
A Full Characterization of Functions that Imply
Fair Coin Tossing and Ramifications to Fairness?

Gilad Asharov1, Yehuda Lindell1, and Tal Rabin2

1 Department of Computer Science, Bar-Ilan University, Israel.
2 IBM T.J. Watson Research Center, New York.

asharog@cs.biu.ac.il, lindell@biu.ac.il, talr@us.ibm.com

Abstract. It is well known that it is impossible for two parties to toss a
coin fairly (Cleve, STOC 1986). This result implies that it is impossible
to securely compute with fairness any function that can be used to toss
a fair coin. In this paper, we focus on the class of deterministic Boolean
functions with finite domain, and we ask for which functions in this class
is it possible to information-theoretically toss an unbiased coin, given a
protocol for securely computing the function with fairness. We provide
a complete characterization of the functions in this class that imply and
do not imply fair coin tossing. This characterization extends our knowl-
edge of which functions cannot be securely computed with fairness. In
addition, it provides a focus as to which functions may potentially be
securely computed with fairness, since a function that cannot be used
to fairly toss a coin is not ruled out by the impossibility result of Cleve
(which is the only known impossibility result for fairness). In addition
to the above, we draw corollaries to the feasibility of achieving fairness
in two possible fail-stop models.

1 Introduction

1.1 Background

In the setting of secure multiparty computation, some mutually distrusting par-
ties wish to compute some joint function of their inputs in the presence of adver-
sarial behaviour. Loosely speaking, the security requirements from such a com-
putation are that nothing is learned from the protocol other than the output
(privacy), that the output is distributed according to the prescribed function-
ality (correctness), and that parties cannot choose their inputs as a function of
the others’ inputs (independence of inputs). Another important property is that
of fairness which, intuitively, means that either everyone receives the output or
no one does.

It is well known that when a majority of the parties are honest, it is possible
to securely compute any functionality while guaranteeing all of the security prop-
erties mentioned above, including fairness [8, 2, 4, 11]. Furthermore, when there

?
The first two authors were funded by the European Research Council under the European Union’s
Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 239868, and by the
israel science foundation (grant No. 189/11). Much of this work was carried out while they were
at the IBM T.J. Watson Research Center, New York.

is no honest majority, including the important case of two parties where one may
be corrupted, it is possible to securely compute any functionality while guaran-
teeing all of the security properties mentioned above except for fairness [13, 8,
6]. The fact that fairness is not achieved in this latter case is inherent, as was
shown in the seminal work of Cleve [5] who proved that there exist functions that
cannot be computed by two parties with complete fairness. Specifically, Cleve
showed that the very basic and natural functionality of coin-tossing, where two
parties toss an unbiased coin, cannot be computed fairly. The impossibility re-
sult of Cleve implies that fairness cannot be achieved in general. That is, Cleve’s
result proves that it is impossible to securely compute with complete fairness any
function that can be used to toss a fair coin (like the boolean XOR function).

Until recently, the accepted folklore from the time of Cleve’s result was that
only trivial functions can be securely computed with complete fairness without
an honest majority. This changed recently with the surprising work of Gordon
et al. [9] who showed that this folklore is incorrect and that there exist some
non-trivial boolean functions that can be computed fairly, in the two party
setting. They showed that any function that does not contain an embedded
XOR (i.e., inputs x1, x2, y1, y2 such that f(x1, y1) = f(x2, y2) 6= f(x1, y2) =
f(x2, y1)) can be computed fairly in the malicious settings. Examples of functions
without an embedded XOR include the boolean OR and AND functions and
Yao’s millionaires problem [13] (i.e., the greater-than function). This possibility
result changes our understanding regarding fairness, and re-opens the question
of which functions can be computed with complete fairness. Given the possibility
result mentioned above, and given the fact that Cleve’s impossibility result rules
out completely fair computation of boolean XOR, a natural conjecture is that
the presence of an embedded XOR serves as a barrier to a fair computation of
a given function. However, [9] showed that this is also incorrect: they give an
example of a function that does contain an embedded XOR and construct a
protocol that securely computes this function with fairness.

Since [9], there have been no other works that further our understanding
regarding which (boolean) functions can be computed fairly without an honest
majority in the two party setting. Specifically, Cleve’s impossibility result is the
only known function that cannot be computed fairly, and the class of functions
for which [9] shows possibility are the only known possible functions. There is
therefore a large class of functions for which we have no idea as to whether or
not they can be securely computed with complete fairness.

1.2 Our Work

Motivated by the fundamental question of characterizing which functions can be
computed with complete fairness, we analyze which functions cannot be com-
puted fairly since they are already ruled out by Cleve’s original result. That is,
we show which boolean functions “imply” the coin-tossing functionality. We pro-
vide a simple property (criterion) on the truth table of a given boolean function.
We then show that for every function that satisfies this property, it holds that
the existence of a protocol that fairly computes the given function implies the

existence of a protocol for fair coin-tossing in the presence of a fail-stop or mali-
cious adversary, in contradiction to Cleve’s impossibility result. This implies that
the functions that satisfy the property cannot be computed fairly. The property
is very simple, clean and general.

The more challenging and technically interesting part of our work is a proof
that the property is tight. Namely, we show that a function f that does not
satisfy the property cannot be used to construct a fair coin-tossing protocol (in
the information theoretic setting). More precisely, we show that it is impossible
to construct a fair two-party coin-tossing protocol, even if the parties are given
access to a trusted party that computes f fairly for them. We prove this im-
possibility by showing the existence of an (inefficient) adversary that can bias
the outcome with non-negligible probability. Thus, we prove that it is not possi-
ble to toss a coin with information-theoretic security, when given access to fair
computations of f . We stress that this “impossibility” result is actually a source
of optimism, since it may be possible to securely compute such functions with
complete fairness. Indeed, the fair protocols presented in [9] are for functions for
which the property does not hold.3

It is important to note that our proof that functions that do not satisfy the
property do not imply coin tossing is very different from the proof of impossibil-
ity by Cleve. Specifically, the intuition behind the proof by Cleve is that since
the parties exchange messages in turn, there must be a point where one party
has more information than the other about the outcome of the coin-tossing pro-
tocol. If that party aborts at this point, then this results in bias. This argument
holds since the parties cannot exchange information simultaneously. In contrast,
in our setting, the parties can exchange information simultaneously via the com-
putation of f . Thus, our proof is conceptually very different to that of Cleve,
and in particular, is not a reduction to the proof by Cleve.

The criterion. Intuitively, the property that we define over the function’s truth
table relates to the question of whether or not it is possible for one party to
singlehandedly change the probability that the output of the function will be 1
(or 0) based on how it chooses its input. In order to explain the criterion, we give
two examples of functions that imply coin-tossing, meaning that a fair secure
protocol for computing the function implies a fair secure protocol for coin tossing.
We discuss how each of the examples can be used to toss a coin fairly, and this
in turn will help us to explain the criterion. The functions are given below:

(a)

y1 y2 y3

x1 0 1 1
x2 1 0 0
x3 0 0 1

(b)

y1 y2 y3

x1 1 0 0
x2 0 1 0
x3 0 0 1

3 We remark that since our impossibility result is information theoretic, there is the
possibility that some of the functions for which the property does not hold do imply
coin tossing computationally. In such a case, the impossibility result of Cleve still
applies to them. See more discussion in “open questions” below.

Consider function (a), and assume that there exists a fair protocol for this
function. We show how to toss a fair coin using a single invocation of the protocol
for f . Before doing so, we observe that the output of a single invocation of the
function can be expressed by multiplying the truth-table matrix of the function
by probability vectors.4 Specifically, assume that party P1 chooses input xi with
probability pi, for i = 1, 2, 3 (thus p1 + p2 + p3 = 1 since it must choose some
input); likewise, assume that P2 chooses input yi with probability qi. Now, let
Mf be the “truth table” of the function, meaning that Mf [i, j] = f(xi, yj). Then,
the output of the invocation of f upon the inputs chosen by the parties equals 1
with probability exactly (p1, p2, p3) ·Mf · (q1, q2, q3)T .

We are now ready to show how to toss a coin using f . First, note that there
are two complementary rows; these are the rows specified by inputs x1 and x2.
This means that if P1 chooses one of the inputs in {x1, x2} uniformly at random,
then no matter what distribution over the inputs (corrupted) P2 uses, the result
is a uniformly chosen coin. In order to see this, observe that when we multiply
the vector (1

2 ,
1
2 , 0) (the distribution over the input of P1) with the matrix Mf ,

the result is the vector (1
2 ,

1
2 ,

1
2). This means that no matter what input P2

will choose, or what distribution over the inputs it may use, the output is 1 with
probability 1/2 (formally, the output is 1 with probability 1

2 ·q1+ 1
2 ·q2+ 1

2 ·q3 = 1
2

because q1 + q2 + q3 = 1). This means that if P1 is honest, then a corrupted
P2 cannot bias the output. Likewise, there are also two complementary columns
(y1 and y3), and thus, if P2 chooses one of the inputs in {y1, y3} uniformly at
random, then no matter what distribution over the inputs (a possibly corrupted)
P1 uses, the result is a uniform coin.

In contrast, there are no two complementary rows or columns in the function
(b). However, if P1 chooses one of the inputs {x1, x2, x3} uniformly at random
(i.e., each input with probability one third), then no matter what distribution
P2 will use, the output is 1 with probability 1/3. Similarly, if P2 chooses a
uniformly random input, then no matter what P1 does, the output is 1 with the
same probability. Therefore, a single invocation of the function f in which the
honest party chooses the uniform distribution over its inputs results in a coin
that equals 1 with probability exactly 1

3 , irrespective of what the other party
inputs. In order to obtain an unbiased coin that equals 1 with probability 1

2 the
method of von-Neumann [12] can be used. This method works by having the
parties use the function f to toss two coins. If the resulting coins are different
(i.e, 01 or 10), then they output the result of the first invocation. Otherwise,
they run the protocol again. This yields a coin that equals 1 with probability
1
2 since the probability of obtaining 01 equals the probability of obtaining 10.
Thus, conditioned on the results being different, the probability of outputting 0
equals the probability of outputting 1.

The criterion is a direct generalization of the examples shown above.
Let f : {x1, . . . , x`} × {y1, . . . , y`} → {0, 1} be a function, and let Mf be the
truth table representation as described above. We say that the function has the
criterion if there exist two probability vectors, p = (p1, . . . , pm), q = (q1 . . . , q`)

4 p = (p1, . . . , pm) is a probability vector if pi ≥ 0 for every 1 ≤ i ≤ m, and
∑m

i=1 pi = 1.

such that p · Mf and Mf · qT are both vectors that equal δ everywhere, for
some 0 < δ < 1. Observe that if such probability vectors exist, then the func-
tion implies the coin-tossing functionality as we described above. Specifically, P1

chooses its input according to distribution p, and P2 chooses its inputs according
to the distribution q. The result is then a coin that equals 1 with probability
δ. Using the method of von-Neumann, this can be used to obtain a uniformly
distributed coin. We conclude:

Theorem 1.1 (informal). Let f : {x1, . . . , xm} × {y1, . . . , y`} → {0, 1} be a
function that satisfies the aforementioned criterion. Then, the existence of a
protocol for securely computing f with complete fairness implies the existence of
a fair coin tossing protocol.

An immediate corollary of this theorem is that any such function cannot be
securely computed with complete fairness, as this contradicts the impossibility
result of Cleve [5].

As we have mentioned above, the more interesting and technically challenging
part of our work is a proof that the criterion is tight. That is, we prove the
following theorem:

Theorem 1.2 (informal). Let f : {x1, . . . , xm} × {y1, . . . , y`} → {0, 1} be a
function that does not satisfy the aforementioned criterion. Then, there exists
an exponential-time adversary that can bias the outcome of every coin-tossing
protocol that uses ideal and fair invocations of f .

This result has a number of ramifications. Most notably, it helps focus our
research on the question of fairness in two-party secure computation. Specifically,
the only functions that can potentially be computed securely with fairness are
those for which the property does not hold. In these functions one of the parties
can partially influence the outcome of the result singlehandedly, a fact that is
used inherently in the protocol of [9] for the function with an embedded XOR.
This does not mean that all functions of this type can be fairly computed.
However, it provides a good starting point. In addition, our results define the
set of functions for which Cleve’s impossibility result suffices for proving that
they cannot be securely computed with fairness. Given that no function other
than those implying coin tossing has been ruled out since Cleve’s initial result,
understanding exactly what is included in this impossibility is of importance.

On fail-stop adversaries. Our main results above consider the case of mali-
cious adversaries. In addition, we explore the fail-stop adversary model where
the adversary follows the protocol like an honest party, but can halt early. This
model is of interest since the impossibility result of Cleve [5] for achieving fair
coin tossing holds also for fail-stop adversaries. In order to prove theorems re-
garding the fail-stop model, we first provide a definition of security with complete
fairness for fail-stop adversaries that follows the real/ideal simulation paradigm.
Surprisingly, this turns out not to be straightforward and we provide two nat-
ural formulations that are very different regarding feasibility. The formulations

differ regarding the ideal-world adversary/simulator. The question that arises is
whether or not the simulator is allowed to use a different input to the prescribed
one. In the semi-honest model (which differs only in the fact that the adver-
sary cannot halt early) the standard formulation is to not allow the simulator
to change the prescribed input, whereas in the malicious model the simulator is
always allowed to change the prescribed input. We therefore define two fail-stop
models. In this first, called “fail-stop1”, the simulator is allowed to either send
the trusted party computing the function the prescribed input of the party or
an abort symbol ⊥, but nothing else. In the second, called “fail-stop2”, the sim-
ulator may send any input that it wishes to the trusted party computing the
function. Note, however, that if there was no early abort then the prescribed in-
put must be used because such an execution is identical to an execution between
two honest parties.

Observe that in the first model, the honest party is guaranteed to receive the
output on the prescribed inputs, unless it receives abort. In addition, observe
that any protocol that is secure in the presence of malicious adversaries is secure
also in the fail-stop2 model. However, this is not true of the fail-stop1 model
(this is due to the fact that the simulator in the ideal model for the case of
malicious adversaries is more powerful than in the fail-stop1 ideal model since
the former can send any input whereas the latter can only send the prescribed
input or ⊥).

We remark that Cleve’s impossibility result holds in both models, since the
parties do not have inputs in the coin-tossing functionality, and therefore there
is no difference in the ideal-worlds of the models in this case. In addition, the
protocols of [9] that are secure for malicious adversaries are secure for fail-stop2
(as mentioned above, this is immediate), but are not secure for fail-stop1.

We show that in the fail-stop1 model, it is impossible to securely compute
with complete fairness any function containing an embedded XOR. We show
this by constructing a coin-tossing protocol from any such function, that is se-
cure in the fail-stop model. Thus, the only functions that can potentially be
securely computed with fairness are those with no embedded XOR but with
an embedded OR (if a function has neither, then it is trivial and can be com-
puted unconditionally and fairly); we remark that there are very few functions
with this property. We conclude that in the fail-stop1 model, fairness cannot be
achieved for almost all non-trivial functions. We remark that [9] presents secure
protocols that achieve complete fairness for functions that have no embedded
XOR; however, they are not secure in the fail-stop1 model, as mentioned.

Regarding the fail-stop2 model, we prove an analogous result to Theorem 1.2.
In the proof of Theorem 1.2, the adversary that we construct changes its input
in one of the invocations of f and then continues honestly. Thus, it is malicious
and not fail-stop2. Nevertheless, we show how the proof can be modified in order
to hold for the fail-stop2 model as well.

These extensions for fail-stop adversaries deepen our understanding regard-
ing the feasibility of obtaining fairness. Specifically, any protocol that achieves
fairness for any non-trivial function (or at least any function that has an embed-

ded XOR), must have the property that the simulator can send any input in the
ideal model. Stated differently, the input that is effectively used by a corrupted
party cannot be somehow committed, thereby preventing this behaviour. This
also explains why the protocols of [9] have this property.

1.3 Open Questions

In this work we provide an almost complete characterization regarding what
functions imply and do not imply coin tossing. Our characterisation is not com-
pletely tight since the impossibility result of Theorem 1.2 only holds in the
information-theoretic setting; this is due to the fact that the adversary needs
to carry out inefficient computations. Thus, it is conceivable that coin tossing
can be achieved computationally from some such functions. It is important to
note, however, that any function that does not fulfil our criterion implies obliv-
ious transfer (OT). Thus, any protocol that uses such a function has access
to OT and all that is implied by OT (e.g., commitments, zero knowledge, and
so on). Thus, any such computational construction would have to be inherently
nonblack-box in some sense. Our work also only considers finite functions (where
the size of the domain is not dependent on the security parameter); extensions
to other function classes, including non-Boolean functions, is also of interest.

The main open question left by our work is to characterize which functions
for which the criterion does not hold can be securely computed with complete
fairness. Our work is an important step to answering this question by providing
a clearer focus than was previously known. Observe that in order to show that
a function that does not fulfil the criterion cannot be securely computed with
complete fairness, a new impossibility result must be proven. In particular, it
will not be possible to reduce the impossibility to Cleve [5] since such a function
does not imply coin tossing.

2 Definitions

The coin-tossing functionality. We define the coin-tossing functionality sim-
ply by f ct(λ, λ) = (U1, U1), where λ denotes the empty input and U1 denotes
the uniform distribution over {0, 1}. That is, the functionality receives no input,
chooses a uniformly chosen bit and gives both parties the same bit. This yields
the following definition:

Definition 2.1 (Coin-Tossing by Simulation). A protocol π is a secure coin-
tossing protocol via simulation if it securely computes f ct with complete fairness
in the presence of malicious adversaries.

The above definition provides very strong simulation-based guarantees, which
is excellent for our positive results. However, when proving impossibility, it is
preferable to rule out even weaker, non-simulation based definitions. We now
present a weaker definition where the guarantee is that the honest party out-
puts an unbiased coin, irrespective of the cheating party’s behaviour. However,

we stress that since our impossibility result only holds with respect to an all-
powerful adversary (as discussed in the introduction), our definition is stronger
than above since it requires security in the presence of any adversary, and not
just polynomial-time adversaries.

Notations. Denote by 〈P1, P2〉 a two party protocol where both parties act
honestly. For ` ∈ {1, 2}, let out`〈P ∗1 , P ∗2 〉 denote the output of party P ∗` in an
execution of P ∗1 with P ∗2 . In some cases, we also specify the random coins that
the parties use in the execution; 〈P1(r1), P2(r2)〉 denotes an execution where P1

acts honestly and uses random tape r1 and P2 acts honestly and uses random
tape r2. Let r(n) be a polynomial that bounds the number of rounds of the
protocol π, and let c(n) be an upper bound on the length of the random tape of
the parties. Let Uni denote the uniform distribution over {0, 1}c(n) × {0, 1}c(n).
We are now ready to define a coin-tossing protocol:

Definition 2.2 (information-theoretic coin-tossing). A polynomial-time
protocol π = 〈P1, P2〉 is an unbiased coin-tossing protocol, if the following hold:

1. (agreement) There exists a negligible function µ(·) such that for every n it
holds that:

Pr
r1,r2←Uni

[
out1〈P1(r1), P2(r2)〉 6= out2〈P1(r1), P2(r2)〉

]
≤ µ(n) .

2. (no bias) For every adversary A there exists a negligible function µ(·) such
that for every b ∈ {0, 1} and every n ∈ N:

Pr
[
out1〈P1,A〉 = b

]
≤ 1

2
+ µ(n) and Pr

[
out2〈A, P2〉 = b

]
≤ 1

2
+ µ(n) .

Observe that both requirements together guarantee that two honest parties
will output the same uniformly distributed bit, except with negligible probability.

Function implication. In the paper, we study whether or not a function f
“implies” the coin-tossing functionality. We now formally define what we mean
by “function implication”. Our formulation uses the notion of a hybrid model,
which is a combination of the ideal and real models (see [3, 6]). Specifically,
let f be a function. Then, an execution in the f -hybrid model consists of real
interaction between the parties (like in the real model) and ideal invocations of
f (like in the ideal model). The ideal invocations of f take place via a trusted
party that receives inputs and sends the output of f on those inputs to both
parties, exactly like in the ideal model. We stress that in our ideal model both
parties receive the output of f simultaneously since we are considering fair secure
computation. We are now ready for the definition.

Definition 2.3. Let f : X × Y → Z and g : X ′ × Y ′ → Z ′ be functions.
We say that function f implies function g in the presence of malicious adversaries
if there exists a protocol that securely computes g in the f -hybrid model with
complete fairness, in the presence of static malicious adversaries. We say that
f information-theoretically implies g if the above holds with statistical security.

Note that if g can be securely computed with fairness (under some assump-
tion), then every function f computationally implies g. Thus, this is only of
interest for functions g that either cannot be securely computed with fairness,
or for which this fact is not known.

3 The Criterion

In this section we define the criterion, and explore its properties. We start with
the definition of δ-balanced functions.

3.1 δ-Balanced Functions

A vector p = (p1, . . . , pk) is a probability vector if
∑k
i=1 pi = 1, and for every

1 ≤ i ≤ k it holds that pi ≥ 0. Let 1k be the all one vector of size k. In addition,
for a given function f : {x1, . . . , xm} × {y1, . . . , y`} → {0, 1}, let Mf denote the
matrix defined by the truth table of f . That is, for every 1 ≤ i ≤ m, 1 ≤ j ≤ `,
it holds that Mf [i, j] = f(xi, yj).

Informally, a function is balanced if there exist probabilities over the inputs
for each party that determine the probability that the output equals 1, irre-
spective of what input the other party uses. Assume that P1 chooses its input
according to the probability vector (p1, . . . , pm), meaning that it uses input xi
with probability pi, for every i = 1, . . . ,m, and assume that party P2 uses the
jth input yj . Then, the probability that the output equals 1 is obtained by mul-
tiplying (p1, . . . , pm) with the jth column of Mf . Thus, a function is balanced
on the left, or with respect to P1, if when multiplying (p1, . . . , pm) with Mf the
result is a vector with values that are all equal. Formally:

Definition 3.1. Let f : {x1, . . . , xm}× {y1, . . . , y`} → {0, 1} be a function, and
let 0 ≤ δ1, δ2 ≤ 1 be constants. We say that f is δ1-left-balanced if there exists a
probability vector p = (p1, . . . , pm) such that:

(p1, . . . , pm) ·Mf = δ1 · 1` = (δ1, . . . , δ1) .

Likewise, we say that the function f is δ2-right-balanced if there exists a proba-
bility vector q = (q1, . . . , q`) such that:

Mf · (q1, . . . , q`)
T = δ2 · 1Tm .

If f is δ1-left-balanced and δ2-right-balanced, we say that f is (δ1, δ2)-balanced.
If δ1 = δ2, then we say that f is δ-balanced, where δ = δ1 = δ2. We say that f
is strictly δ-balanced if δ1 = δ2 and 0 < δ < 1.

Note that a function may be δ2-right-balanced for some 0 ≤ δ2 ≤ 1 but
not left balanced. For example, consider the function defined by the truth table

Mf
def
=

[
1 0 1
0 1 1

]
. This function is right balanced for δ2 = 1

2 by taking q = (1
2 ,

1
2 , 0).

However, it is not left-balanced for any δ1 because for every probability vector

(p1, p2) = (p, 1−p) it holds that (p1, p2)·Mf̃ = (p, 1−p, 1), which is not balanced
for any p. Likewise, a function may be δ2-right-balanced, but not left balanced.

We now prove a simple but somewhat surprising proposition, stating that if
a function is (δ1, δ2)-balanced, then δ1 and δ2 must actually equal each other.
Thus, any (δ1, δ2)-balanced function is actually δ-balanced.

Proposition 3.2. Let f : {x1, . . . , xm} × {y1, . . . , y`} → {0, 1} be a (δ1, δ2)-
balanced function for some constants 0 ≤ δ1, δ2 ≤ 1. Then, δ1 = δ2, and so f is
δ-balanced.

Proof: Under the assumption that f is (δ1, δ2)-balanced, we have that there
exist probability vectors p = (p1, . . . , pm) and q = (q1, . . . , q`) such that p·Mf =
δ1 ·1` and Mf ·qT = δ2 ·1Tm. Observe that since p and q are probability vectors,
it follows that for every constant c we have p · (c ·1Tm) = c · (p ·1Tm) = c; likewise
(c · 1`) · qT = c. Thus,

p ·Mf · qT = p ·
(
Mf · qT

)
= p ·

(
δ2 · 1Tm

)
= δ2

and
p ·Mf · qT =

(
p ·Mf

)
· qT =

(
δ1 · 1`

)
· qT = δ1,

implying that δ1 = δ2.

Note that a function can be both δ2-right-balanced and δ′2-right-balanced for
some δ2 6= δ′2. For example, consider the function Mf , which was defined above.
It is easy to see that the function is δ2-right-balanced for every 1/2 ≤ δ2 ≤ 1
(by multiplying with the probability vector (1 − δ2, 1 − δ2, 2δ2 − 1)T from the
right). Nevertheless, in cases where a function is δ2-right-balanced for multiple
values, Proposition 3.2 implies that the function cannot be left-balanced for any
δ1. Likewise, if a function is δ1-left balanced for more than one value of δ1, it
cannot be right-balanced.

3.2 The Criterion

The criterion for determining whether or not a function implies coin-tossing is
simply the question of whether the function is strictly δ-balanced for some δ.
Formally:

Property 3.3. A function f : {x1, . . . , xm} × {y1, . . . , y`} → {0, 1} is strictly
balanced if it is δ-balanced for some 0 < δ < 1.

Observe that if Mf has a monochromatic row (i.e., there exists an input
x such that for all yi, yj it holds that f(x, yi) = f(x, yj)), then there exists a
probability vector p such that p ·Mf = 0 · 1` or p ·Mf = 1 · 1`; likewise for a
monochromatic column. Nevertheless, we stress that the existence of such a row
and column does not imply f is strictly balanced since it is required that δ be
strictly between 0 and 1, and not equal to either.

3.3 Exploring the δ-Balanced Property

In this section we prove some technical lemmas regarding the property that
we will need later in the proof. First, we show that if a function f is not left-
balanced for any 0 ≤ δ ≤ 1 (resp. not right balanced), then it is not close to
being balanced. More precisely, it seems possible that a function f can be not
δ-balanced, but is only negligibly far from being balanced (i.e., there may exist
some probability vector p = p(n) (that depends on the security parameter n)
such that all the values in the vector p · Mf are at most negligibly far from
δ, for some 0 ≤ δ ≤ 1). In the following claim, we show that this situation is
impossible. Specifically, we show that if a function is not δ balanced, then there
exists some constant c > 0, such that for any probability vector p, there is a
distance of at least c between two values in the vector p ·Mf . This holds also
for probability vectors that are functions of the security parameter n (as can be
the case in our setting of secure protocols).

Lemma 3.4. Let f : {x1, . . . , xm} × {y1, . . . , y`} → {0, 1} be a function that is
not left balanced for any 0 ≤ δ1 ≤ 1 (including δ1 = 0, 1). Then, there exists a
constant c > 0, such that for any probability vector p = p(n), it holds that:

max
i

(δ1, . . . , δ`)−min
i

(δ1, . . . , δ`) ≥ c

where (δ1, . . . , δ`) = p ·Mf , and Mf is the matrix representation of f .

Proof: Let Pm be the set of all probability vectors of size m. That is, Pm ⊆
[0, 1]m (which itself is a subset of Rm), and each vector sums up to one. Pm is
a closed and bounded space. Therefore using the Heine-Borel theorem, Pm is a
compact space.

We start by defining a function φ : Pm → [0, 1] as follows:

φ(p) = max
i

(p ·Mf)−min
i
·(p ·Mf)

Clearly, the function p · Mf (where Mf is fixed and p is the variable) is a
continuous function. Moreover, the maximum (resp. minimum) of a continuous
function is itself a continuous function. Therefore, from composition of contin-
uous functions we have that the function φ is continuous. Using the extreme
value theorem (a continuous function from a compact space to a subset of the
real numbers attains its maximum and minimum), there exists some probability
vector pmin for which for all p ∈ Pm, φ(pmin) ≤ φ(p). Since f is not δ-balanced,

pmin ·Mf 6= δ · 1` for any 0 ≤ δ ≤ 1, and so φ(pmin) > 0. Let c
def
= φ(pmin).

This implies that for any probability vector p, we have that φ(p) ≥ φ(pmin) = c.
That is:

max
i

(δ1, . . . , δ`)−min
i

(δ1, . . . , δ`) ≥ c (1)

where (δ1, . . . , δ`) = p·Mf . We have proven this for all probability vectors of size
m. Thus, it holds also for every probability vector p(n) that is a function of n,
and for all n’s (this is true since for every n, p(n) defines a concrete probability
vector for which Eq. (1) holds).

A similar claim holds for the case where f is not right balanced.

4 Strictly-Balanced Functions Imply Coin Tossing

In this section, we show that any function f that is strictly balanced can be used
to fairly toss a coin. Intuitively, this follows from the well known method of Von
Neumann [12] for obtaining an unbiased coin toss from a biased one. Specifically,
given a coin that is heads with probability ε and tails with probability 1 − ε,
Von Neumann showed that you can toss a coin that is heads with probability
exactly 1/2 by tossing the coin twice in each phase, and stopping the first time
that the pair is either heads-tails or tails-heads. Then, the parties output heads
if the pair is heads-tails, and otherwise they output tails. This gives an unbiased
coin because the probability of heads-tails equals the probability of tails-heads
(namely, both probabilities equal ε · (1− ε)). Now, since the function f is strictly
δ-balanced it holds that if party P1 chooses its input via the probability vector
(p1, . . . , pm) then the output will equal 1 with probability δ, irrespective of what
input is used by P2; likewise if P2 chooses its input via (q1, . . . , q`) then the
output will be 1 with probability δ irrespective of what P1 does. This yields a
coin that equals 1 with probability δ and thus Von Neumann’s method can be
applied to achieve unbiased coin tossing. We stress that if one of the parties
aborts early and refuses to participate, then the other party proceeds by itself
(essentially, tossing a coin with probability δ until it concludes). We have the
following theorem:

Theorem 4.1. Let f : {x1, . . . , xm}×{y1, . . . , y`} → {0, 1} be a strictly-balanced
function for some constant 0 < δ < 1, as in Property 3.3. Then, f information-
theoretically and computationally implies the coin-tossing functionality f ct with
malicious adversaries.

Application to fairness. Cleve [5] showed that there does not exist a protocol
that securely computes the fair coin-tossing functionality in the plain model.
Since any strictly-balanced function f implies the coin-tossing functionality, a
protocol for f in the plain model implies the existence of a protocol for coin-
tossing in the plain model. We therefore conclude:

Corollary 4.2. Let f : {x1, . . . , xm}×{y1, . . . , y`} → {0, 1} be a strictly-balanced
function. Then, f cannot be securely computed with fairness (with computational
or information-theoretic security).

5 Unbalanced Functions Do Not Information-
Theoretically Imply Coin Tossing

We now show that any function f that is not strictly-balanced (for all δ) does not
information-theoretically imply the coin-tossing functionality. Stated differently,
there does not exist a protocol for fairly tossing an unbiased coin in the f -hybrid
model, with statistical security. Observe that in the f -hybrid model, it is possible
for the parties to simultaneously exchange information, in some sense, since
both parties receive output from calls to f at the same time. Thus, Cleve-type
arguments [5] that are based on the fact that one party must know more than

the other party at some point do not hold. We prove our result by showing that
for every protocol there exists an unbounded malicious adversary that can bias
the result. Our unbounded adversary needs to compute probabilities, which can
actually be approximated given an NP-oracle. Thus, it is possible to interpret
our technical result also as a black-box separation, if desired.

As we have mentioned in the introduction, although we prove an “impossi-
bility result” here, the implication is the opposite. Specifically, our proof that an
unbalanced5 f cannot be used to toss an unbiased coin implies that it may be
possible to securely compute such functions with fairness. Indeed, the functions
that were shown to be securely computable with fairness in [9] are unbalanced.

Recall that a function is not strictly balanced if is not δ-balanced for any
0 < δ < 1. We treat the case that the function is not δ-balanced at all separately
from the case that it is δ-balanced but for δ = 0 or δ = 1. In the proof we show
that in both of these cases, such a function cannot be used to construct a fair
coin tossing protocol.

Theorem 5.1. Let f :{x1, . . . , xm}×{y1, . . . , y`} → {0, 1} be a function that is
not left-balanced, for any 0 ≤ δ1 ≤ 1. Then, f does not information-theoretically
imply the coin-tossing functionality with malicious adversaries.

Proof Idea: We begin by observing that if f does not contain an embedded OR
(i.e., inputs x0, x1, y0, y1 such that f(x0, y0) = f(x1, y0) = f(x0, y1) 6= f(x1, y1))
or an embedded XOR (i.e., inputs x0, x1, y0, y1 such that f(x0, y0) = f(x1, y1) 6=
f(x0, y1) = f(x1, y0)), then it is trivial and can be computed by simply having
one party send the output to the other. This is because such a function depends
only on the input of one party. Thus, by [5], it is impossible to fairly toss an
unbiased coin in the f -hybrid model, since this is the same as fairly tossing an
unbiased coin in the plain model. Thus, we consider only functions f that have
an embedded OR or an embedded XOR.

In addition, we consider coin-tossing protocols that consist of calls to f only,
and no other messages. This is due to the fact that we can assume that any
protocol consists of rounds, where each round is either an invocation of f or a
message consisting of a single bit being sent from one party to the other. Since
f has an embedded OR or an embedded XOR, messages of a single bit can be
sent by invoking f . This is due to the fact that in both cases there exist inputs
x0, x1, y0, y1 such that f(x1, y0) 6= f(x1, y1) and f(x0, y1) 6= f(x1, y1). Thus, in
order for P2 to send P1 a bit, the protocol can instruct the parties to invoke f
where P1 always inputs x1, and P2 inputs y0 or y1 depending on the bit that it
wishes to send; similarly for P1. Thus, any non-trivial function f enables “bit
transmission” in the above sense. Observe that if one of the parties is malicious
and uses an incorrect input, then this simply corresponds to sending an incorrect
bit in the original protocol.

Intuition. The fact that f is not balanced implies that in any single invocation
of f , one party is able to have some effect on the output by choosing its input

5 Note, that the name unbalanced is a bit misleading as the complement of not being
strictly balanced also includes being 1 or 0-balanced.

appropriately. That is, if the function is non-balanced on the left then the party
on the right can use an input not according to the prescribed distribution in the
protocol, and this will change the probability of the output of the invocation
being 1 (for example). However, it may be possible that the ability to somewhat
influence the output in individual invocations is not sufficient to bias the overall
computation, due to the way that the function calls are composed. Thus, in the
proof we need to show that an adversary is in fact capable of biasing the overall
protocol. We demonstrate this by showing that there exist crucial invocations
where the ability to bias the outcome in these invocation suffice for biasing the
overall outcome. Then, we show that such invocations are always reached in any
execution of the protocol, and that the adversary can (inefficiently) detect when
such an invocation has been reached and can (inefficiently) compute which input
it needs to use in that invocation in order to bias the output.

We prove the above by considering the execution tree of the protocol, which
is comprised of calls to f and the flow of the computation based on the output
of f in each invocation (i.e., the parties proceed left in the tree if the output of f
in this invocation is 0; and right otherwise). Observe that a path from the root
of the tree to a leaf-node represents a protocol execution. We show that in every
path from the root to a leaf, there exists at least one node with the property
that influencing the output of the single invocation of that node yields a bias
in the final outcome. In addition, we describe the strategy of the adversary to
detect such a node and choose its input for that node in order to obtain a bias.

In more detail, for every node v in the execution tree of the protocol, the
adversary calculates (in an inefficient manner) the probability that the output of
the computation equals 1, assuming that v is reached in the execution. Observe
that the probability of obtaining 1 at the root node is at most negligibly far
from 1/2 (since it is a secure coin-tossing protocol), and that the probability of
obtaining 1 at a leaf node is either 1 or 0, depending on whether the output at
the given leaf is 1 or 0 (the way that we define the tree is such that the output is
fully determined by the leaf). Using a pigeon-hole like argument, we show that
on every path from the root to a leaf there must be at least one node where
the probability of outputting 1 given that this node is reached is significantly
different than the probability of outputting 1 given that the node’s child on the
path is reached. We further show that this difference implies that the two children
of the given node yield significantly different probabilities of outputting 1 (since
the probability of outputting 1 at a node v is the weighted-average of outputting
1 at the children, based on the probability of reaching each child according to
the protocol). This implies that in every protocol execution, there exists an
invocation of f where the probability of outputting 1 in the entire protocol is
significantly different if the output of this invocation of f is 0 or 1. Since f is
not balanced, it follows that for any distribution used by the honest party to
choose its input for this invocation, there exist two inputs that the corrupted
party can use that result in significantly different probabilities of obtaining 1.
In particular, at least one of these probabilities is significantly different from the
probability of obtaining 1 in this call when both parties are honest and follow the

protocol.6 Thus, the adversary can cause the output of the entire execution to
equal 1 with probability significantly different than 1/2, which is the probability
when both parties play honestly.

The above description does not deal with question of whether the output will
be biased towards 0 or 1. In fact we design two adversaries, one that tries to
bias the output towards 0 and the other towards 1. Then we show that at least
one of these adversaries will be successful (see Footnote 6 for an explanation as
to why only one of the adversaries may be successful). The two adversaries are
similar and very simple. They search for the node on the path of the execution
where the bias can be created and there make their move. In all nodes until and
after that node they behave honestly (i.e., choose inputs for the invocations of
f according to the input distribution specified by the protocol). We analyze the
success of the adversaries and show that at least one of them biases the output
with noticeable probability. The full proof appears in [1].

The above theorem proves impossibility for the case that the function is not
balanced. As we have mentioned, we must separately deal with the case that
the function is balanced, but not strictly balanced; i.e., the function is either
0-balanced or 1-balanced. The main difference in this case is that not all nodes
which have significantly different probabilities in their two children can be used
by the adversary to bias the outcome. This is due to the fact that the protocol
may specify an input distribution for the honest party at such a node that forces
the output to be either 0 or 1 (except with negligible probability), and so the
“different child” is only reached with negligible probability. This can happen
since the function is balanced with δ = 0 or δ = 1. The proof therefore shows
that this cannot happen too often, and the adversary can succeed enough to bias
the output. The following is proven in [1]:

Theorem 5.2. Let f :{x1, . . . , xm}×{y1, . . . , y`} → {0, 1} be a 1-balanced or a
0-balanced function. Then, f does not information-theoretically imply the coin-
tossing protocol.

Conclusion: Combining Theorems 4.1, 5.1 and 5.2, we obtain the following:

Corollary 5.3. Let f :{x1, . . . , xm}×{y1, . . . , y`} → {0, 1} be a function.

1. If f is strictly-balanced, then f implies the coin-tossing functionality (com-
putationally and information theoretically).

2. If f is not strictly-balanced, then f does not information-theoretically imply
the coin-tossing functionality with malicious adversaries.

Impossibility in the OT-hybrid model. Our proof of impossibility holds only
in the information-theoretic setting since the adversary must carry out computa-
tions that do not seem to be computable in polynomial-time. It is natural to ask

6 Observe that one of these probabilities may be the same as the probability of ob-
taining 1 in an honest execution, in which case choosing that input will not result in
any bias. Thus, the adversary may be able to bias the output of the entire protocol
towards 1 or may be able to bias the output of the entire protocol towards 0, but
not necessarily both.

whether or not the impossibility result still holds in the computational setting.
We do not have an answer to this question. However, as a step in this direction,
we show that the impossibility still holds if the parties are given access to an
ideal oblivious transfer (OT) primitive as well as to the function f . That is, we
prove the following:

Theorem 5.4. Let f : {x1, . . . , xm}×{y1, . . . , y`} → {0, 1} be a function. If f
is not strictly-balanced, then the pair of functions (f,OT) do not information-
theoretically imply the coin tossing functionality with malicious adversaries.

Proof: In order to see that this is the case, first observe that if f has an
embedded-OR then it implies oblivious transfer [10]. Thus, f can be used to
obtain OT, and so the question of whether f implies coin tossing or (f,OT)
imply coin tossing is the same. It thus remains to consider the case that f
does not have an embedded OR but does have an embedded XOR (if it has
neither then it is trivial and so clearly cannot imply coin tossing, as we have
mentioned). We now show that in such a case f must be strictly balanced, and
so this case is not relevant. Let x1, x2, y1, y2 be an embedded XOR in f ; i.e.,
f(x1, y1) = f(x2, y2) 6= f(x1, y2) = f(x2, y1). Now, if there exists a y3 such that
f(x1, y3) = f(x2, y3) then f has an embedded OR. Thus, x1 and x2 must be
complementary rows (as in example function (a) in the Introduction). Likewise,
if there exists an x3 such that f(x3, y1) = f(x3, y2) then f has an embedded OR.
Thus, y1 and y2 must be complementary columns. We conclude that f has two
complementary rows and columns, and as we have shown in the Introduction,
this implies that f is strictly balanced with δ = 1

2 .

6 Fairness in the Presence of Fail-Stop Adversaries

In order to study the feasibility of achieving fair secure computation in the fail-
stop model, we must first present a definition of security for this model. To the
best of our knowledge, there is no simulation-based security definition for the fail-
stop model in the literature. As we have mentioned in the introduction, there are
two natural ways of defining security in this model, and it is not clear which is the
“correct one”. We therefore define two models and study feasibility for both. In
the first model, the ideal-model adversary/simulator must either send the party’s
prescribed input to the trusted party computing the function, or a special abort
symbol ⊥, but nothing else. This is similar to the semi-honest model, except that
⊥ can be sent as well. We note that if ⊥ is sent, then both parties obtain ⊥ as
output and thus fairness is preserved.7 This is actually a very strong requirement
from the protocol since both parties either learn the prescribed output, or they

7 It is necessary to allow an explicit abort in this model since if the corrupted party
does not participate at all then the output cannot be computed. The typical solution
to this problem, which is to take some default input, is not appropriate here because
this means that the simulator can change the input of the corrupted party. Thus,
such an early abort must result in output ⊥.

both output ⊥. In the second model, the ideal adversary can send any input
that it wishes to the trusted party, just like a malicious adversary. We remark
that if the real adversary does not abort a real protocol execution, then the
result is the same as an execution of two honest parties and thus the output
is computed from the prescribed inputs. This implies that the ideal adversary
can really only send a different input in the case that the real adversary halts
before the protocol is completed. As we have mentioned in the Introduction, the
impossibility result of Cleve [5] for coin-tossing holds in both models, since the
parties have no input, and so for this functionality the models are identical.

6.1 Fail-Stop 1

In this section we define and explore the first fail-stop model.

Execution in the ideal world. An ideal execution involves parties P1 and P2,
an adversary S who has corrupted one of the parties, and the trusted party. An
ideal execution for the computation of f proceeds as follows:

Inputs: P1 and P2 hold inputs x ∈ X, and y ∈ Y , respectively; the adversary
S receives the security parameter 1n and an auxiliary input z.

Send inputs to trusted party: The honest party sends its input to the trusted
party. The corrupted party controlled by S may send its prescribed input
or ⊥.

Trusted party sends outputs: If an input ⊥ was received, then the trusted
party sends ⊥ to both parties. Otherwise, it computes f(x, y) and sends the
result to both parties.

Outputs: The honest party outputs whatever it was sent by the trusted party,
the corrupted party outputs nothing and S outputs an arbitrary function of
its view.

We denote by IDEAL
f-stop-1
f,S(z) (x, y, n) the random variable consisting of the output

of the adversary and the output of the honest party following an execution in
the ideal model as described above.

Security. The real model is the same as is defined in the standard definition of
secure two-party computation [6], except that we consider adversaries that are
fail-stop only. This means that the adversary must behave exactly like an honest
party, except that it can halt whenever it wishes during the protocol. We stress
that its decision to halt or not halt, and when, may depend on its view. We are
now ready to present the security definition.

Definition 6.1 (security – fail-stop1). Protocol π securely computes f with
complete fairness in the fail-stop1 model if for every non-uniform probabilistic
polynomial-time fail-stop adversary A in the real model, there exists a non-
uniform probabilistic polynomial-time adversary S in the ideal model such that:{

IDEAL
f-stop-1
f,S(z) (x, y, n)

}
c≡
{
REALπ,A(z)(x, y, n)

}
where x ∈ X, y ∈ Y , z ∈ {0, 1}∗ and n ∈ N.

Exploring fairness in the fail-stop-1 model. We first observe that if a
function contains an embedded XOR, then it cannot be computed fairly in this
model.

Theorem 6.2. Let f : {x1, . . . , xm} × {y1, . . . , y`} → {0, 1} be a function that
contains an embedded XOR. Then, f implies the coin-tossing functionality and
thus cannot be computed fairly.

Proof: Assume that f contains an embedded XOR; i.e., there exist inputs
x1, x2, y1, y2 such that f(x1, y1) = f(x2, y2) 6= f(x1, y2) = f(x2, y1). We can
easily construct a protocol for coin-tossing using f that is secure in the fail-stop
model. Party P1 chooses input x ∈ {x1, x2} uniformly at random, P2 chooses
y ∈ {y1, y2} uniformly at random, and the parties invoke the function f where
P1 inputs x and P2 inputs y. In case the result of the invocation is ⊥, the other
party chooses its output uniformly at random.

Since the adversary is fail-stop1, it must follow the protocol specification
(including choosing its input in the invocation of f correctly until it aborts
when it can input ⊥). In both cases, it is easy to see that the honest party
outputs an unbiased coin. Formally, for any given fail-stop adversary A we can
construct a simulator S: S receives from the coin tossing functionality f ct the
bit b, and invokes the adversary A. If A sends the trusted party computing f
the symbol ⊥, then S responds with ⊥. Otherwise, (if A sends some real value
- either x1, x2 if it controls P1, or y1, y2 if it controls P2), then S responds with
the bit b that it received from f ct as if it is the output of the ideal call to f . It
is easy to see that the ideal and real distributions are identical.

As we have mentioned, if a function does not contain an embedded XOR or
OR then it is trivial and can be computed fairly (because the output depends on
only one of the parties’ inputs). It therefore remains to consider the feasibility of
fairly computing functions that have an embedded OR but no embedded XOR.
Gordon et. al [9] present a protocol for securely computing any function of this
type with complete fairness, in the presence of a malicious adversary. However,
the security of their protocol relies inherently on the ability of the simulator
to send the trusted party an input that is not the corrupted party’s prescribed
input. Thus, their protocol seems not to be secure in this model.

The problem of securely computing functions that have an embedded OR
but no embedded XOR therefore remains open. We remark that there are very
few functions of this type, and these functions have a very specific structure, as
discussed in [9].

6.2 Fail-Stop 2

In this section we define and explore the second fail-stop model. In this case,
the ideal adversary can send any value it wishes to the trusted party (and the
output of the honest party is determined accordingly). It is easy to see that
in executions where the real adversary does not abort the output is the same
as between two honest parties. Thus, the ideal adversary is forced to send the

prescribed input of the party in this case. Observe that the ideal model here
is identical to the ideal model for the case of malicious adversaries. Thus, the
only difference between this definition and the definition of security for malicious
adversaries is the quantification over the real adversary; here we quantify only
over fail-stop real adversaries. Otherwise, all is the same.

Definition 6.3 (security – fail-stop2). Protocol π securely computes f with
complete fairness in the fail-stop2 model if for every non-uniform probabilistic
polynomial-time fail-stop adversary A in the real world, there exists a non-
uniform probabilistic polynomial-time adversary S in the ideal model such that:{

IDEALf,S(z)(x, y, n)
} c≡

{
REALπ,A(z)(x, y, n)

}
where x ∈ X, y ∈ Y , z ∈ {0, 1}∗ and n ∈ N, and IDEAL denotes the standard
ideal model for malicious adversaries.

In the g-hybrid-model for fail-stop2 adversaries, where the parties have access
to a trusted party computing function g for them, a corrupted party may provide
an incorrect input to an invocation of g as long as it halts at that point. This may
seem arbitrary. However, it follows naturally from the definition since a secure
fail-stop2 protocol is used to replace the invocations of g in the real model. Thus,
if a fail-stop adversary can change its input as long as it aborts in the real model,
then this capability is necessary also for invocations of g in the g-hybrid model.

Exploring fairness in the fail-stop-2 model. In the following we show that
the malicious adversaries that we constructed in the proofs of Theorem 5.1 and
Theorem 5.2 can be modified to be fail-stop2. We remark that the adversaries
that we constructed did not abort during the protocol execution, but rather
continued after providing a “different” input in one of the f invocations. Thus,
they are not fail-stop2 adversaries. In order to prove the impossibility for this
case, we need to modify the adversaries so that they halt at the node v for which
they can bias the outcome of the invocation (i.e., a node v for which v’s children
in the execution tree have significantly different probabilities for the output of the
entire execution equalling 1). Recall that in this fail-stop model, the adversary
is allowed to send a different input than prescribed in the invocation at which it
halts; thus, this is a valid attack strategy. In the full paper we prove:

Theorem 6.4. Let f :{x1, . . . , xm}×{y1, . . . , y`} → {0, 1} be a function that is
not δ-balanced, for any 0 < δ < 1. Then, f does not information-theoretically
imply the coin-tossing protocol in the fail-stop2 model.

We prove the above by considering two possible cases, relating to the poten-
tial difference between the honest party outputting 1 at a node when the other
party aborts at that node but until then was fully honest, or when the other
party continues honestly from that node (to be more exact, we consider the av-
erage of these differences over all nodes). First, assume that there is a noticeable
difference between an abort after fully honest behavior and a fully honest execu-
tion. In this case, we construct a fail-stop adversary who plays honestly until an

appropriate node where such a difference occurs and then halts. (In fact, such an
adversary is even of the fail-stop1 type). Next, assume that there is no notice-
able difference between an abort after fully honest behavior and a fully honest
execution. Intuitively, this means that continuing honestly or halting makes no
difference. Thus, if we take the malicious adversaries from Section 5 and modify
them so that they halt immediately after providing malicious input (as allowed
in the fail-stop2 model), then we obtain that there is no noticeable difference
between the original malicious adversary and the fail-stop2 modified adversary.
We remark that this is not immediate since the difference in this case is between
aborting and not aborting without giving any malicious input. However, as we
show, if there is no difference when honest inputs are used throughout, then this
is also no difference when a malicious input is used.

We conclude that one of the two types of fail-stop2 adversaries described
above can bias any protocol.

Acknowledgements

We thank Gene S. Kopp and John D. Wiltshire-Gordon for helpful discussions.

References

1. Full version of this work. Cryptology ePrint Archive, 2012.
2. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-

cryptographic fault-tolerant distributed computation. 20th STOC, 1–10, 1988.
3. R. Canetti. Security and composition of multiparty cryptographic protocols.

Journal of Cryptology, 13(1):143–202, 2000.
4. D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty unconditionally secure

protocols. In the 20th STOC, pages 1–10, 1988.
5. R. Cleve. Limits on the security of coin flips when half the processors are faulty

(extended abstract). In the 18th STOC, pages 364–369, 1986.
6. O. Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications.

Cambridge University Press, 2004.
7. O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their

validity or all languages in NP have zero-knowledge proof systems. JACM,
38(1):691–729, 1991.

8. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or
a completeness theorem for protocols with honest majority. In the 19th STOC,
pages 218–229, 1987.

9. S.D. Gordon, C. Hazay, J. Katz, and Y. Lindell. Complete fairness in secure
two-party computation. JACM, 58(6):24, 2011.

10. J. Kilian. A general completeness theorem for two-party games. In 23rd STOC,
pages 553–560, 1991.

11. T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols
with honest majority. In the 21st STOC, pages 73–85, 1989.

12. J. von Neumann. Various Techniques Used in Connection with Random Digits.
Journal of Research of the National Bureau of Standards, 12:36–38, 1951.

13. A. Yao. How to generate and exchange secrets (extended abstract). In the27th
FOCS, pages 162–167, 1986.

