forth BL), is insecure. In fact, we show two attacks on the BL scheme:
One that uses homomorphism, and another that directly attacks a com-
ponent of the scheme.

1 Introduction

An encryption scheme is called homomorphic if there is an efficient transfor-
mation that given Enc(m) for some message m, and a function f , produces
Enc(f(m)) using only public information. A scheme that is homomorphic w.r.t
all efficient f is called fully homomorphic (FHE). Homomorphic encryption is
a useful tool in both theory and practice and is extensively researched in re-
cent years (see [20] for survey), and a few candidates for full homomorphism are
known.

Most of these candidates [9, 10, 19, 6, 7, 11, 5, 12, 4] are based (either
explicitly or implicitly) on lattice assumptions (the hardness of approximating
short vectors in certain lattices). In particular, the learning with errors (LWE)
assumption proved to be very useful in the design of such schemes. The one
notable exception is [22], but even that could be thought of as working over an
appropriately defined lattice over the integers.

An important open problem is, therefore, to diversify and base fully homo-
morphic encryption on different assumptions (so as to not put all the eggs in
one basket). One appealing direction is to try to use the learning parity with
noise (LPN) problem, which is very similar in syntax to LWE: Making a vast
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generalization, LWE can be interpreted as a decoding problem for a linear code,
where the noise comes from a family of low norm vectors. Namely, each co-
ordinate in the code suffers from noise, but this noise is relatively small (this
requires that the code is defined over a large alphabet). The LPN assumption
works over the binary alphabet and requires that the noise has low hamming
weight, namely that only a small number of coordinates are noisy, but in these
coordinates the noise amplitude can be large. While similar in syntax, a direct
connection between these two types of assumptions is not known.

While an LPN-based construction is not known, recently Bogdanov and
Lee [3] presented a candidate, denoted by BL throughout this manuscript, that
is based on a different low hamming-weight decoding problem: They consider
a carefully crafted code over a large alphabet and assume that decoding in the
presence of low-hamming-weight noise is hard.

In this work, we show that not only that BL’s construction is insecure, but
rather the entire approach of constructing code based homomorphic encryption
analogously to the LWE construction cannot work. We stress that we don’t show
that FHE cannot be based on LPN (or other code based assumptions), but rather
that the decryption algorithm of such scheme cannot take the näıve form. (In
particular this applies to the attempt to add homomorphism to schemes such as
[1, 13, 2].)

1.1 Our Results

Our main result shows that encryption schemes with learnable decryption func-
tions cannot be homomorphic, even if a high probability of decryption error is
allowed. In particular, such schemes cannot evaluate the majority function. This
extends the result of Kearns and Valiant [15] (slightly extended by Klivans and
Sherstov [16]) that learnability breaks security for schemes with negligible de-
cryption error. In other words, homomorphic capabilities can sometimes make
noisy learning become no harder than noiseless learning.

We use a simplified notion of learning, which essentially requires that given
polynomially many labeled samples (from an arbitrary distribution), the learner’s
hypothesis correctly computes the label for the next sample with probability,
say, 0.9. We show that this notion, that we call sc-learning, is equivalent to
weak learning defined in [15]. This allows us to prove the following theorem (in
Section 3).

Theorem A. An encryption scheme whose decryption function is sc- or weakly-
learnable, and whose decryption error is 1/2 − 1/poly(n), cannot homomorphi-
cally evaluate the majority function.

Since it is straightforward to show that linear functions are learnable (as
well as, e.g., low degree polynomials), the theorem applies to known LPN based
schemes such as [1, 13, 2]. This may not seem obvious at first: The decryption
circuit of the aforementioned schemes is (commonly assumed to be) hard to learn,
and their decryption error is negligible, so they seem to be out of the scope of



our theorem. However, looking more closely, the decryption circuits consist of
an inner product computation with the secret key, followed by additional post-
processing. One can verify that if the post processing is not performed, then
correct decryption is still achieved with probability > 1/2+1/poly. Thus we can
apply our theorem and rule out majority-homomorphism.

Similar logic rules out the homomorphism of the BL candidate-FHE. While
Theorem A does not apply directly (since the decryption of BL is not learnable
out of the box), we show that it contains a sub-scheme which is linear (and thus
learnable) and has sufficient homomorphic properties to render it insecure.

Theorem B. There is a successful polynomial time CPA attack on the BL
scheme.

We further present a different attack on the BL scheme, targeting one of its
building blocks. This allows us to not only distinguish between two messages
like the successful CPA attack above, but rather decrypt any ciphertext with
probability 1− o(1).

Theorem C. There is a polynomial time algorithm that decrypts the BL scheme.

The BL scheme and the two breaking algorithms are presented in Section 4.

1.2 Our Techniques

Consider a simplified case of Theorem A, where the scheme’s decryption function
is learnable given t labeled samples, and the decryption error is (say) 1/(10(t+
1)). The proof in this case is straightforward: Generate t labeled samples by
just encrypting random messages, and feed them to the learner. Then use the
learner’s output hypothesis to decrypt the challenge ciphertext. We can only
fail if either the learner fails (which happens with probability 0.1) or if one of
the samples we draw (including the challenge) are not correctly decryptable, in
which case our labeling is wrong and therefore the learner provides no guarantee
(which again happens with at most 0.1 probability). The union bound implies
that we can decrypt a random ciphertext with probability 0.8, which immediately
breaks the scheme. Note that we did not use the homomorphism of the scheme
at all, indeed this simplified version is universally true even without assuming
homomorphism, and is very similar to the arguments in [15, 16]. (Some subtleties
arise since we allow a non-negligible fraction of “dysfunctional” keys that induce
a much higher error rate than others.)

The next step is to allow decryption error 1/2 − ε, which requires use of
homomorphism. The idea is to use the homomorphism in order to reduce the
decryption error and get back to the previous case (in other words, reducing the
noise in a noisy learning problem). Consider a scheme that encrypts a message by
generating many encryptions (say k) of that message, and then applying homo-
morphic majority on those ciphertexts and outputting the result. The security
of this scheme directly reduces from that of the original scheme, and it has the



same decryption function. However, now the decryption error drops exponen-
tially with k. This is because in order to get an error in the new scheme, at least
k/2 out of the k encryptions need to have errors. Since the expected number is
(1/2− ε)k, the Chernoff bound implies the result by choosing k appropriately.

To derive Theorem B, we need to show that linear functions are learnable:1

Assume that the decryption function is an inner product between the ciphertext
and the secret key (both being n-dimensional vectors over a field F). We will
learn these functions by taking O(n) labeled samples. Then, given the challenge,
we will try to represent it as a linear combination of the samples we have. If we
succeed, then the appropriate linear combination of the labels will be the value
of the function on the challenge. We show that this process fails only with small
constant probability (intuitively, since we take O(n) sample vectors from a space
of dimension at most n).

We then show that BL uses a sub-structure that is both linearly decryptable
and allows for homomorphism of (some sort of) majority. Theorem B thus follows
similarly to Theorem A.

For Theorem C, we need to dive into the guts of the BL scheme. We notice
that BL use homomorphic majority evaluation in one of the lower abstraction
levels of their scheme. This allows us to break this abstraction level using only
linear algebra (in a sense, the homomorphic evaluation is already “built in”). A
complete break of BL follows.

1.3 Other Related Work

An independent work by Gauthier, Otmani and Tillich [8] shows an interesting
direct attack on BL’s hardness assumption (we refer to it as the “GOT attack”).
Their attack is very different from ours and takes advantage of the resemblance
of BL’s codes and Reed-Solomon codes as we explain below.

BL’s construction relies on a special type of error correcting code. Essentially,
they start with a Reed-Solomon code, and replace a small fraction of the rows
of the generating matrix with a special structure. The homomorphic properties
are only due to this small fraction of “significant” rows, and the secret key is
chosen so as to nullify the effect of the other rows.

The GOT attack uses the fact that under some transformation (component-
wise multiplication), the dimension of Reed-Solomon codes can grow by at most a
factor of two. However, if a code contains “significant” rows, then the dimension
can grow further. This allows to measure the number of significant rows in a
given code. One can thus identify the significant rows by trying to remove one
row at a time from the code and checking if the dimension drops. If yes then
that row is significant. Once all significant rows have been identified, the secret
key can be retrieved in a straightforward manner.

However, it is fairly easy to immunize BL’s scheme against the GOT attack.
As we explained above, the neutral rows do not change the properties of the

1 We believe this was known before, but since we could not find an appropriate refer-
ence, we provide a proof.



encryption scheme, so they may as well be replaced by random rows. Since the
dimension of random codes grows very rapidly under the GOT transformation,
their attack will not work in such case.

Our attack, on the other hand, relies on certain functional properties that
BL use to make their scheme homomorphic. Thus a change in the scheme that
preserves these homomorphic properties cannot help to overcome our attack. In
light of our attack, it is interesting to investigate whether the GOT attack can
be extended to the more general case.

2 Preliminaries

We denote scalars using plain lowercase (x), vectors using bold lowercase (x for
column vector, xT for row vector), and matrices using bold uppercase (X). We
let 1 denote the all-one vector (the dimension will be clear from the context).
We let Fq denote a finite field of cardinality q ∈ N, with efficient operations (we
usually don’t care about any other property of the field).

2.1 Properties of Encryption Schemes

A public key encryption scheme is a tuple of algorithms (Gen,Enc,Dec), such
that: Gen(1n) is the key generation algorithm that produces a pair of public and
secret keys (pk, sk); Encpk(m) is a randomized encryption function that takes a
message m and produces a ciphertext. In the context of this work, messages will
only come from some predefined field F; Decsk(c) is the decryption function that
decrypts a ciphertext c and produces the message. Optimally, Decsk(Encpk(·)) is
the identity function, but in some schemes there are decryption errors.

The probability of decryption error is taken over the randomness used to
generate the keys for the scheme, and over the randomness used in the encryption
function (we assume the decryption is deterministic). Since in our case the error
rates are high (approaching 1/2), the effect of bad keys is different from that of
bad encryption randomness, and we thus measure the two separately. We allow
a small fraction of the keys (one percent, for the sake of convenience) to have
arbitrarily large decryption error, and define the decryption error ε to be the
maximal error over the 99% best keys. While the constant 1% is arbitrary and
chosen so as to not over-clutter notation, we will discuss after presenting our
results how they generalize to other values. The formal definition follows.

Definition 2.1. An encryption scheme is said to have decryption error < ε if
with probability at least 0.99 over the key generation it holds that

max
m
{Pr[Decsk(Encpk(m)) 6= m]} < ε ,

where the probability is taken over the random coins of the encryption function.

We use the standard definition of security against chosen plaintext attacks
(CPA): The attacker receives a public key and chooses two values m0,m1. The



attacker then receives a ciphertext c = Encpk(mb), where b ∈ {0, 1} is a random
bit that is unknown to the attacker. The attacker needs to decide on a guess
b′ ∈ {0, 1} as to the value of b. We say that the scheme is broken if there is a
polynomial time attacker for which Pr[b′ = b] ≥ 1/2 + 1/poly(n) (where n is
the security parameter). Recall that this notion is equivalent to the notion of
semantic security [14].

In addition, we will say that a scheme is completely broken if there exists an
adversary that upon receiving the public key and Encpk(m) for arbitrary value
of m, returns m with probability 1− o(1).

While we discuss homomorphic properties of encryption schemes, we will
only use homomorphism w.r.t the majority function. We define the notion of
k-majority-homomorphism below.

Definition 2.2. A public-key encryption scheme is k-majority-homomorphic
(where k is a function of the security parameter) if there exists a function MajEval
such that with probability 0.99 over the key generation, for any sequence of ci-
phertexts output by Encpk(·): c1, . . . , ck, it holds that

Decsk(MajEvalpk(c1, . . . , ck)) = Majority(Decsk(c1), . . . ,Decsk(ck)) .

Again we allow some “slackness” by allowing some of the keys to not abide the
homomorphism.

We note that Definition 2.2 above is a fairly strong notion of homomorphism
in two aspects: First, it requires that homomorphism holds even for ciphertexts
with decryption error. Second, we do not allow MajEval to introduce error for
“good” key pairs. Indeed, known homomorphic encryption schemes have these
properties, but it is interesting to try to bypass our negative results by finding
schemes that do not have them.

Schemes with linear decryption, as defined below, have a special role in our
attack on BL.

Definition 2.3. An encryption scheme is n-linearly decryptable if its secret key
is of the form sk = s ∈ Fn, for some field F, and its decryption function is

Decsk(c) = 〈s, c〉 .

2.2 Spanning Distributions over Low Dimensional Spaces

We will use a lemma that shows that any distribution over a low dimensional
space is easy to span in the following sense: Given sufficiently many samples
from the distribution (a little more than the dimension of the support), we
are guaranteed that any new vector falls in the span of previous samples. This
lemma will allow us to derive a (distribution-free) learner for linear functions
(see Section 2.3).

We speculate that this lemma is already known, since it is fairly general
and very robust to the definition of dimension (e.g. it also applies to non-linear
spaces).



Lemma 2.4. Let S be a distribution over a linear space S of dimension s. For
all k, define

δk , Pr
v1,...,vk

$←S
[vk 6∈ Span {v1, . . . ,vk−1}] .

Then δk ≤ s/k.

Proof. Notice that by symmetry δi ≥ δi+1 for all i. Let Di denote the (random
variable) dimension of Span {v1, . . . ,vi}. Note that always Di ≤ s.

Let Ei denote the event vi 6∈ Span {v1, . . . ,vi−1} and let 1Ei
denote the in-

dicator random variable for this event. Then δi = Pr[Ei] = E[1Ei
]. By definition,

Dk =

k∑
i=1

1Ei .

Therefore

s ≥ E[Dk] = E

[
k∑
i=1

1Ei

]
=

k∑
i=1

Pr[Ei] =

k∑
i=1

δi ≥ k · δk ,

and the lemma follows.

2.3 Learning

In this work we use two equivalent notions of learning: weak-learning as defined
in [15], and an equivalent simplified notion that we call single-challenge-learning
(sc-learning for short). The latter will be more convenient for our proofs, but
we show that the two are equivalent. We will also show that linear functions are
sc-learnable.

Notions of Learning. We start by introducing the notion of weak-learnability.

Definition 2.5 (weak-learning [15]). Let F = {Fn}n∈N be an ensemble of
binary functions. A weak learner for F with parameters (t, ε, δ) is a polynomial
time algorithm A such that for any function f ∈ Fn and for any distribution D
over the inputs to f , the following holds. Let x1, . . . , xt+1

$← D, and let h (“the
hypothesis”) be the output of A(1n, (x1, f(x1)), . . . , (xt, f(xt))). Then

Pr
x1,...,xt

[
Pr
xt+1

[h(xt+1) 6= f(xt+1)] > ε

]
≤ δ .

We say that F is weakly learnable if there exists a weak learner for F with
parameters t = poly(n), ε ≤ 1/2−1/poly(n), δ ≤ 1−1/poly(n). (We also require
that the output hypothesis h is polynomial time computable.)

We next define our notion of (t, η)-sc-learning, which essentially corresponds
to the ability to launch a t-query CPA attack on an (errorless) encryption scheme,
and succeed with probability η. (The initials “sc” stand for “single challenge”,
reflecting the fact that a CPA attacker only receives a single challenge cipher-
text.)



Definition 2.6 (sc-learning). Let F = {Fn}n∈N be an ensemble of functions.
A (t, η)-sc-learner for F is a polynomial time algorithm A such that for any
function f ∈ Fn and for any distribution D over the inputs to f , the follow-

ing holds. Let x1, . . . , xt+1
$← D, and let h (“the hypothesis”) be the output of

A(1n, (x1, f(x1)), . . . , (xt, f(xt))). Then Pr[h(xt+1) 6= f(xt+1)] ≤ η, where the
probability is taken over the entire experiment.

We say that F is (t, η)-sc-learnable if it has a polynomial time (t, η)-sc-
learner for it. We say that a binary F is sc-learnable if t = poly(n) and η ≤
1/2−1/poly(n). (We also require that the output hypothesis h is polynomial time
computable.)

Since sc-learning only involves one challenge, we do not define the “confi-
dence” and “accuracy” parameters (δ, ε) separately as in the definition of weak-
learning.

We note that both definitions allow for improper learning (namely, the hy-
pothesis h does not need to “look like” an actual decryption function).

Equivalence Between Notions. The equivalence of the two notions is fairly straight-
forward. Applying boosting [18] shows that sc-learning, like weak-learning, can
be amplified.

Claim 1. If F is sc-learnable then it is weak-learnable.

Proof. This follows by a Markov argument: Consider a (t, η)-sc-learner for F
(recall that η ≤ 1/2− 1/poly(n)) and let δ = 1− 1/poly(n) be such that η/δ ≤
1/2− poly(n) (such δ must exist). Then letting ε , η/δ finishes the argument.

The opposite direction will give us very strong amplification of learning by
applying boosting [18]. The boosting algorithm can amplify the ε, δ values of a
weak learner to arbitrarily small values, at the cost of increasing the number of
required samples.

Claim 2. If F is weak-learnable then it is (poly(n, 1/η), η)-sc-learnable for all η.

Proof. Let F be weak-learnable. Then by boosting [18] it is also PAC learn-
able [21]. Namely there is a learner with parameters (poly(n, 1/ε, 1/δ), ε, δ) for
any inversely polynomial ε, δ. Setting ε = δ = η/2, the claim follows.

Learning Linear Functions. The following corollary (of Lemma 2.4) shows a
simple direct construction of an sc-learner for the class of linear functions.2

Corollary 2.7. Let Fn be a class of n-dimensional linear functions over a field
F. Then F = {Fn}n is (10n, 1/10)-sc-learnable.

2 The learner works even when the function class is not binary, which is only an
advantage. The binary case follows by considering distributions supported only over
the pre-images of 0, 1.



Proof. We note that for any linear function f : Fn → F, the set {(x, f(x))}x∈Fn

is an n-dimensional linear subspace of Fn+1.

The learner A works as follows. It is given t = 10n samples vi , (xi, f(xi)) ∈
Fn+1. Using Gaussian elimination, A will find s ∈ Fn such that (−s, 1) ∈
Ker{vi}i∈[t] (note that such must exist). Finally A will output the hypothesis
h(x) = 〈s,x〉.

Correctness follows using Lemma 2.4. We let the distribution S be the dis-

tribution (x, f(x)) where x
$← D, and let k = t+ 1. It follows that with proba-

bility 1− 1/10, it holds that (xt+1, f(xt+1)) ∈ Span{vi}i∈[t] which implies that
〈(−s, 1), (xt+1, f(xt+1))〉 = 0, or in other words f(xt+1) = 〈s,xt+1〉 = h(xt+1).

3 Homomorphism is a Liability When Decryption is
Learnable

This section features our main result. We show that schemes with learnable
decryption circuits are very limited in terms of their homomorphic properties,
regardless of decryption error. This extends the previous results of [15, 16] show-
ing that the decryption function cannot be learnable if the decryption error is
negligible.

We start by showing that a scheme with (t, 1/10)-sc-learnable decryption
function (i.e. efficient learning with probability 1/10 using t samples, see Def-
inition 2.6) cannot have decryption error smaller than Ω(1/t) and be secure
(regardless of homomorphism). We proceed to show that if the scheme can ho-
momorphically evaluate the majority function, then the above amplifies dramat-
ically and security cannot be guaranteed for any reasonable decryption error
(1/2− ε error for any noticeable ε). Using Claim 2 (boosting), this implies that
the above hold for any scheme with weakly-learnable (or sc-learnable) decryp-
tion. We then discuss the role of key generation error compared to encryption
error.

For the sake of simplicity, we focus on the public key setting. However, our
proofs easily extend also to symmetric encryption, since our attacks only use the
public key in order to generate ciphertexts for known messages.

Learnable Decryption without Homomorphism. We start by showing that a
scheme whose decryption circuit is (t, 1/10)-sc-learnable has to have decryption
error ε = Ω(1/t), otherwise it is insecure. This is a parameterized and slightly
generalized version of the claims of [15, 16], geared towards schemes with high
decryption error and possibly bad keys. The basic idea is straightforward: We
use the public key to generate t ciphertexts to be used as labeled samples for our
learner, and then use its output hypothesis to decrypt the challenge ciphertext.
The above succeeds so long as all samples in the experiment decrypt correctly,
which by the union bound is at least 1 − t · ε. A formal statement and proof
follows.



Lemma 3.1. An encryption scheme whose decryption function is (t, 1/10)-sc-
learnable for a polynomial t and whose decryption error < 1/(10(t+ 1)) is inse-
cure.

Proof. Consider a key pair (pk, sk) for the scheme, and consider the follow-
ing CPA adversary. The adversary first generates t labeled samples of the form

(Encpk(m),m), for random messages m
$← {0, 1} (where 0, 1 serve as generic

names for an arbitrary pair of elements in the scheme’s message space). These
samples are fed into the aforementioned learner, let h denote the learner’s out-
put hypothesis. The adversary lets m0 = 0, m1 = 1, and given the challenge
ciphertext c = Encpk(mb), it outputs b′ = h(c).

To analyze, we consider the (inefficient) distribution D that first samples

m
$← {0, 1}, and then outputs a random correctly decryptable encryption of

m. More formally, D is the distribution c = Encpk(m)|(Decsk(c) = m) for a

randomly chosen m
$← {0, 1}. By Definition 2.6, if the learner gets t samples

from this distribution, it outputs a hypothesis that correctly labels the (t + 1)
sample, with all but 1/10 probability.

While we cannot efficiently sample from D (without the secret key), we show
that the samples (and challenge) that we feed to our learner are in fact statis-
tically close to samples from D. Consider a case where (pk, sk) are such that
the decryption error is indeed smaller than ε = 1/(10(t + 1)). In such case, our
adversary samples from a distribution of statistical distance at most ε from D,
and the challenge ciphertext is drawn from the same distribution. It follows that
the set of (t+1) samples that we consider during the experiment (containing the
labeled samples and the challenge), agree with D with all but (t+ 1) · ε = 1/10
probability.

Using the union bound on all aforementioned “bad” events (the key pair not
conforming with decryption error as per Definition 2.1, the samples not agreeing
with D, and the learner failing), we get that Pr[b′ = b] ≥ 1−0.01−1/10−1/10 >
0.7 and the lemma follows.

Using Claim 2, we derive the following corollary.

Corollary 3.2. An encryption scheme whose decryption function is weakly-
learnable must have decryption error 1/poly(n) for some polynomial.

We note that this corollary does not immediately follow from [15, 16] if a no-
ticeable fraction of the keys can be “bad” (since they do not use boosting).

Plugging our learner for linear functions (Corollary 2.7) into Lemma 3.1
implies the following, which will be useful for the next section.

Corollary 3.3. There exists a constant α > 0 such that any n-linearly decrypt-
able scheme with decryption error < α/n is insecure.

Learnable Decryption with Majority Homomorphism. Lemma 3.1 and Corol-
lary 3.2 by themselves are not very restrictive. Specifically, they are not directly
applicable to attacking any known scheme. Indeed, known schemes with linear



decryption (e.g. LPN based) have sufficiently high decryption error (or, viewed
differently, adding the error makes the underlying decryption hard to learn). We
now show that if homomorphism is required as a property of the scheme, then
decryption error cannot save us.

The following theorem states that majority-homomorphic schemes (see Defi-
nition 2.2) cannot have learnable decryption for any reasonable decryption error.

Theorem 3.4. An encryption scheme whose decryption circuit is (t, 1/10)-sc-
learnable for a polynomial t and whose decryption error < (1/2 − ε) cannot be
O(log t/ε2)-majority-homomorphic.

Let us first outline the proof of Theorem 3.4 before formalizing it. Our goal is
the same as in the proof of Lemma 3.1, to generate t labeled samples, which will
enable to break security. However, unlike above, taking t random encryptions will
surely introduce decryption errors. We thus use the majority homomorphism: We
generate a good encryption of m, i.e. one that is decryptable with high proba-
bility, by generating O(log t/ε2) random encryptions of m, and apply majority
homomorphically. Chernoff’s bound guarantees that with high probability, more
than half of the ciphertexts are properly decryptable, and therefore the output
of the majority evaluation is with high probability a decryptable encryption of
m. At this point, we can apply the same argument as in the proof of Lemma 3.1.
The formal proof follows.

Proof. Consider an encryption scheme (Gen,Enc,Dec) as in the theorem state-
ment. We will construct a new scheme (Gen′ = Gen,Enc′,Dec′ = Dec) (with
the same key generation and decryption algorithms) whose security relates to
that of (Gen,Enc,Dec). Then we will use Lemma 3.1 to render the latter scheme
insecure.

The new encryption algorithm Enc′pk(m) works as follows: To encrypt a mes-
sage m, invoke the original encryption Encpk(m) for (say) k = 10(ln(t + 1) +
ln(10))/ε2 times, thus generating k ciphertexts. Apply MajEval to those k ci-
phertexts and output the resulting ciphertext.

The security of the new scheme is related to that of the original by a straight-
forward hybrid argument. We will show that the new scheme has decryption error
at most 1/(10(t+ 1)), but in a slightly weaker sense then Definition 2.1: We will
allow 2% of the keys to be “bad” instead of just 1% as before. One can easily
verify that the proof of Lemma 3.1 works in this case as well.

Our set of good key pairs for Enc′ is those for which Decsk(Encpk(·)) indeed
have decryption error at most 1/2− ε and in addition MajEval is correct. By the
union bound this happens with probability at least 0.98.

To bound the decryption error of Decsk(Enc′pk(·)), assume that we have a
good key pair as described above. We will bound the probability that more
than a 1/2 − ε/2 fraction of the k ciphertexts generated by Enc′ are decrypted
incorrectly. Clearly if this bad event does not happen, then by the correctness
of MajEval, the resulting ciphertext will decrypt correctly.

Recalling that the expected fraction of falsely decrypted ciphertexts is at
most 1/2 − ε, the Chernoff bound implies that the aforementioned bad event



happens with probability at most

e−2(ε/2)
2k < 1/(10(t+ 1)) ,

and the theorem follows.

From the proof it is obvious that even “approximate-majority homomor-
phism” is sufficient for the theorem to hold. Namely, even if MajEval only com-
putes the majority function correctly if the fraction of identical inputs is more
than 1/2 + ε/2. Even more generally, we can use any function FEval for which
Decsk(FEval(Encpk(m), . . . ,Encpk(m))) = m with high probability.

We can derive a general corollary for every weakly-learnable function using
Claim 2. This applies, for example, to linear functions, low degree polynomials
and shallow circuits.

Corollary 3.5. An encryption scheme whose decryption function is weakly-
learnable and whose decryption error is 1/2− ε cannot be ω(log n/ε2)-majority-
homomorphic.

The Role of Bad Keys. Recall that in Definitions 2.1 and 2.2 (decryption error
and majority homomorphism) we allowed a constant fraction of keys to be useless
for the purpose of decryption and homomorphic evaluation, respectively. In fact,
it is this relaxation that makes our argument more involved than [15, 16].

As we mentioned above, the choice of constant 0.01 is arbitrary. Let us now
explain how our results extend to the case of 1/2−κ fraction of bad keys, where
κ = 1/poly(n) (we now count the keys that are either bad for decryption or
bad for homomorphism). In such case, the argument of Lemma 3.1 will work
so long as we start with a (t, η)-sc-learner with η < κ/3 and so long as the
decryption error for good keys is at most κ/(3(t+1)). If the scheme is furthermore
O(log(t/κ)/ε2) = O(log n/ε2)-majority-homomorphic, the proof of Theorem 3.4
will also go through. Finally, using boosting, we can start with any weak learner
and reduce η to < κ/3 at the cost of a polynomial increase in t, which is tolerable
by our arguments (and swallowed by the asymptotic notation).

4 Attacks on the BL Scheme

In this section we use our tools from above to show that the BL scheme (outlined
in Section 4.1 below) is broken. We present two attacks: the first, in Section 4.2,
follows from Corollary 3.3 (and works in the spirit of Theorem 3.4); and the
second, in Section 4.3, directly attacks a lower level subcomponent of the scheme
and allows to decrypt any ciphertext. In fact, the latter attack also follows the
same basic principles and exploits a “built-in” evaluation of majority that exists
in that sub-component of BL.



4.1 Essentials of the BL Scheme

In this section we present the properties of the BL scheme. We concentrate on
the properties that are required for our breaks. We refer the reader to [3] for
further details.

The BL scheme has a number of layers of abstraction, which are all instan-
tiated based on a global parameter 0 < α < 0.25 as explained below.

The Scheme Kq(n). BL introduce Kq(n), a public-key encryption scheme with
imperfect correctness. For security parameter n, the public key is a matrix P ∈
Fn×rq , where r = n1−α/8, and the secret key is a vector y ∈ Fnq in the kernel of

PT (namely, yT ·P = 0). The keys are generated in a highly structured manner
in order to support homomorphism, but their structure is irrelevant to us. An
encryption of a message m ∈ Fq is a vector c = P ·x +m ·1 + e, where x ∈ Frq is
some vector, and where e ∈ Fnq is a low hamming weight vector. Decryption is
performed by taking the inner product 〈y, c〉, and succeeds so long as 〈y, e〉 = 0
(the vector y is chosen such that 〈y,1〉 = 1). It is shown how the structure of the
keys implies that decryption succeeds with probability at least

(
1− n−(1−α/2)

)
.

Finally, BL show that Kq(n) is homomorphic with respect to a single addition
or multiplication.3

Re-Encryption. In order to enable homomorphism, BL introduce the notion
of re-encryption. Consider an instantiation of Kq(n), with keys (P,y), and an

instantiation of Kq(n
′) with keys (P′,y′), for n′ = n1+α. Let Hn′:n ∈ Fn′×nq

be an element-wise encryption of y using the public key P′.4 Namely Hn′:n =
P′ ·X′+1 ·yT +E′. Due to the size difference between the schemes, it holds that
with probability

(
1− n−Ω(1)

)
, all of the columns of Hn′:n are simultaneously

decryptable and indeed y′T · Hn′:n = yT . In such case, for any ciphertext c
of Kq(n), we get 〈y′,Hn′:nc〉 = 〈y, c〉. The matrix Hn′:n therefore re-encrypts
ciphertexts of Kq(n) as ciphertexts of Kq(n

′).
The critical idea for our second break is that a re-encrypted ciphertext always

belongs to an n-dimensional linear subspace (recall that n� n′), namely to the
span of Hn′:n.

The Scheme BASIC. Using re-encryption, BL construct a ladder of schemes
of increasing lengths that allow for homomorphic evaluation. They define the
scheme BASIC which has an additional depth parameter d = O(1) (BL suggest
to use d = 8, but our attack works for any d > 1). They consider instantiations

of Kq(ni), where ni = n(1+α)
−(d−i)

, for i = 0, . . . , d, so nd = n. They generate

3 Homomorphic operations (addition, multiplication) are performed element-wise on
ciphertext vectors, and the structure of the key guarantees that correctness is pre-
served.

4 A note on notation: In [3], the re-encryption parameters are denoted by I (as opposed
to our H). We feel that their notation ignores the important linear algebraic structure
of the re-encryption parameters, and therefore we switched to matrix notation, which
also dictated the change of letter.



all re-encryption matrices Hni+1:ni
(with success probability

(
1− n−Ω(1)

)
) and

can thus homomorphically evaluate depth d circuits.
The homomorphic evaluation works by performing a homomorphic operation

at level i of the evaluated circuit (with i going from 0 to d− 1), and then using
re-encryption with Hni+1:ni to obtain a fresh ciphertext for the next level.

For the purposes of our (second) break, we notice that in the last step of
this evaluation is re-encryption using Hnd:nd−1

. This means that homomor-
phically evaluated ciphertexts all come from a linear subspace of dimension
nd−1 = n1/(1+α).

Error Correction and the Matrix Hn:n. Up to this point, BL only get homo-
morphism at the cost of increasing the input size (namely n). In order to get
size-preserving homomorphism, BL show that given key-pairs (P,y), (P∗,y∗) for
Kq(n); they can generate, with probability

(
1− n−Ω(1)

)
, a matrix Hn:n whose

columns are encryptions of y under y∗. Most importantly, Hn:n should not give
an attacker any excess power. Such a matrix will allow a single size-preserving
homomorphic operation.

The idea is to think about (P∗,y∗) as the last step of the key ladder in
BASIC, and generate encryptions of y under the first step of that ladder. Nat-
urally, the probability that all of those encryptions are simultaneously correctly
decryptable is very slim, but the depth d homomorphism of BASIC can then
be used to homomorphically apply error correction on these ciphertexts. More
details follow.

BL generate an instance of BASIC, with public keys P0, . . . ,Pd, secret key
yd = y∗, and re-encryption matrices Hni+1:ni

. An additional independent in-
stance of Kq(n) is generated, whose keys we denote by (P,y). Then, a large
number of encryptions of the elements of y under public key P0 are gener-
ated.5 While some of these ciphertexts may have encryption error, BL show that
homomorphically evaluating a depth-d correction circuit (CORR in their nota-
tion), one can obtain a matrix Hn:n, whose columns are encryptions of y that
are decryptable under y∗ without error. This process succeeds with probability(
1− n−Ω(1)

)
.

The resemblance to the learner of Corollary 2.7 is apparent. In a sense, the
public key of BASIC is ready-for-use learner.

To conclude this part, BL generate a re-encryption matrix Hn:n that takes
ciphertexts under y and produces ciphertexts under y∗. Since Hn:n is produced
using homomorphic evaluation, its rank is at most nd−1 = n1/(1+α). We will
capitalize on the fact that re-encryption using Hn:n produces ciphertexts that
all reside in a low-dimensional space.

Achieving Full Homomorphism – The Scheme HOM. The basic idea is to gen-
erate a sequence of matrices Hn:n, thus creating a chaining of the respective
secret keys that will allow homomorphism of any depth. However, generating

5 To be absolutely precise, BL encrypt a bit decomposition of y∗, but this is immaterial
to us.



an arbitrarily large number of such re-encryption matrices will eventually cause
an error somewhere down the line. Therefore, a more sophisticated solution is
required. BL suggest to encrypt each message a large number of times, and gen-
erate a large number of re-encryption matrices per level. Then, since the vast
majority of matrices per level are guaranteed to be correct, one can use shallow
approximate majority computation to guarantee that the fraction of erroneous
ciphertexts per level does not increase with homomorphic evaluation.

Decryption is performed as follows: Each ciphertext is a set of ciphertexts
c1, . . . , ck of Kq(n) (all with the same secret key). The decryption process first
uses the Kq(n) key to decrypt the individual ciphertexts and obtain m1, . . . ,mk,
and then outputs the majority between the values mi. BL show that a major-
ity of the ciphertexts (say more than 15/16 fraction) are indeed correct, which
guarantees correct decryption.

BL can thus achieve a (leveled) fully homomorphic scheme which they denote
by HOM, which completes their construction.

4.2 An Attack on BL Using Homomorphism

We will show how to break the BL scheme using its homomorphic properties.
We use Corollary 3.3 and our proof contains similar elements to the proof of
Theorem 3.4. (The specifics of BL do not allow to use Corollary 3.5 directly.)

Theorem 4.1. There is a polynomial time CPA attack on BL.

Proof. Clearly we cannot apply our methods to the scheme HOM as is, since its
decryption is not learnable. We thus describe a related scheme which is “embed-
ded” in HOM and show how to distinguish encryptions of 0 from encryptions
of 1, which will imply a break of HOM.

We recall that the public key of HOM contains “chains” of re-encryption
matrices of the form Hn:n. The length of the chains is related to the homomorphic
depth of HOM. Our sub-scheme will only require a chain of constant length `
which will be determined later (such sub-chain therefore must exist for any
instantiation of BL that allows for more than constant depth homomorphism).
Granted that all links in the chain are successfully generated (which happens
with probability ` · n−Ω(1)), such a chain allows homomorphic evaluation of any
depth-` function. Let us focus on the case where the chain is indeed properly
generated.

Intuitively, we would have liked to use this structure to evaluate majority on
2` input ciphertexts. However, BL is defined over a large field F, and it is not clear
how to implement majority over F in depth that does not depend on q = |F|. To
solve this problem, we use BL’s CORR function. This function is just a NAND
tree of depth ` (extended to F in the obvious way: NAND(x, y) = 1− xy). BL
show that given 2` inputs, each of which is 0 (respectively 1) with probability

1− ε, the output of CORR will be 0 (resp. 1) with probability 1−O(ε)2
`/2

.
To encrypt a message m ∈ {0, 1} using our sub-scheme, we will generate 2`

ciphertexts. Each ciphertext will be an independent encryption of m using the



public key of HOM (which essentially generates Kq(n) ciphertexts that corre-
spond to the first link in all chains). We then apply CORR homomorphically to
the generated ciphertexts. Decryption in our subscheme will be standard Kq(n)
decryption (which is a linear function) using the secret key that corresponds to
the last link in the chain.6

We recall that the decryption error of Kq(n) is ε = n−Ω(1). By the properties
of CORR, we can choose ` = O(1) such that the decryption error of our sub-
scheme is at most (say) o(1)/n.

In conclusion, we get a sub-scheme of HOM such that with probability
1−n−Ω(1) > 0.9 over the key generation, the decryption error is at most o(1)/n.
Furthermore, decryption is linear. Corollary 3.3 implies that such scheme must
be insecure.

4.3 A Specific Attack on BL

We noticed that the scheme BASIC, which is a component of HOM, contains
by design homomorphic evaluation of majority: this is how the matrix Hn:n

is generated. We thus present an attack that only uses the matrix Hn:n and
allows to completely decrypt BL ciphertexts (even non binary) with probability
1−n−Ω(1). We recall that an attack completely breaks a scheme if it can decrypt
any given ciphertext with probability 1− o(1).

Theorem 4.2. There exists a polynomial time attack that completely breaks
BASIC, and thus also BL.

Proof. We consider the re-encryption matrix H = Hn:n ∈ Fn×nq described in
Section 4.1, which re-encrypts ciphertexts under y into ciphertexts under y∗.
The probability that H was successfully generated is at least 1 − n−Ω(1), in
which case it holds that

y∗T ·H = yT .

In addition, as we explained in Section 4.1, the rank of H is at most h = n1/(1+α).
Our breaker will be given H and the public key P that corresponds to y, and

will be able to decrypt any vector c = EncP(m) with high probability, namely
compute 〈y, c〉.

Breaker Code. As explained above, the input to the breaker is H,P and challenge
c = EncP(m). The breaker will execute as follows:

1. Generate k = h1+ε encryptions of 0, denoted v1, . . . ,vk, for ε = α(1−α)
4 (any

positive number smaller than α(1−α)
2 will do).

Note that this means that with probability 1−n−Ω(1), all vi are decryptable
encryptions of 0. Intuitively, these vectors, once projected through H, will
span all decryptable encryptions of 0.

6 The secret key of the last link is not the same as the secret key of HOM, since
we are only considering a sub-chain of a much longer chain. However, this is not a
problem: Our arguments do not require that the secret key is known to anyone in
order to break the scheme.



2. For all i = 1, . . . , k, compute v∗i = H · vi (the projections of the ciphertexts
above through H). Also compute o∗ = H · 1 (the projection of the all-one
vector).

3. Find a vector ỹ∗ ∈ Fnq such that 〈ỹ∗,v∗i 〉 = 0 for all i, and such that
〈ỹ∗,o∗〉 = 1. Such a vector necessarily exists if all vi’s are decryptable,
since y∗ is an example of such a vector.

4. Given a challenge ciphertext c, compute c∗ = H · c and output m = 〈ỹ∗, c∗〉
(namely, m = ỹ∗T ·H · c).

Correctness. To analyze the correctness of the breaker, we first notice that the
space of ciphertexts that decrypt to 0 under y is linear (this is exactly the
orthogonal space to y). We denote this space by Z. Since 1 6∈ Z, we can define
the cosets Zm = Z+m ·1. We note that all legal encryptions of m using P reside
in Zm.

We let Z∗ denote the space H·Z (all vectors of the form H·z such that z ∈ Z).
This is a linear space with dimension at most h. Similarly, define Z∗m = Z∗+m·o∗.

Consider the challenge ciphertext c = EncP(m). We can think of c as an
encryption of 0 with an added term m · 1. We therefore denote c = c0 + m · 1.
Again this yields a c∗0 such that c∗ = c∗0 +m · o∗.

Now consider the distribution Z over Z, which is the distribution of de-
cryptable encryptions of 0 (i.e. the distribution c = EncP(0), conditioned on
〈y, c〉 = 0). The distribution Z∗ is defined by projecting Z through H. With
probability

(
1− n−Ω(1)

)
, it holds that v∗1, . . . ,v

∗
k, and c∗0 are uniform samples

from Z∗.
By Lemma 2.4 below, it holds that c∗0 ∈ Span {v∗1, . . . ,v∗k}, with probability(

1− n−Ω(1)
)
. In such case

〈ỹ∗, c∗〉 = 〈ỹ∗, c∗0〉+m · 〈ỹ∗,o∗〉 = m .

We conclude that with probability 1−n−Ω(1), our breaker correctly decrypts
c as required.
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