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Abstract. A Zero-Knowledge PCP (ZK-PCP) is a randomized PCP
such that the view of any (perhaps cheating) efficient verifier can be
efficiently simulated up to small statistical distance. Kilian, Petrank, and
Tardos (STOC ’97) constructed ZK-PCPs for all languages in NEXP.
Ishai, Mahmoody, and Sahai (TCC ’12), motivated by cryptographic
applications, revisited the possibility of efficient ZK-PCPs for all of NP
where the PCP is encoded as a polynomial-size circuit that given a query
i returns the ith symbol of the PCP. Ishai et al. showed that there is no
efficient ZK-PCP for NP with a non-adaptive verifier, that prepares all of
its PCP queries before seeing any answers, unless NP ⊆ coAM and the
polynomial-time hierarchy collapses. The question of whether adaptive
verification can lead to efficient ZK-PCPs for NP remained open.
In this work, we resolve this question and show that any language or
promise problem with efficient ZK-PCPs must be in SZK (the class of
promise problems with a statistical zero-knowledge single prover proof
system). Therefore, no NP-complete problem can have an efficient ZK-
PCP unless NP ⊆ SZK (which also implies NP ⊆ coAM and the
polynomial-time hierarchy collapses). We prove our result by reducing
any promise problem with an efficient ZK-PCP to two instances of the
Conditional Entropy Approximation problem defined and studied
by Vadhan (FOCS’04) which is known to be complete for the class SZK.
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1 Introduction

Since their inception, interactive proofs [GMR89,BM88] have had a trans-
formative effect on theoretical computer science in general and the foun-
dations of cryptography in particular. In an interactive proof for a lan-
guage L, a computationally bounded randomized verifier V and an all-
powerful prover P are given a common input x, and P tries to convince V
that x ∈ L. The proof must be complete: P successfully convinces V that
x ∈ L; as well as sound : no cheating prover P̂ should be able to convince
V that x ∈ L when x /∈ L. [GMR89] showed that by allowing interaction
and probabilistic verification, nontrivial languages outside of BPP can
be proved while the verifier statistically “learns nothing” beyond the fact
that x ∈ L. Thus in eyes of the verifier, the interaction remains “zero-
knowledge”. Shortly after, [GMW91] extend this fundamental result to all
of NP based on computational assumptions and a computational variant
of the notion of zero-knowledge.

The notion of zero-knowledge is formalized using the simulation paradigm:
for each (possibly cheating) efficient verifier, there is an efficient simulator
that generates a verifier view that is indistinguishable from the view the
verifier would obtain by honestly interacting with the prover, and there-
fore anything the verifier could do using a transcript of his interaction
with the prover, he could do by using the simulator (without talking to
the prover). Throughout this paper by default we mean statistical in-
distinguishability and statistical zero knowledge, namely they must hold
against any (possibly computationally inefficient) distinguisher. Any dis-
cussion about computational indistinguishability will be made explicit.

Motivated by the goal of unconditional security, Ben-Or et al. [BGKW88]
showed that if a verifier V interacts with multiple interactive provers
(MIPs) P1,P2, . . . who may coordinate on a strategy beforehand, but are
unable to communicate once the interaction with V starts, then all lan-
guages in NP can be proved in a (statistical) zero-knowledge way with-
out any computational assumption. Fortnow, Rompel, and Sipser [FRS94]
showed that, the MIP model is essentially equivalent to having a (perhaps
exponentially long) proof, whose answers to all possible queries are fixed
before interaction begins (in contrast to the usual notion of a prover,
who may choose to alter his answers based on the queries he has seen
so far). Such proof systems are now known as probabilistically checkable
proofs (PCPs for short) and have found applications throughout theo-
retical computer science, notably in the areas of hardness of approxima-



tion through the celebrated PCP theorem [BFL90, AS98, ALM+98] and
communication-efficient interactive proofs [Kil92].

The existence of of ZK proofs for NP in the MIP model [BGKW88]
and the “equivalence” of MIP and PCP models (as a proof system)
raised the following basic question: Does NP have PCPs that remain
zero-knowledge against malicious verifiers?

The work of [BGKW88] does not resolve this question, because their
protocol, when implemented in the PCP model, remains ZK only if cheat-
ing verifiers follow the protocol honestly. This highlights an important
point: since we have no control over the cheating verifier (except that
we assume it is efficient), if the proof is polynomial size then a cheating
verifier may read the entire proof and this is not zero knowledge. There-
fore, the proof π should be super-polynomially long, and we assume that
an efficient (perhaps cheating) verifier V̂ is only allowed black-box access
to the proof. Since V̂ is polynomially bounded, having black-box access
to such a proof π means that V̂ will be able to query only polynomi-
ally many symbols in the proof at will. Thus, by definition, ZK-PCPs
are incomparable to standard (statistical) zero knowledge proofs in the
single or multi-prover proof systems: (1) the zero knowledge property is
harder to achieve in the PCP model because the proof is fixed and there
is no control on which queries the verifier chooses to make, (2) but the
soundness property may be easier to achieve in the PCP model because
the soundness is required only against fixed cheating proofs (rather than
cheating provers who may adaptively manipulate their answers).

Kilian, Petrank, and Tardos [KPT97] were the first to explicitly study
the question above and (relying on the previous work of [DFK+92] which
in turn relied on the PCP theorem) showed that in fact every language
in NEXP has a ZK-PCP. Their ZK-PCPs, however, were not efficient
even when constructed for languages in NP, where by an efficient PCP
for L ∈ NP, we mean any PCP π whose answer π(q) to any query q can
be computed using a polynomial size circuit (which may depend on the
common input x ∈ L, a witness w that x ∈ L, and an auxiliary random
string rπ). This limitation is inherent in the approach of [KPT97], since
in order to be ZK, their PCP requires more entropy than the number of
queries made by any cheating verifier.

Motivated by the lack of progress for over 10 years towards giving
ZK-PCPs for NP that are ZK with respect to all efficient cheating ver-
ifiers, Ishai, Mahmoody, and Sahai [IMS12] asked whether this may be
inherently impossible. Namely, they asked the following question, which
is also the main question studied in this work.



Main Question: Are there efficient ZK-PCPs for NP?

Ishai et al. proved that any language or promise problem L with an ef-
ficient ZK-PCP where the honest verifier’s queries are non-adaptive must
satisfy L ∈ coAM. Therefore, NP does not have such efficient ZK-PCPs
unless the polynomial-time hierarchy collapses [BHZ87]. Thus, the main
question above remained open whether there exist efficient ZK-PCPs for
NP if we allow the verifier to be adaptive. In this paper we resolve this
question in the negative; namely we prove:

Theorem 1 (Main Result). Any promise problem L with an efficient
ZK-PCP is in SZK.

This strengthens the negative result of [IMS12] in two ways: (1) we lift
the restriction that the verifier be non-adaptive, and (2) we can conclude
that L ∈ SZK which is stronger than L ∈ AM∩coAM, since it is known
that SZK ⊆ AM∩coAM [For89,AH91]. On the other hand, [IMS12] only
requires zero-knowledge to hold for non-adaptive malicious verifiers, while
we assume that the zero-knowledge property holds for general (adaptive)
malicious verifiers. (This is natural, since if the honest verifier is adaptive
then even honest-verifier zero-knowledge would require zero-knowledge
against an adaptive verifier, namely the honest one.) Finally, we empha-
size that Theorem 1 does not assume that the simulation is black-box.

Relation to Resettable Zero-Knowledge. The notion of resettable zero-
knowledge single prover proof systems introduced by Canetti et al. [CGGM00]
is comparably stronger than the notion of ZK-PCPs. Essentially, a resettable-
ZK proof is a ZK-PCP where soundness is required to hold even against
adaptive cheating provers who may manipulate their answers based on
the queries they see (rather than just fixed cheating proofs). Canetti
et al. [CGGM00] showed how to obtain efficient PCPs that are compu-
tational zero-knowledge based on computational hardness assumptions.
Thus, in the case of computational zero knowledge, the question is re-
solved in the positive direction (under believable computational assump-
tions). Similarly, it would be possible to get statistical zero-knowledge
probabilistically checkable arguments (with soundness against computa-
tionally bounded stateful provers) if one can construct resettable statis-
tical zero-knowledge arguments. The work of [GMOS07] shows the ex-
istence of a closely related object, namely concurrent statistical zero-
knowledge arguments for all of NP. But recall that in this work, both
the zero-knowledge and the soundness are statistical, and so these men-
tioned results do not resolve our main question.



Recently, Garg et al. [GOVW12] showed that efficient resettable sta-
tistical ZK proof systems exist for non-trivial languages (e.g. Quadratic
Residuosity) based on computational assumptions. Therefore under the
same assumptions, these languages also possess efficient ZK-PCPs. Garg
et al. also showed that assuming the existence of exponentially hard one-
way functions, statistical zero-knowledge proof systems can be made re-
settable. Unfortunately this transformation does not preserve the effi-
ciency of the prover. Therefore, even though by the works of Micciancio,
Ong, and Vadhan [MV03,OV08] we know that SZK∩NP has statistical
zero-knowledge proofs with an efficient prover, the result of [GOVW12]
does not necessarily preserve this efficiency.

Finally note that if one can transform any statistical ZK proof into a
resettable statistical ZK proof without losing the efficiency of the prover,
then together with our main result of Theorem 1 this would imply that
the problems with efficient ZK-PCPs are exactly those in SZK ∩NP.

Relation to Basing Cryptography on Tamper-Proof Hardware. A main mo-
tivation of [IMS12] to study the possibility of efficient ZK-PCPs for NP
comes from a recent line of work on basing cryptography on tamper-proof
hardware (e.g. [Kat07, MS08, CGS08, GKR08, GIS+10, Kol10, GIMS10]).
In this model, the parties can exchange classical bits as well as hardware
tokens that hide a stateful or stateless efficient algorithm. The receiver
of a hardware token is only able to use it as a black-box and call it on
polynomially many inputs. Using stateless hardware tokens makes the
protocol secure against “resetting” attacks where the receiver of a to-
ken is able to reset the state of the token (say, by cutting its power).
The work of Goyal et al. [GIMS10] focused on the power and limits of
stateless tamper-proof hardware tokens in achieving statistical security
and proved that statistical zero-knowledge for all of NP is possible using
a single stateless token sent from the prover to the verifier followed by
O(1) rounds of classical interaction. A natural question remaining open
after the work of [GIMS10] was whether the classical interaction can be
eliminated and achieve statistical ZK for NP using only a single stateless
token. It is easy to see that this question is in fact equivalent to our main
question above, and thus our Theorem 1 proves that a single (efficient)
stateless token is not sufficient for achieving statistical ZK proofs for NP.

2 Our Techniques

In this section we describe the ideas and techniques behind the proof of
Theorem 1. We then compare it to the approach of [IMS12], which is



restricted to non-adaptive verifiers, and highlight why our technique by-
passes this barrier. In the following let us assume for notational simplicity
that L is a language; the idea is identical for general promise problems.

2.1 Our Approach

If L has a ZK-PCP, one naive approach to decide L using its simulator is
to run the simulator to obtain a view ν = (r, (q1, a1), . . . , (qm, am)), where
r is the random seed of the verifier and the (qi, ai) are queries/answers to
the ZK-PCP, and accept iff ν is an accepting view. This approach would
obtain accepting views if x ∈ L due to the zero-knowledge property, but
there is no guarantee about the case x 6∈ L.

Our proof will show that if in addition to making sure that the view
is accepting we do some extra tests on the distribution of the simulated
view, then this will allow us to decide L. Suppose for a moment that the
ZK-PCP is deterministic, i.e. on an input x the prover deterministically
generates a proof π. (Of course it is known that ZK with deterministic
provers cannot exist for non-trivial languages [GO94]. We make this sim-
plification here only to make our proof sketch easier to describe, and we
will argue below how one can do away with this simplification.)

We will show that when the ZK-PCP is deterministic, it suffices to
run the simulator and check that the generated view is accepting and
to check some entropy-related properties of the view which in our case
happen to be a computational task in SZK. Let (r, (q1,a1), . . . , (qm,am))
be the distribution of views generated when running the simulator for the
honest verifier. By the ZK property, this is statistically close to the view of
an honest verifier interacting with the honest prover on YES (i.e. x ∈ L)
instances. Let j be uniform in [m] and consider the distribution (qj,aj).

We argue that to decide the language it suffices to check first that
the simulated transcript is accepting, and second that H(aj | qj) is small.
On YES instances, the simulated transcript is almost surely accepting
because of the ZK property, and furthermore H(aj|qj) = 0 because the
simulated proof is deterministic. On the other hand, on NO (i.e. x 6∈ L)
instances, we will show that if H(aj | qj) is sufficiently small, then the sim-
ulated transcript is statistically close to an interaction between an honest
verifier and a proof sampled as follows: for each q, the corresponding an-
swer bit of the proof is sampled according to aj | qj = q. By the soundness
condition of the ZK-PCP, it follows that the transcript must be rejecting
with high probability. It is clear that checking that the simulated tran-
script is accepting is in BPP, while checking that H(aj | qj) is small is a
conditional entropy approximation problem, which is in SZK [Vad06].



To generalize the above argument to the case of randomized ZK-PCPs,
we use the following argument (which is a stronger version of an argu-
ment that first appeared in [IMS12]): Any efficiently computable PCP
(as a random variable describing its truth table) has polynomial entropy.
Therefore if we repeat the honest verifier ` times where ` is a polynomial
sufficiently larger than the size of the circuit computing the PCP, we can
essentially “exhaust” the entropy of the proof observed by the next in-
dependent verification over the same PCP. This allows us to prove that
H(aj|qj) is small conditioned on the PCP answers observed in the first `
verifications. Interestingly, this argument when applied to a random query
index j (which is the index distribution we use—see Lemma 6) is rather
delicate and heavily relies on the fact that PCPs are fixed; the statement
is not true for interactive proofs, where the answers may depend on, say,
the order of the queries.

Finally we note that even after making sure that the simulator is
choosing its PCP answers close to some fixed oracle, it still might be the
case that for NO instances it does not run an honest execution of the ver-
ifier against this PCP and somehow manages to generate accepting views
for NO instances as well. To complete the proof, one final technicality
that we check is that the random coins r generated by the simulator are
indeed close to uniform conditioned on the ` previously sampled views.
(They are guaranteed to be so on YES instances by ZK, but may not
be on NO instances.) This latter task is also reducible to the conditional
entropy approximation problem.

Approach of [IMS12]. At a high level, in our work we show that decid-
ing the language using the simulator can be done in SZK by a direct
reduction to a problem in SZK. In contrast, [IMS12] tried to “extract”
a PCP from the simulator and then run the honest verifier against this
extracted PCP. Since the extraction process requires sampling from inef-
ficiently samplable distributions, this task is accomplished with the aid
of an all-powerful yet untrusted prover (this is how they obtain the con-
clusion that the language is in AM ∩ coAM). This makes our approach
conceptually different from the approach of [IMS12].

3 Preliminaries

Basic Terminology and Notation. We use bold letters to denote ran-
dom variables (e.g. X or x). By x ← x we mean that x is sampled
according to the distribution of the random variable x. We write Ex[·]



to denote Ex←x[·], where any x appearing inside the expression in the
expectation is fixed. For any finite set S, x ← S denotes x sampled uni-
formly from S. Un denotes the uniform distribution over {0, 1}n, and
[n] denotes the set {1, 2, . . . , n}. For jointly distributed random variables
(x,y), and for a specific value y ← y, by (x | y) we mean the random
variable x conditioned on y = y. When we say an event occurs with
negligible probability denoted by negl(n), we mean it occurs with proba-
bility n−ω(1). We call two random variables x,y (or their corresponding
distributions) over the support set S ε-close if their statistical distance
∆(x,y) = 1

2 ·
∑

s∈S |Pr[x = s]− Pr[y = s]| is at most ε. By an ensemble (of
random variables) {yx}x∈I we denote a set of random variables indexed
by a set I. We call two ensembles {yx}x∈I and {zx}x∈I with the same
index set statistically close if ∆(yx, zx) = negl(|x|) for all x ∈ I. We use
the terms efficient and PPT to refer to any probabilistic polynomial time
(perhaps oracle-aided) algorithm. For an oracle π and an (oracle-aided)
algorithm V, by Vπ we refer to an execution of V given access to π and
by View〈Vπ〉 we refer to the view of V in its execution given π which con-
sists of its randomness r and the sequence of its oracle query-answer pairs
[(q1, a1), (q2, a2), . . . ] (having only the oracle answers and r is sufficient to
know View〈Vπ〉). All logarithms are base 2. By H(X) we denote the Shan-
non entropy of X defined as H(X) = EX lg(1/Pr[X = X]). By H(X | Y),
we denote the conditional entropy as EY [H(X | Y )], and we note the
conditional mutual information as I(X; Y | Z) = H(X | Z)− (X | YZ).

A language L is a partition of {0, 1}∗ into LY = L and LN = {0, 1}∗\L.

A promise language (or problem) L = (LY, LN) generalizes the notion
of a language by only requiring that LY ∩ LN = ∅ (but there could be
some x ∈ {0, 1}∗ \ (LY ∪ LN)). For promise problems, we will sometimes
use x ∈ L to denote x ∈ LY .

Definition 1 (Operations on Promise Languages). We define the
following three operations over promise languages.

– The complement L = (L
Y
, L

N
) of a promise language L = (LY, LN)

is another promise language such that L
Y

= LN and L
N

= LY.

– Conjunction L = L1 ∧ L2 of promise languages L1 and L2:

• x = (x1, x2) ∈ LY iff x1 ∈ LY
1 and x2 ∈ LY

2 ,

• x = (x1, x2) ∈ LN iff x1 ∈ LN
1 or x2 ∈ LN

2 .

– Disjunction L = L1 ∨ L2 of promise languages L1 and L2:

• x = (x1, x2) ∈ LY iff x1 ∈ LY
1 or x2 ∈ LY

2 ,

• x = (x1, x2) ∈ LN iff x1 ∈ LN
1 and x2 ∈ LN

2 .



It is easy to see that L1 ∨ L2 = L1 ∧ L1.

Definition 2 (Karp Reduction). A Karp reduction R from a promise
problem L1 to another promise problem L2 is a deterministic efficient
algorithm such that R(x) ∈ LY

2 for every x ∈ LY
1 and R(x) ∈ LN

2 for
every x ∈ LN

1 .

Definition 3 (PCPs). A (randomized) probabilistically checkable proof
(PCP for short) Π = ({πx∈L},V) for a promise problem L consists of an
ensemble of random variables {πx} indexed by x ∈ L whose values are
oracles (also called proofs) and also a verifier V which is an oracle-aided
PPT with randomness r. We require the following properties to hold.

– Completeness: For every x ∈ LY and every π ∈ Supp(πx) it holds
that Prr[V

π
r (x) = 1] ≥ 2/3.

– Soundness: If x ∈ LN , then for every oracle π̂: Prr[V
π̂
r (x) = 0] ≥ 2/3.

We call a PCP for problem L ∈ NP efficient, if for all x ∈ L and all
π ∈ Supp(πx), there exists a poly(n)-sized circuit Cπ such that for all
queries q, Cπ(q) = π(q). Namely, Cπ encodes π.

Notice that this definition of efficiency is non-uniform: the distribution of
proofs Cπ may depend non-uniformly on x. This only makes our negative
results stronger than if we required Cπ to depend uniformly on x. We
also note that our negative result holds even using a weaker notion of
completeness for PCPs in which Prr[V

π
r (x) = 1] ≥ 2/3 holds over the

randomness of the verifier and the randomness of sampling the oracle π.
We use the above definition since the positive constructions of randomized
PCPs do satisfy this stronger condition, and it is more convenient for
amplifying the gap between the completeness and soundness errors.

Definition 4. Let Π = ({πx∈L},V) be a PCP for the problem L. Π is
called zero-knowledge (ZK) if for every malicious poly(n)-time verifier
V̂, there exists a simulator Sim which runs in (expected) poly(n)-time
and the following ensembles are statistically close:

{Sim(x)}x∈L , {View〈V̂πx(x)〉}x∈L.

Note that V̂ only has oracle access to π ← πx, and the statistical indistin-
guishability should hold for large enough |x|. We call Π perfect ZK if the
simulator’s output distribution, conditioned on not aborting, is identically
distributed to the view of the verifier V̂ accessing π ← πx∈L.



Non-uniformity vs. auxiliary input. By combining Definitions 3 and 4
one can obtain the definition of an efficient ZK-PCP. Note that, zero-
knowledge with an “efficient prover” is typically defined using some aux-
iliary input given to the “prover”, however, since here we prove a negative
result using non-uniform efficiency (as in Definition 3) only makes our re-
sults stronger. In particular, if there exists an ensemble πx,w of efficiently
computable proofs that is zero-knowledge and depends on both x ∈ L
and some witness w for x ∈ L, one can always obtain a non-uniformly
computable efficient ZK-PCP (according to our Definitions 3 and 4) by
hardwiring, for every x ∈ L, the lexicographically first witness w into the
efficient algorithm computing πx.

The definition of the complexity class SZK is indeed very similar to
Definition 4 with the difference that the soundness holds against provers
(which can be thought of as stateful oracles who could answer new queries
depending on the previous queries asked.) Since we do not need the exact
definition of the class SZK, here we only describe it at a high level.

Definition 5 (Complexity Class SZK). The class SZK consists of
promise problems which have an interactive (single prover) proof system
with soundness error ≤ 1/3 and the view of any malicious verifier can be
simulated up to negl(n) statistical error.

Lemma 1. For a constant k, let L1, . . . , Lk be a set of promise languages
all in SZK, and let F be a constant-size k-input formula with opera-
tions: complement, conjunction, and disjunction as in Definition 1. Then
F (L1, . . . , LK) ∈ SZK.

See Section 4.5 and Corollary 6.5.1 of [Vad99] for a proof.

3.1 Shannon Entropy and Related Computational Problems

Fact 2 (Basic Facts about Entropy) The following hold for any ran-
dom variables X,Y,Z:

1. H(X | Y) ≤ H(X).
2. I(X; Y | Z) = H(X | Z)−H(X | YZ) = H(Y | Z)−H(Y | XZ) ≥ 0
3. Data processing inequality: for any randomized function F (whose ran-

domness is independent of X,Y,Z), it holds that I(F(X); Y | Z) ≤
I(X; Y | Z).

Definition 6 (Conditional Entropy Approximation). The promise
problem CEAε is defined as follows. Suppose C is a poly(n)-size circuit
sampling a joint distribution (X,Y), i.e. this is the distribution of the
output of C run over fresh randomness. Then given (C, r) we have:



– (X,Y, r) ∈ CEAY
ε iff H(X | Y) ≥ r.

– (X,Y, r) ∈ CEAN
ε iff H(X | Y) ≤ r − ε.

Lemma 2. For any ε > 1/poly(n), CEAε ∈ SZK.

Proof. We give a reduction from CEAε to CEA1, which is known to be
SZK-complete [Vad06]. The reduction maps

(X,Y, r) 7→ ((X1, . . . ,X1/ε), (Y1, . . . ,Y1/ε), r/ε)

where for every i ∈ [1/ε], (Xi,Yi) is sampled identically to (X,Y) and
independently of all other components (i.e. by an independent copy of
the circuit C). It is easy to see that

H((X1, . . . ,X1/ε) | (Y1, . . . ,Y1/ε)) =
1

ε
·H(X | Y).

In our main reduction, we will reduce problems to the following prob-
lem in SZK:

Definition 7 (Conditional Entropy Bound). CEBα,β is the following
promise problem where inputs are poly(n)-size circuits C sampling a joint
distribution (X,Y):

1. (X,Y) ∈ CEBY
α,β iff H(X | Y) ≥ α.

2. (X,Y) ∈ CEBN
α,β iff H(X | Y) ≤ β.

The following is immediate from Lemma 2:

Lemma 3. For all functions α(n), β(n) uniformly computable in time
poly(n) and satisfying α(n)− β(n) > 1/ poly(n), CEBα,β ∈ SZK.

3.2 Statistical Distance vs Conditional Entropy

To prove our main result, we need to bound statistical distance using
conditional (Shannon) entropy and vice versa. See the full version of the
paper for proofs of the following two lemmas.

Lemma 4 (Conditional Entropy to Statistical Distance). Sup-
pose Supp(X) = {0, 1}n. Then it holds that EY←Y∆((X | Y ),Un) ≤√
n−H(X | Y).

Lemma 5 (Statistical Distance to Conditional Entropy). For ε ∈
[0, 1] let H(ε) = ε lg(1/ε)+(1−ε) lg(1/1−ε). Suppose ∆((X,Y), (X′,Y′)) ≤ ε
and Supp(X)∪Supp(X′) ⊆ {0, 1}n. Then it holds that |H(X | Y)−H(X′ |
Y′)| ≤ 4(H(ε) + ε · n).



4 Proving the Main Result

Theorem 3. Suppose the promise problem L = (LY , LN ) has a ZK-PCP
Π = ({πx∈L},V) of entropy at most H(πx) ≤ poly(|x|). Then L ∈ SZK.

(Note that the theorem extends beyond efficient ZK-PCP’s and en-
compasses all ZK-PCP’s where proofs have low entropy.) In the rest of
this section we prove Theorem 3. Fix such a ZK-PCP for L and let
η = H(πx) ≤ poly(n).

The first step of our proof is to define a verifier who can “exhaust” all
of the entropy of the ZK-PCP so that the proof behaves essentially as if
it were deterministic. We use the following verifier: let V[`] = (V1, . . . ,V`)
be a verifier who executes ` independent instances of V against the given
oracle and let Vi be its ith verification. (We will fix a choice of ` =
poly(n) � η later.) Let Sim be the simulator that simulates the view of
V[`] statistically well (i.e. Sim(x) is negl(|x|)-close to the view of V[`](x)
when accessing π ← πx for x ∈ L). The view of Vi can be represented
as νi = (ri, qi1, a

i
1, . . . , q

i
m, a

i
m) where ri ∈ {0, 1}k is the randomness used

by Vi, qij is its jth oracle query and aij is the answer to qij . We use the

notation ai = (ai1, . . . , a
i
m), qi = (qi1, . . . , q

i
m). The view of V[`] consists of

(ν1, . . . , ν`).
In order to prove L ∈ SZK, we show how to reduce L to a constant

size formula over SZK languages. As we mentioned in the introduction,
we need to check three conditions: the simulator generates an accepting
view, the entropy of a random answer in the view has low entropy given
the query, and the distribution of the random coins in the view is uniform.

To describe our reduction formally we first need to define a circuit
Csim
x and a promise problem Dα,β as follows.

– The circuit Csim
x takes as input rsim (for input length |x|). The circuit

Cx outputs Sim(x; rsim) = (ν1, . . . , ν`) where for each i ∈ [`], νi =
(ri, qi1, a

i
1, . . . , q

i
m, a

i
m).

– For α > β, Dα,β is a promise problem whose inputs are Boolean
circuits C of input length n and size |C| = poly(n); then:
1. C ∈ DY

α,β iff Pr[C(Un) = 1] ≥ α, and

2. C ∈ DN
α,β iff Pr[C(Un) = 1] ≤ β.

The parameters α and β could be functions of n, and it is easy to
see that for efficiently computable α, β (given n) it holds that Dα,β ∈
BPP if α− β > 1/ poly(n).

Reduction 4 (Main Reduction) Given a parameter `, we map x 7→
(C1, C2, C3) as follows.



1. C1 checks the uniformity of the random coins in the view. C1 is a
circuit sampling the joint distribution (X1,Y1) defined as follows. On
input (rsim, i), C1 executes the circuit Csim

x on rsim to get (ν1, . . . , ν`) =
Csim
x (rsim) and sets: X1 = ri and Y1 = (ν1, . . . , νi−1).

2. C2 checks that the conditional entropy of a randomly chosen answer is
low conditioned on the corresponding query. C2 is a circuit sampling
the joint distribution (X2,Y2) defined as follows. On input (rsim, i, j),
C2 executes the circuit Csim

x on rsim to get (ν1, . . . , ν`) = Csim
x (rsim)

and sets: X2 = aij and Y2 = (ν1, . . . , νi−1, qij). We emphasize the fact

that while aij , q
i
j appear in the output of C2, the actual index j itself

does not appear in the output.

3. C3 checks that the view is accepting. C3 operates as follows: on input
(rsim, i), C3 executes the circuit Csim

x on rsim to obtain (ν1, . . . , ν`) =
Csim
x (rsim), and output 1 iff νi is an accepting view of V.

Claim. Reduction 4 is a Karp reduction from L (specified in Theorem 3)
to the promise language Z = CEBk−1/200,k−1/100 ∧ CEB2η/`,1.1η/` ∧D0.66,β

for β = 1/3 + 1/10 + 2mη/`.

Proving Theorem 3 using Claim 4. By taking ` = 40mη, it holds that
2m · η/` < 1/20 in Lemma 7 and so β < 1/2, which implies that Dα,β ∈
BPP, Z ∈ SZK, and so L ∈ SZK.

In the following we prove Claim 4 by studying each case of x ∈ LY
and x ∈ LN separately. We begin with a lemma that will be useful for
the case x ∈ LY .

The following lemma bounds the conditional entropy of a single answer
to a single randomly chosen verifier query by the conditional entropy of
the set of all answers to the set of all verifier queries. This is non-trivial
because the verifier queries may be asked adaptively.

Lemma 6. Let A be any randomized algorithm that (adaptively) queries
a PCP π. Let r ∈ {0, 1}k denote the random coins of A. Let q = (q1, . . . , qm)
be the queries that Aπ(r) makes and let aj = π(qj) be the corresponding
answers. Let π be an arbitrary distribution over proofs, and let q and a
be the distribution over (the vectors of) queries and answers obtained by
querying π using algorithm A on uniform random coins r. Let also j be
an arbitrary distribution over [m]. Then H(aj | qj) ≤ H(a | r) where in
the notation qj the value of j is not explicitly revealed.

Proof. By the definition of conditional entropy and that 0 = H(ajqj |
π) − H(ajqj | π), we get H(aj | qj) = H(ajqj) − H(ajqj | π) − (H(qj) −



H(ajqj | π)). Since a proof π is stateless for any fixed π, given any query
q asked at some point during the execution of Aπ, the answer a = π(q)
is also fixed. Therefore it holds that H(ajqj | π) = H(qj | π), and by
the definition of mutual information, we have H(aj | qj) = I(ajqj;π) −
I(qj;π) ≤ I(ajqj;π). Since I(ajqj;π) = H(π) − H(π | ajqj) and since π
and r are independent, Item 1 of Fact 2 implies that

H(aj | qj) ≤ I(ajqj;π) = H(π)−H(π | ajqj)

≤ H(π | r)−H(π | ajqjr) = I(ajqj;π | r)

Let F be the function that takes as input (a,q) and outputs (aj,qj) by
sampling j. By the data processing inequality (Item 3 of Fact 2) it holds
that

H(aj | qj) ≤ I(ajqj;π | r) = I(F(aq);π | r)

≤ I(aq;π | r) ≤ H(aq | r) = H(a | r) + H(q | ar)

Finally, since H(q | ar) = 0, this implies the proposition.

Remark 1. We emphasize that if π was stateful (i.e. a “prover”, rather
than a “proof”), then Lemma 6 would be false. Even a deterministic
prover can correlate his answers to the verifier’s queries, and so it may
be that H(a | q) = 0 but H(aj | qj) > 0. Namely, even given π (say for a
stateful prover that π gives the random coins of the prover) and a query q,
the answer to q may have entropy because π’s answer to q may be different
depending on whether q was asked as the first query or second query or
third query, etc. In particular, the equality H(ajqj | π) = H(qj | π) used
in the proof of Lemma 6 would not hold anymore. This is one place where
we crucially use the fixed nature of a PCP.

Proof of Claim 4: the Case x ∈ LY . Here we would like to show that
(C1 ∈ CEBY

k−1/200,k−1/100) and (C2 ∈ CEB
Y
2η/`,1.1η/`) and (C3 ∈ DY

0.66,β).

We study each of the generated instances Ci for i ∈ [3]. In all these cases,
we first assume that the simulator’s output is identically distributed to
the view of V[`] interacting with a prover and then will show how to
remove this assumption.

The Instance C1. If the simulator’s outputs were identically distributed
to the view of V[`] interacting with a prover, then the simulated ran-
domness X1 = ri will be uniformly distributed over {0, 1}k with en-
tropy k independently of Y1 = (ν1, . . . ,νi−1). Since the simulator gen-
erates a view that is statistically close to the honest interaction (and



since k = poly(|x|) and H(negl(n)) = negl(n)) we may apply Lemma
5 to deduce that H(X1 | Y1) ≥ k − negl(n) ≥ k − 1/200. Therefore,
C1 ∈ CEBY

k−1/200,k−1/100.

The Instance C2. Here we study the view of V[`] while interacting with
a proof generated according to the distribution πx whose entropy is
bounded by η. Suppose first that the simulator’s outputs were identi-
cally distributed to the view of V[`] interacting with πx. In this case, by
an argument similar to [IMS12], one can show that

Claim. Ei←[`] H(ai | ν1, . . . ,νi−1, ri) ≤ η/`.

Proof.

η + k` ≥ H(πx) + H(r1, . . . , r`)

(πx, r
1, . . . , r` independent) = H(πx, r

1, . . . , r`)

(πx, r
1, . . . , r` fix ν1, . . . ,ν`) ≥ H(ν1, . . . ,ν`)

=
∑
i∈[`]

H(νi | ν1, . . . ,νi−1)

(ri and ai determine qi) =
∑
i∈[`]

H(ri | ν1, . . . ,νi−1)

+ H(ai | ν1, . . . ,νi−1, ri)

= k`+
∑
i∈[`]

H(ai | ν1, . . . ,νi−1, ri).

Thus, by averaging over i we have Ei←[`] H(ai | ν1, . . . ,νi−1, ri) ≤ η/`.

The following claim is also based on the assumption that the simulation
is perfect, and thus the distribution of (ν1, . . . ,νm) generated by the
simulator is identical to the view of V[`] run against π ← πx∈L,w.

Claim. For each fixed value of i and (ν1, . . . , νi−1), it holds that

H(aij | qij , ν1, . . . , νi−1) ≤ H(ai | ri, ν1, . . . , νi−1) (1)

Namely, the entropy of the answers of the ith verification gives an upper-
bound on the entropy of the answer to a randomly chosen query of the
verifier without revealing its index.

Proof. Let (πx,ν
1, . . . ,νi−1) be the joint distribution of an honest proof

πx and i − 1 executions of the honest verifier V1, . . . ,Vi−1 using proof



πx. Apply Lemma 6 using the distribution over proofs given by (πx |
ν1, . . . , νi−1), and with the honest verifier algorithm Vi as the query al-
gorithm accessing the proof.

Using Claims 4 and 4, we conclude that H(X2 | Y2) ≤ η/`, assuming
that the simulator was perfect. If we only assume that the simulator’s
output is statistically close to the view of V[`] interacting with πx, then we
can apply Lemma 5 and deduce that H(X2 | Y2) ≤ η/`+negl(n) < 1.1η/`

which implies that C2 ∈ CEB
Y
2η/`,1.1η/`.

The Instance C3. By the completeness of Π, when V[`] = (V1, . . . , V `)
interacts with a proof, for all i ∈ [`], Vi accepts with probability ≥ 2/3.
Since the simulation is statistically close to the real interaction, it holds
that νi is accepting with probability 2/3 − negl(n) ≥ 0.66, and so C3 ∈
DY

0.66,β.

Proof of Claim 4: the Case x ∈ LN . Here we would like to show
that C1 ∈ CEBN

k−1/200,k−1/100 or C2 ∈ CEB
N
2η/`,1.1η/` or C3 ∈ DN

0.66,β. This
follows from the following lemma.

Lemma 7. Suppose x ∈ LN , C1 6∈ CEBN
k−1/200,k−1/100, and also that C2 6∈

CEB
N
2η/`,1.1η/`. Then C3 ∈ DN

0.66,β for β = 1/3 + 1/10 + 2m · η/`.

Intuition. Since C2 6∈ CEB
N
2η/`,1.1η/`, therefore, the oracle answers re-

turned to the verifier in the ith execution (for a random i ← [`]) all
have very low entropy and thus close to a fixed proof. Moreover, due to
C1 6∈ CEBN

k−1/200,k−1/100, the randomness of the verifier in this execution

has almost full entropy, and therefore, the ith execution is close to an
honest execution of the verifier against some oracle. Finally, since x ∈ LN
by the soundness of the PCP, the verifier would accept with probability
at most ≈ 1/3. The formal argument goes through a hybrid argument as
follows.

Experiments. The outputs of all experiments described below consist of
a view of V[i] (i.e. the first i executions of the verifier). The distribution
of (ν1, . . . , νi−1) in all of these executions is the same and is sampled by
Sim(x), and they only differ in the way they sample νi.

– Experiment Real. Choose i ← [`], and take the output (ν1, . . . , νi)
by running Sim(x).



– Experiment Ideal. Choose i← [`], and take the output (ν1, . . . , νi−1)
by running Sim(x). To sample νi = (ri,qi,ai) we first sample ri ←
{0, 1}k uniformly at random, and then using ri we run the verifier
against the oracle π̂ defined as follows.

The Oracle π̂: Suppose we have fixed (νi, . . . , νi−1). Recall the dis-
tribution ((qij,a

i
j) | νi, . . . , νi−1) defined above when defining the in-

stance C2 (i.e., (aij,q
i
j) is a randomly chosen pair of query-answer pairs

from the view νi without revealing the index j). For every query q, the
oracle π̂ gets one sample according to a ← (aij | νi, . . . , νi−1,qij = q)

and sets π̂(q) = a forever. If Pr[qij = q | νi, . . . , νi−1] = 0, we define
π̂(q) = ⊥.

– Experiment Hybj for j ∈ [m + 1]. These experiments are in be-
tween Real and Ideal and for larger j they become closer to Real.
Here we choose i ← [`], and take the output (ν1, . . . , νi) by running
Sim(x). Then we will re-sample parts of νi as follows. We will keep
(ri, (qi1, a

i
1), . . . , (q

i
j−1, a

i
j−1)) as sampled by Sim(x). For the remaining

queries and answers we sample an oracle π̂ as described in Ideal, and
we let (qij , a

i
j), . . . , (q

i
m, a

i
m) be the result of continuing the execution

of Vi using ri and the oracle π̂. Note that Hybm+1 ≡ Real.

Claim. If x ∈ LN , then PrIdeal[ν
i accepts ] ≤ 1/3.

Claim. If C1 6∈ CEBN
k−1/200,k−1/100, then ∆(Ideal,Hyb1) ≤ 1/10.

Claim. If C2 6∈ CEB
N
2η/`,1.1η/`, then Ej∈[m]∆(Hybj ,Hybj+1) ≤ 2η/`.

Proving Lemma 7. Claims 4, 4, and 4 together imply that

Pr
Real

[νi accepts ] ≤ Pr
Ideal

[νi accepts ] +∆(Ideal,Hyb1) +
∑
j∈[m]

∆(Hybj ,Hybj+1)

≤ 1/3 + 1/10 + 2mη/`

which proves that C3 ∈ DN
2/3,β. In the following we prove these claims.

Proof (Proof of Claim 4). Since the oracle π̂ is sampled and fixed before
choosing ri and executing Vi, and because x ∈ LN , by the soundness
property of the PCP it holds that PrIdeal[ν

i accepts ] ≤ 1/3.

Proof (Proof of Claim 4). If C1 6∈ CEBN
k−1/200,k−1/100, then we have Ei←[`][H(ri |

ν1, . . . ,νi−1)] ≥ k − 1/100. By Lemma 4 it holds that



E
i←[`],ν1,...,νi−1

[∆((ri | ν1, . . . , νi−1),Uk)] ≤
√

1/100 = 1/10.

But note that the only difference between Ideal and Hyb1 is the way we
sample ri conditioned on the previously sampled parts (i.e. ν1, . . . , νi−1).
Thus it holds that ∆(Ideal,Hyb1) ≤ 1/10.

Proof (Proof of Claim 4). The only difference between Hybj and Hybj+1

is the way they answer qij . In Hybj+1 the original answer of the simulator
is used, while in Hybj this answer is provided by the oracle π̂. Thus,
they are different only when the answer re-sampled by π̂ differs from the
original answer. Therefore, we have that:

∆(Hybj ,Hybj+1) ≤ E
ν1,...,νi−1,i

[
Pr

ai,qi,π̂
[aij 6= π̂(qij) | i, ν1, . . . , νi−1]

]
Taking an expectation over all j ← [`] we conclude Claim 4 as follows.

E
j
[∆(Hybj ,Hybj+1)] = E

j,i,ν1,...,νi−1

[
Pr

ai,qi,π̂
[aij 6= π̂(qij) | i, ν1, . . . , νi−1]

]
= E

i,ν1,...,νi−1

[
Pr

j,ai,qi,π̂
[aij 6= π̂(qij) | i, ν1, . . . , νi−1]

]
By combining the sampling of aij,q

i
j directly, we have that

E
j
[∆(Hybj ,Hybj+1)] = E

i,ν1,...,νi−1

[
Pr

ai
j,q

i
j,π̂

[aij 6= π̂(qij) | i, ν1, . . . , νi−1]

]

= E
i,ν1,...,νi−1

[
1− Pr

ai
j,q

i
j,π̂

[aij = π̂(qij) | i, ν1, . . . , νi−1]

]

= E
i,ν1,...,νi−1,qij ,a

i
j

[
1− Pr

π̂
[aij = π̂(qij) | i, ν1, . . . , νi−1]

]

(1− α ≤ lg 1
α ∀α ∈ [0, 1]) ≤ E

i,ν1,...,νi−1,qij ,a
i
j

[
lg

1

Prπ̂[aij = π̂(qij) | i, ν1, . . . , νi−1]

]
(by definition of π̂) = E

i

[
H(ai

j | ν1, . . . ,νi−1,qi
j)
]

(C2 6∈ CEB
N
2η/`,1.1η/`) ≤ 2η/`.
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