
A Cookbook for Black-Box Separations and a
Recipe for UOWHFs

Kfir Barhum and Thomas Holenstein

Department of Computer Science,
ETH Zurich, 8092 Zurich, Switzerland

Abstract. We present a new framework for proving fully black-box
separations and lower bounds. We prove a general theorem that facili-
tates the proofs of fully black-box lower bounds from a one-way function
(OWF).
Loosely speaking, our theorem says that in order to prove that a fully
black-box construction does not securely construct a cryptographic prim-
itive Q (e.g., a pseudo-random generator or a universal one-way hash
function) from a OWF, it is enough to come up with a large enough set
of functions F and a parameterized oracle (i.e., an oracle that is defined
for every f ∈ {0, 1}n → {0, 1}n) such that Of breaks the security of the
construction when instantiated with f and the oracle satisfies two local
properties.
Our main application of the theorem is a lower bound of Ω(n/ log(n)) on
the number of calls made by any fully black-box construction of a univer-
sal one-way hash function (UOWHF) from a general one-way function.
The bound holds even when the OWF is regular, in which case it matches
to a recent construction of Barhum and Maurer [4].

Keywords: Complexity-Based Cryptography, One-Way Functions, Uni-
versal One-Way Hash Functions, Black-Box Constructions, Lower Bounds

1 Introduction

1.1 Cryptographic Primitives and Black-Box Constructions

An important question in complexity-based cryptography is understand-
ing which cryptographic primitives (e.g., one-way functions, pseudo-
random generators) are implied by others. In principle, an implication
between two primitives can be proved as a logical statement (e.g., the
existence of one-way functions implies the existence of pseudo-random
generators). However, most proofs of such implications (with very few
exceptions, e.g., [2]) are in fact so-called fully black-box constructions.

Informally, a black-box construction of a primitive Q from a primitive
P is a pair of algorithms, called construction and reduction, such that

2 Kfir Barhum and Thomas Holenstein

the construction, using only the functionality of P, implements Q and the
reduction, using only the functionality of P and the one of a potential
breaker algorithm, breaks P whenever the breaker algorithm breaks Q.
As a corollary, such a black-box construction establishes that the exis-
tence of P implies the existence of Q. One of many such examples is the
construction of a one-way function from a weak one-way function [18].

After futile attempts to prove that the existence of one-way functions
implies that of key agreement, Impagliazzo and Rudich [10] proved the
first black-box separation result: They showed that there is no fully black-
box construction of key agreement from one-way functions. Their seminal
work inspired a plethora of similar results and nowadays one identifies
two main types of black-box separation results: black-box separations of
a primitive Q from a primitive P and lower bounds on some complexity
parameter (e.g., seed length, number of calls to the underlying primitive,
etc.) in the construction of Q from P. Besides [10], the work of Simon [17],
where he shows that there is no fully black-box construction of a collision-
resistant hash function from a one-way function, is an example of the
former. As an example of the latter, Kim et. al. [11] established a lower
bound of Ω(

√
k/ log(n)) on the number of queries of any construction of

a universal one-way hash function that compresses k bits from a one-way
permutation on n bits. This was later improved by Gennaro et. al. [5] to
Ω(k/ log(n)).

Reingold et. al. [13] were the first to formalize a model for and
study the relations between different notions of “black-boxness” of cryp-
tographic constructions.

A key property of a fully black-box construction of Q from P is the
requirement that it constructs Q efficiently even when given black-box
access to a non-efficient implementation of P. A proof technique utilizing
this property, which is implicit in many black-box separations, involves
an (inefficient) oracle instantiation of the primitive P and an appropriate
(inefficient) breaker oracle B. The separation is usually proved by showing
that B breaks the security of the candidate construction for Q, but at the
same time no efficient oracle algorithm that has black-box oracle access to
both the breaker and the primitive (in particular, the potential reduction)
breaks the security property of the underlying instantiation of P.

1.2 Our Contribution

In constructions based on one-way functions (or permutations), i.e., when
P = OWF, the oracle that implements OWF is usually set to be a random
permutation, which is one-way with very high probability even in the

A Cookbook for Black-Box Separations and a Recipe for UOWHFs 3

presence of a non-uniform algorithm. On the other hand, the proof that
the breaker algorithm for the constructed primitive Q does not help invert
the permutation is repeated in an “ad-hoc” manner in many separation
proofs, e.g., in [17, 6] and also in a recent result on lower bounds on the
number of calls made by any construction of a pseudo-random generator
from a one-way function [9].

Thus, while in many separation proofs the task of finding the right
breaker oracle is different (this is inherent, as each time it is required
to break the security of a different primitive), we observe that the proof
that it does not help in inverting the underlying one-way function can be
facilitated and unified to a large extent. To that end, we prove a general
theorem that facilitates the proof of black-box separations (Theorem 1).
In particular, we show that any circuit with access to an oracle that
satisfies two local properties, does not help to invert many functions.

Our framework allows proving separation results that exclude the exis-
tence of reductions with very weak security requirements. In this work we
focus on the important case where the black-box construction is so-called
fixed-parameter. That is, for a security parameter ρ, both the construction
algorithm and the reduction access the primitive and breaker of security ρ
only. All black-box constructions found in the literature are in fact fixed-
parameter constructions. We believe that adapting the approach of [9], it
is possible to extend our results to the most general case.

Our proof uses the encoding technique from [5], which was already
adapted to the special cases in [6] and [9]. We also use the bending tech-
nique that originated in [17] and was subsequently used in [7] and [9].

As an application, in Section 4 we prove a lower bound of
Ω(n/ log3(n)) on the number of calls made by any fully black-box con-
struction of a universal one-way hash function (UOWHF) from a one-
way function f : {0, 1}n → {0, 1}n. This can be further improved to
Ω(n/ log(n)) (see Section 5 in [3]).

UOWHFs are a fundamental cryptographic primitive, most notably
used for obtaining digital signatures. They were studied extensively since
their introduction by Naor and Yung [12], who showed a simple con-
struction that makes only one call to the underlying one-way func-
tion whenever, additionally, the function is a permutation. Rompel [14]
showed a construction based on any one-way function, and the most ef-
ficient construction based on general one-way functions is due to Hait-
ner et. al. [8]. Their construction makes Õ(n6) calls to a one-way function
f : {0, 1}n → {0, 1}n. Note that the bound given in [5] does not say any-
thing for the mere construction of a UOWHF (e.g., for a function which

4 Kfir Barhum and Thomas Holenstein

compresses one bit), and prior to our work it would have been possible
to conjecture that there exists a construction of a UOWHF from a gen-
eral one-way function that makes only one call to the underlying one-way
function. Our bound matches exactly and up to a log-factor the number
of calls made by the constructions of [4] and [1], respectively.

Our result can be understood as an analog to that of Holenstein and
Sinha, who show a bound of Ω(n/ log(n)) on the number of calls to a
one-way function that are made by a construction of a pseudo-random
generator. We observe (details are omitted) that the recent result of [9]
can be explained in our framework. Our characterization of UOWHFs
(presented in Section 4.1) is inspired by their characterization of pseudo-
random generators. For some candidate constructions, our proof also uti-
lizes their BreakOW oracle. Our main technical contribution in Section
4.2 is the oracle BreakPI and the proof that it satisfies the conditions of
our theorem from Section 3.

2 Preliminaries

2.1 The Computational Model

A function p = p(ρ) is polynomial if there exists a value c such that
p(ρ) = ρc. A machine M is efficient if there exists a polynomial p such
that on every input x ∈ {0, 1}∗, M(x) halts after at most p(|x|) steps. A
function s : N+ → N+ is a security function if for every ρ ∈ N+ it holds
that s(ρ+ 1) ≥ s(ρ), and s is efficiently computable (i.e., there exists an
efficient machine M that on input 1ρ outputs s(ρ)). For a security function

s we define 1
s : N+ → R+ as 1

s (ρ)
def
= 1

s(ρ) . A function f : N+ → R+ is

negligible if for all polynomial security functions p it holds that f(ρ) < 1
p(ρ)

for all large enough ρ.
An (n, n′)-oracle circuit C(?) is a circuit that contains special oracle

gates of input length n and output length n′. An (n1, n
′
1, n2, n

′
2)-oracle

circuit C(?) is a circuit that contains two types of oracle gates, where the
ith type contains ni input gates and n′i output gates.

A family of functions f = {fρ}ρ∈N+ is uniformly efficiently computable
if there exists an efficient machine M such that for every ρ ∈ N+ it
holds that M(1(ρ)) outputs a circuit that implements fρ. A non-uniform
algorithm A = {Aρ}ρ∈N+ is a parameterized family of circuits Aρ. A non-
uniform algorithm A implements the parametrized functions family f =
{fρ}ρ∈N+ , if each Aρ implements fρ.

A non-uniform oracle algorithm A(?) = {A(?)
ρ}ρ∈N+ is a parameterized

family of oracle circuits. Let A(?) be an oracle algorithm. A parametrized

A Cookbook for Black-Box Separations and a Recipe for UOWHFs 5

family of functions f = {fρ}ρ∈N+ (resp., an algorithm B = {Bρ}ρ∈N+)

is compatible with A(?) if for all ρ > 0 it holds that fρ (resp., Bρ) is

compatible with Aρ. In this case we define the algorithm A(f) def
= {Afρρ }

(resp., A(B) def
= {ABρρ }).

Uniform generation of oracle algorithms. The construction and
reduction algorithms in fully black-box constructions are assumed to work
for any1 input/output lengths of the primitive and breaker functionalities,
and therefore are modeled in the following way: In addition to the security
parameter ρ, both the construction and the reduction algorithms take
as input information about the input/output lengths of the underlying
primitive fρ and the breaker algorithm Bρ.

A uniform oracle algorithm is a machine M that on input

M(1ρ, n(ρ), n′(ρ)) outputs an (n(ρ), n′(ρ))-oracle circuit A
(?)
ρ . For a uni-

form oracle algorithm M and a parameterized family of functions f =

{fρ : {0, 1}n(ρ) → {0, 1}n′(ρ)}ρ∈N+ , define M (f) def
= {A(fρ)

ρ }ρ∈N+ , where

A
(?)
ρ

def
= M(1ρ, n(ρ), n′(ρ)). For a non-uniform algorithm A, the family

M (A) is defined analogously.

Let s = s(ρ) be a security function. An s-non-uniform two oracle al-
gorithm is a machine M such that for every ρ, n1, n

′
1, n2, n

′
2 ∈ N+ and

every a ∈ {0, 1}s(ρ), it holds that M(1ρ, n1, n
′
1, n2, n

′
2, a) outputs an

(n1, n
′
1, n2, n

′
2)-two oracle circuit A

(?,?)
ρ,a with at most s(ρ) oracle gates.

Note that the last requirement is essential and is implicit in the case
of an efficient uniform oracle algorithm, where the number of oracle
gates is bounded by the polynomial that bounds the running time of
the algorithm. For an s-non-uniform two oracle algorithm M , a non-
uniform algorithm B and a family of functions f , we formally define

M [B,f] def= (M,B, f).

2.2 Modeling Cryptographic Primitives

In order to state our results in their full generality, and in particular
to exclude reductions that are allowed to use non-uniformity and are
considered successful in inverting the one-way function even if they invert
only a negligible fraction of the inputs of the function, the following two

1 A-priori, for a fixed security parameter ρ there is no bound on the input length the
construction is expected to work, as long as the series of the input-output lengths
is bounded by some polynomial.

6 Kfir Barhum and Thomas Holenstein

definitions are very general, and extend Definitions 2.1 and 2.3 from [13].
The example of modeling a one-way function follows the definition.

Definition 1 (Cryptographic Primitive). A primitive Q is a pair
〈FQ, RQ〉, where FQ is a set of parametrized families of functions f =
{fρ}ρ∈N+ and RQ is a relation over triplets 〈fρ, C, ε〉 of a function fρ ∈ f
(for some f ∈ FQ), a circuit C and a number ε > 0. We define that
C (Q, ε)-breaks fρ if and only if 〈fρ, C, ε〉 ∈ RQ.

The set FQ specifies all the correct implementations (not necessar-
ily efficient) of Q and the relation RQ captures the security property of
Q, that is, it specifies for every concrete security parameter implementa-
tion, how well a breaker algorithm performs with respect to the security
property of the primitive.

Finally, let s = s(ρ) be a security function, B = {Bρ}ρ∈N+ be a
non-uniform algorithm, and f ∈ FQ. We say that B (Q, 1s)-breaks f if

〈fρ, Bρ, 1
s(ρ)〉 ∈ RQ for infinitely many values ρ. Let us fix an s-non-

uniform two oracle algorithm R. We say that R[B,f] (Q, 1s)-breaks f if for

infinitely many values ρ there exists an a ∈ {0, 1}s(ρ) (called advice) such

that 〈fρ, R
(Bρ,fρ)
ρ,a , 1

s(ρ)〉 ∈ RQ, where R
(?,?)
ρ,a = R(1ρ, n, n′, b, b′, a).

The usual notion of polynomial security of a primitive is captured
by the following definition: B Q-breaks f if there exists a polynomial
p = p(ρ) such that B (Q, 1p)-breaks f .

A primitive Q exists if there exists an efficient uniform algorithm M
that implements an f ∈ FQ, and for every efficient uniform algorithm M ′

that, on input 1ρ outputs a circuit, it holds that {M ′(1ρ)}ρ∈N+ does not
Q-break f .

Observe that the requirement that M ′ outputs a circuit is made with-
out loss of generality and captures the standard definition of an efficient
randomized machine M ′ that breaks a primitive. Given such an M ′ that
tosses at most r = r(ρ) random coins, there exists2 a (now deterministic)
efficient uniform machine M ′′ that on input 1ρ outputs a circuit Cρ with
m(ρ) + r(ρ) input gates and n(ρ) output gates that computes the output
of M for all strings of length m(ρ), and therefore Q-breaks the primitive.

2.3 One-Way Functions

Our model for describing a primitive is very general and captures the
security properties of many cryptographic primitives. As an example, we

2 For example, by the canonical encoding of an efficient machine as in the Cook-Levin
Theorem.

A Cookbook for Black-Box Separations and a Recipe for UOWHFs 7

bring a standard definition of a one-way function and then explain how
it can be described in our model.

Definition 2 (One-Way Function). A one-way function f = {fρ}ρ∈N+

is an efficiently uniformly computable family of functions fρ : {0, 1}n(ρ) →
{0, 1}m(ρ), such that for every efficient randomized machine A, the func-
tion that maps ρ to

Pr
x

r←{0,1}m(ρ)

[
A(1ρ, fρ(x)) ∈ f−1ρ (fρ(v))

]
is negligible.

In order to model a one-way function (OWF), we set f = {fρ}ρ∈N+ ∈
FOWF, where fρ : {0, 1}n(ρ) → {0, 1}m(ρ), if and only if n = n(ρ) and
m = m(ρ) are polynomial security functions. We say that FOWF contains
a collection of sets of functions F = {Fρ}ρ∈N+ , if for every family f ′ =
{f ′ρ}ρ∈N+ , where f ′ρ ∈ Fρ for every ρ, it holds that f ′ ∈ FOWF.

In this case, for a function fρ ∈ f ∈ FOWF, a circuit C that inverts
fρ on an ε-fraction of its inputs, and ε′ > 0, set 〈f, C, ε′〉 ∈ ROWF if and
only if ε ≥ ε′. The definition is general, and allows for the circuit C to
implicitly use randomness. In such a case, for fρ as before, a circuit with
C with m(ρ) + r(ρ) input bits that computes an output x ∈ {0, 1}n(ρ),
and a value ε′ > 0, define 〈fρ, C, ε′〉 ∈ ROWF if and only if ε ≥ ε′, where
ε is the probability over uniform z ∈ {0, 1}r(ρ) and x ∈ {0, 1}n(ρ) that
C(fρ(x), z) outputs an x′ ∈ f−1ρ (fρ(x)).

2.4 Fully Black-Box Cryptographic Constructions

Finally, we bring the standard definition of a fixed-parameter fully black-
box construction of a primitive Q from a primitive P, which is usually
implicit in the literature. The construction algorithm G is an efficient
uniform oracle algorithm and the security reduction R is an efficient uni-
form two-oracle algorithm. For every security parameter ρ and a function
fρ : {0, 1}n(ρ) → {0, 1}n′(ρ), G’s output on (1ρ, n, n′) is an (n, n′)-oracle

circuit g
(?)
ρ such that {g(fρ)ρ }ρ∈N+ implements Q. The reduction algorithm

works as follows: For a security parameter ρ and f as before, and ad-
ditionally a breaker circuit B : {0, 1}b(ρ) → {0, 1}b′(ρ), the reduction R

on input (1ρ, n, n′, b, b′) outputs an (n, n′, b, b′)-two-oracle circuit R
(?,?)
ρ .

The security property property requires that indeed the series of circuits

{R(Bρ,fρ)
ρ }ρ∈N+ P-breaks f . We emphasize that the vast majority (if not

all) of the constructions of primitives from a one-way function found in
the literature are in fact fixed-parameter fully black-box constructions.
Formally:

8 Kfir Barhum and Thomas Holenstein

Definition 3 (fixed-parameter fully black-box construction of Q

from P). An efficient uniform oracle algorithm G and an efficient uni-
form two oracle algorithm R are a fixed-parameter fully-BB construction
of a primitive Q = 〈FQ, RQ〉 from a primitive P = 〈FP, RP〉 if for every
f ∈ FP:

1. (correctness) G(f) implements f ′ ∈ FQ.

2. (security) For every algorithm B: If B Q-breaks G(f) then R(B,f) P-
breaks f .

For a super-polynomial security function s = s(ρ) (e.g., s(ρ) = 2
√
ρ),

the following definition of a fully black-box construction is significantly
weaker than the standard one in the following three aspects: First, it
requires that reduction only mildly breaks the one-way property of the
function f (whenever the breaker breaks the constructed primitive in the
standard polynomial sense). Second, the reduction algorithm does not
have to be efficient or uniform (but the non-uniformity is limited to an
advice of length s). Lastly, it allows the reduction to make s calls to its
oracles3.

Definition 4 (s-weak fixed-parameter fully black-box construc-
tion of Q from P).

A uniform oracle algorithm G and an s-non-uniform two oracle algo-
rithm R are an s-weak fixed-parameter fully-BB construction of a primitive
Q = 〈FQ, RQ〉 from a primitive P = 〈FP, RP〉 if for every f ∈ FP:

1. (correctness) G(f) implements an f ′ ∈ FQ.

2. (security) For every non-uniform algorithm B: If B Q-breaks G(f)

then R[B,f] (P, 1/s)-breaks f .

2.5 Random Permutations and Regular Functions

Let n and i be two integers such that 0 ≤ i ≤ n. We denote the set of all
permutations on {0, 1}n by Pn. Let X ,Y be sets. We denote by (X → Y)
the set of all functions from X to Y. A function f : X → Y is regular
if |{x′ : f(x) = f(x′)}| is constant for all x ∈ X . A family of functions
f = {fρ}ρ∈N+ is a regular function if for every ρ the function fρ is regular.
We denote by Rn,i the set of all regular functions from {0, 1}n to itself
such that the image of f contains 2i values. E.g., Rn,n = Pn is the set of
all permutations, and Rn,0 is the set of all constant functions.

3 In Definition 3 the limitation on the number of queries made to the oracles is implicit
as R is an efficient algorithm, and so its output circuit has at most a polynomially
number of oracle gates.

A Cookbook for Black-Box Separations and a Recipe for UOWHFs 9

2.6 Bending a Function and Image Adaptation

It will be useful for us to compare the run of a circuit with oracle access
to a function f to a run that is identical except that the output of one
specific value is altered.

For a fixed function f : {0, 1}n → {0, 1}n and y′, y′′ ∈ {0, 1}n, set

f(y′,y′′)(x)
def
=

{
y′′ if f(x) = y′

f(x) otherwise.

Similarly, for two fixed functions f, f ′ : {0, 1}n → {0, 1}n and a set
S ⊂ {0, 1}n, we define the image adaptation 4 of f to f ′ on S to be the
function

f(S,f ′)(x)
def
=

{
f ′(x) if x ∈ f−1(f(S))

f(x) otherwise.

3 A General Theorem for Proving Strong Black-Box
Separations

3.1 Deterministic Parametrized Oracles and Local Sets

The following definition allows to model general parameterized oracles,
that is, oracles that, for any function f from some set of functions and
any q from some query domain, return a value a from some answer set.
We observe that many of the oracles used for black-box separations found
in the literature could be described in such a way.

Let X ,Y,D and R be sets. A deterministic parametrized oracle for a
class of functions (X → Y) is an indexed collection O = {Of}f∈X→Y ,
where Of : D → R. We call f , D, and R the function parameter, the
domain, and the range of the oracle, respectively.

Our first example of a deterministic parametrized oracle is the eval-
uation oracle E for functions on {0, 1}n, which on a query q returns the
evaluation of f on q. In this case we have that X = Y = D = R = {0, 1}n

and Ef (q)
def
= f(q).

The next two definitions capture two important local properties of
parametrized oracles. We believe that they are natural and observe that
many of the oracles devised for separation results satisfy them.

4 We mention that if f is a permutation, the condition f(x) = y can be replaced by
x = f−1(y), and similarly for f(S,f ′) check whether x ∈ S, which is what one may
expect initially from such a definition.

10 Kfir Barhum and Thomas Holenstein

Intuitively, a determining set is an indexed collection of sets that de-
termine the output of the oracle for every function f and query q in the
following sense: If for two functions f and f ′ it holds that their corre-
sponding oracle outputs differ for some q, then for one of them (f or f ′)
it holds that the local change of an image adaptation of one of the func-
tions to agree with that of the other on its determining set changes the
output of the oracle. Formally:

Definition 5. Let O be a deterministic parametrized oracle. A determin-
ing set IO for a class of functions F ⊂ (X → Y) is an indexed collection
{IOf,q}f∈F ,q∈D of subsets of X , such that for every f, f ′ ∈ F and every

query q ∈ D: If Of (q) 6= Of ′(q), then it holds that either the image adap-
tation of f to f ′ on IOf ′,q changes Of (q) (i.e., Of(

IO
f ′,q

,f ′
)(q) 6= Of (q)),

or the image adaptation of f ′ to f on IOf,q changes Of ′(q). IO is a t-
determining set if for every function f ∈ F and query q ∈ D it holds that∣∣IOf,q∣∣ ≤ t.

In the example of the evaluation oracle, we observe that it has a

1-determining set. Indeed, setting IEf,q
def
= {q} satisfies the required defi-

nition, since if for any f, f ′ ∈ {0, 1}n → {0, 1}n and x ∈ {0, 1}n for which
f(x) 6= f ′(x) it holds that f({x},f ′)(x) = f ′(x) 6= f(x).

Consider an oracle O with a determining set IO for some class of
permutations F . Fix f, f ′ ∈ F and q ∈ D. The following two propositions
are immediate from the definition of determining sets:

Proposition 1. If Of (q) 6= Of ′(q) and f(x) = f ′(x) for all x ∈ IOf ′,q (in

this case we say that f agrees with f ’ on IOf ′,q), then adapting f ′ to agree

with f on IOf,q changes Of ′(q).

Proposition 2. If for all x ∈ IOf,q ∪ IOf ′,q it holds that f(x) = f ′(x) (in
this case we say that the functions agree on their determining sets), then
Of (q) = Of ′(q).

Proposition 2 establishes that determining sets indeed determine the
output of the oracle in the following sense: If we know the value Of (q)
for a query q and a function f , and, moreover, we know that functions
f ′, f agree on their determining sets for q, then this information already
determines for us the value Of ′(q).

The next local property of an oracle captures the fact that it is in some
sense “stable”. For a function f and query q as before, and a value y in

A Cookbook for Black-Box Separations and a Recipe for UOWHFs 11

the image set of f , a bending set for f, q, and y is a set of all potentially
“sensitive” y′ values: For any value y which is not in the image of f on
its determining set, and for any value y′ which is not in the bending set,
the oracle’s answer to query q does not change for the local adaptations
of f from y′ to y. That is, it holds that Of(y′,y)(q) = Of (q). Formally:

Definition 6. Let O be a deterministic parametrized oracle. A bending
set BO for F is an indexed collection {BOf,q,y}f∈F ,q∈D,y∈Y of subsets of Y,
such that for every function f ∈ F , query q ∈ D, for every target image
y ∈ Y, and for every source image y

′
/∈ BOf,q,y, it holds that Of (q) =

Of(y′,y)(q). We say that BO is a t-bending set if for every function f ∈ F ,

query q ∈ D and y ∈ Y it holds that |BOf,q,y| ≤ t.

For the example of the evaluation oracle, we observe that it also has

a 1-bending set. Setting BEf,q,y
def
= {f(q)} (for the relevant f, q and y)

satisfies the required definition. Indeed, for any y′ 6= f(q) and y′′ ∈ Y, it
holds that Ef(y′,y′′)(q) = f(y′,y′′)(q) = f(q) = Ef (q).

Finally, a deterministic parametrized algorithm O is t-stable for a class
of functions F if there exist (IO,BO) that are a t-determining set and a
t-bending set for F , respectively, and at least one of them is not empty.

We note that determining and bending sets always exist uncondition-
ally (just choose the entire domain and range of f , for every determining
and bending set, respectively). The challange is finding an oracle that
allows to break a primitive and at the same time is t-stable.

3.2 A t-Stable Oracle Of Inverts Only a Few Functions

The next lemma, which first appeared in [5] and was subsequently
adapted to many other separation results, e.g., [6, 15, 9], establishes an
information-theoretic bound on the number of functions an oracle-aided
algorithm can invert from a set F if the oracle is t-stable for F . Essen-
tially, it shows that given an oracle circuit A(?) with access to such an
oracle O, it is possible to encode a function f ∈ F that A inverts well
using significantly fewer bits than log(|F|), such that f can still be fully
reconstructed, or equivallently, that the encoding is injective.

Lemma 1 (Encoding Lemma). Let A(?) be an oracle circuit mak-
ing at most c calls to its oracle, and let O = {Of}f∈{0,1}n→{0,1}n be
a deterministic parameterized oracle such that for a class of permu-
tations F ⊆ Pn it is t-stable with sets (IO,BO). Then, for at most

12 Kfir Barhum and Thomas Holenstein

dn = dn(c, t) =
((

2n

b

))2
· ((2n− b)!), where b

def
= 2n

3·c2·t , of the permutations

f in F , it holds that Pr
x

r←{0,1}n
[
AOf (f(x)) = x

]
> 1

c .

The proof is a generalized version of the encoding technique of [5].

The next theorem is proved by means of a reduction to Lemma 1 and
expressing canonically a regular function using premutations. Detailed
proofs of the lemma and the theorem are available in [3].

Theorem 1 (Black-Box Separation Factory). Let s = s(ρ) be
a security function, and p = p(ρ) be a polynomial function. Let
(G,A) = (G(?), A(?,?)) be a uniform oracle algorithm and an s-non-
uniform two-oracle algorithm, respectively. Let F = {Fρ}ρ>0, where
Fρ ⊂ Rn(ρ),i(ρ)(Pρ, Iρ), be contained in FOWF, and O = {Oρ}ρ>0, where
Oρ = {Oρ,f}f∈Fn(ρ),i(ρ)(Pρ,Iρ), such that for all large enough ρ:

1. Oρ,f (Q, 1
p(ρ))-breaks g

(f)
ρ for every f ∈ Fρ, where g

(?)
ρ

def
= G(1ρ, n, n′).

2. Oρ is t-stable with sets (IO,BO) for Fρ such that 2s(ρ) · di(s(ρ), t) <
|Fρ| holds, where di is as in Lemma 1.

Then (G,A) is not an s-weak fixed-parameter fully black-box construc-
tion of Q from OWF.

4 A Lower Bound on the Number of Calls for a
Fixed-Parameter Fully Black-Box Construction of
UOWHF from OWF

In this section we prove our second main result, namely a lower bound
on the number of calls made by the construction algorithm G in any
fully black-box construction (G,R) of UOWHF from OWF. Our bound is
achieved by showing a sequence of efficient fixed-parameter fully black-
box constructions, where each primitive is constructed from the one that
precedes it, and by proving the lower bound on the number of calls a
construction makes on the last primitive. A diagram of the reduction
sequence is depicted in Figure 1.

4.1 A Characterization of Universal One-Way Hash Functions

Loosely speaking, a universal one-way hash function is a keyed compress-
ing function for which the probability that an adversary wins the follow-
ing game is very small: First the adversary chooses a preimage v. Then a

A Cookbook for Black-Box Separations and a Recipe for UOWHFs 13

random key for the UOWHF is chosen. Finally, the adversary “wins” the
game he finds a different preimage v′ that maps to the same value under
the chosen key. Formally:

Definition 7 (UOWHF). A universal one-way hash function h = {hρ}ρ∈N+

is a family of uniformly efficiently computable keyed functions hρ :
{0, 1}κ(ρ) × {0, 1}m(ρ) → {0, 1}m′(ρ) with m′(ρ) < m(ρ) such that for any
pair of efficient randomized algorithms (B1, B2) the function mapping ρ
to

Pr
(v,σ)

r←B1(ρ)

k
r←{0,1}κ(ρ)

v′
r←B2(k,v,σ)

[
hρ(k, v) = hρ(k, v

′) ∧ v 6= v′
]

is negligible. The family h is an `-bit compressing UOWHF, where ` =
`(ρ), if m(ρ)−m′(ρ) ≥ `(ρ) for all large enough ρ.

The primitive UOWHF = (FUOWHF, RUOWHF) is defined implic-
itly analogously to the way OWF was defined for one-way functions

Domain extension of a UOWHF. The definition of a UOWHF only
guarantees that hρ is compressing (i.e., it is possible that `(ρ) = 1). The
first reduction we use is a domain extension of a UOWHF, that allows
to construct an `-bit compressing UOWHF from a UOWHF. Shoup [16]
shows a fully-black box construction of a `-bit compressing UOWHF from
one that compresses only one bit, which is the minimal requirement from
any UOWHF.

Lemma 2 (UOWHF domain extension). There exists a fixed-
parameter fully black-box construction of an `-bit compressing UOWHF
h′ρ : {0, 1}log(`)·κ(ρ) × {0, 1}m+` → {0, 1}m from a one-bit compressing

UOWHF hρ : {0, 1}κ(ρ) × {0, 1}m+1 → {0, 1}m. In order to evaluate h′ρ
the construction makes exactly `(ρ) calls to hρ. The security reduction

R
hρ,B
ρ makes ` calls to its hρ oracle, and exactly one call to the breaker

Bρ = (B1, B2)ρ oracle. Furthermore, if Bρ (`-UOWHF, ε)-breaks h′ρ, then
the reduction (UOWHF, ε`)-breaks hρ.

We observe that the security definition for UOWHFs involves an in-
teraction, and allows the adversary to save its state using σ. It will be
more convenient for us to work with an equivalent non-interactive ver-
sion. The following definition of collision resistance is tightly related to
that of a UOWHF by the lemma that follows it, where we denote by a‖b
the concatenation of a and b.

14 Kfir Barhum and Thomas Holenstein

Definition 8 (RP-CRHF). A random preimage collision resistance hash
function is an efficiently uniformly computable family of functions hρ :
{0, 1}m(ρ) → {0, 1}m′(ρ) with m′(ρ) < m(ρ), such that for every efficient
randomized machine B the function mapping ρ to

Pr
v

r←{0,1}m(ρ)

v′
r←B(ρ,v)

[
hρ(v) = hρ(v

′) ∧ v 6= v′
]

is negligible.

The family h is an `-bit compressing RP-CRHF, where ` = `(ρ), if addi-
tionally it holds that m(ρ)−m′(ρ) ≥ `(ρ) for all large enough ρ.

The primitives RP-CRHF and log2(ρ)-RP-CRHF are defined analogously.

Lemma 3 (UOWHF to RP-CRHF, folklore). Let h = {hρ}ρ∈N+ be a

UOWHF. Then the family h′ρ : {0, 1}κ(ρ)+m(ρ) → {0, 1}κ(ρ)+m′(ρ) given by

h′ρ(k‖v)
def
= (k‖hρ(k, v)) is an RP-CRHF.

Pseudo-injective Functions. Our last reduction establishes that
padding the output of a log2(ρ)-RP-CRHF yields a primitive that is
both a one-way function, and behaves like an injective function. A
pseudo-injective function is an efficiently uniformly computable family
g = {gρ}ρ∈N+ of length preserving functions gρ : {0, 1}m(ρ) → {0, 1}m(ρ)

such that for a uniformly chosen input v ∈ {0, 1}m(ρ) it is impossible to
find another input v′ 6= v such that both map to the same value under
gρ. We stress that pseudo-injective functions exists unconditionally: Any
permutation is a pseudo-injective function. Formally:

Definition 9 (Pseudo-Injectivity). A pseudo-injective function g =
{gρ}ρ∈N+ is a uniformly efficiently computable family of functions gρ :

{0, 1}m(ρ) → {0, 1}m(ρ), such that for all uniform efficient algorithms A
the function mapping ρ to

Pr
v

r←{0,1}m(ρ)

v′
r←A(1ρ,v)

[
gρ(v

′) = gρ(v) ∧ v′ 6= v
]

is negligible.

Similarly to before, the primitive PI = 〈FPI, RPI〉 corresponds to a
pseudo-injective function. Next, we consider the primitive OWF∧PI that
corresponds to all functions which are both a one-way function and a
pseudo-injective function. Formally, it holds that f ∈ FOWF∧PI if and
only if f ∈ FOWF and f ∈ FPI. For a breaker circuit C, a function

A Cookbook for Black-Box Separations and a Recipe for UOWHFs 15

fρ ∈ f ∈ FOWF∧PI, and a number ε it holds that 〈fρ, C, ε〉 ∈ ROWF∧PI
if and only if 〈fρ, C, ε〉 ∈ ROWF or 〈fρ, C, ε〉 ∈ RPI. It turns out that
padding any log2(n)-RP-CRHF to a length-preserving function, yields a
function which is both a one-way function and a pseudo-injective function.

Lemma 4 (log2(ρ)-RP-CRHF to OWF∧PI). Let h = {hρ}ρ∈N+ be an

RP-CRHF that compresses `(ρ)
def
= m(ρ) − m′(ρ) bits, where `(ρ) ≥

log2(ρ). Then the family {h′ρ}ρ∈N+, where h′ρ(v)
def
= hρ(v)‖0`(ρ), is a one-

way function and a pseudo-injective function.

Due to limitations of space the proof is omitted. The composition of
the constructions depicted in Lemmas 2, 3 and 4 establishes a fixed-
parameter fully black-box construction of an h′ ∈ FOWF∧PI from any
h ∈ FUOWHF that makes log2(ρ) calls to the underlying UOWHF. The
security reduction makes log2(ρ) calls (to both its oracles) in order to
break the security of the underlying UOWHF, and if B (OWF∧PI, 1p)-
breaks the constructed h for some polynomial p and breaker B, then the
reduction (UOWHF, 1

p′)-breaks h, where p′ is a different polynomial such

that p′(ρ) > 4 · p(ρ) · log2(ρ). Thus we obtain:

Corollary 1. Suppose that (G,R) is an s′-weak fixed-parameter fully
black-box construction of UOWHF from OWF that makes at most r′ =
r′(ρ) queries to OWF. Then there exists an s-weak fixed-parameter fully
black-box construction of OWF∧PI from OWF that makes r′(ρ) · log2(ρ)

calls to the underlying one-way function, where s(ρ)
def
= s′(ρ) · log2(ρ).

Therefore, in order to show that there is no s′-weak fixed-parameter
fully black-box construction of UOWHF from OWF, where the construc-
tion makes r′ calls to the one-way functions, it is sufficient to show
that there is no s-weak fixed-parameter fully black-box construction of

OWF∧PI from OWF that makes r calls, where s(ρ)
def
= s′(ρ) · log2(ρ) and

r(ρ)
def
= r′(ρ) · log2(ρ). This is the goal of the next section.

OWF UOWHF log2(ρ)-UOWHF log2(ρ)-RPCRHF OWF∧PI

Lemma 2 Lemma 3 Lemma 4?

/

No s-weak construction making r ∈ o
(

n(ρ)
log(s(ρ))

)
calls to f .

Fig. 1. Fully Black-Box Constructions Diagram.

16 Kfir Barhum and Thomas Holenstein

4.2 A Lower Bound on the Number of Calls for an s-Weak
Fixed-Parameter Fully Black-Box Construction of
OWF∧PI from OWF

As explained, a lower bound on a construction of OWF∧PI from OWF

yields a very good (up to a log2-factor) bound on the construction of
UOWHF. Our proof utilizes the machinery from Section 3. Let us intro-
duce some notation. For an (n, n)-oracle circuit g(?) : {0, 1}m → {0, 1}m, a
function f : {0, 1}n → {0, 1}n and a value v ∈ {0, 1}m, denote by Xg(f, v)
and Yg(f, v) the sets of queries and answers made to and received from f
during the evaluation of g(f)(v), respectively.

For any potential construction (G,R) denote by r = r(ρ) the number
of queries gρ makes when instantiated for security parameter ρ with a

one-way function fρ : {0, 1}ρ → {0, 1}ρ, that is we set n(ρ)
def
= n′(ρ)

def
= ρ.

Additionally, let s = s(ρ) be a super-polynomial security function smaller
than 2

ρ
10 . I.e., for all polynomials p and all large enough ρ it holds that

p(ρ) < s(ρ) < 2
ρ
10 . We prove that if r(ρ) < n(ρ)

2000·log(s(ρ))) holds for all large

enough ρ, then (G,R) is not an s-weak fixed-parameter fully black-box
construction of OWF∧PI from OWF.

Theorem 2. For all super-polynomial security functions s = s(ρ) < 2
ρ
10

and r = r(ρ) there is no s-weak fixed-parameter fully black-box construc-

tion of OWF∧PI from OWF such that g
(?)
ρ : {0, 1}m(ρ) → {0, 1}m(ρ)

makes at most r(ρ) calls to the underlying one-way function, where

n(ρ)
def
= n′(ρ)

def
= ρ and g

(?)
ρ

def
= G(1ρ, n, n′), and r(ρ) ≤ n(ρ)

2000·log(s(ρ)) holds
for all large enough ρ.

Proof. Without loss of generality, we assume that the construction g

makes exactly r(ρ)
def
= n(ρ)

2000·log(s(ρ)) different queries. Whenever this is
not the case, it is always possible to amend G so that it behaves exactly
as before, but on input (1ρ, n, n′) it outputs an (n, n′)-oracle circuit with
r(ρ) oracle gates, and additionally, all queries are different.

Let s and r be a pair of security functions such that s is super-
polynomial, that is, for every polynomial p and large enough ρ it holds
that s(ρ) > p(ρ), and that r(ρ) = n(ρ)

2000·log(s(ρ)) holds for all sufficiently
large ρ.

We now explain how to construct the oracle O = {Oρ}ρ∈N+ and the
collection of sets of functions F = {Fρ}ρ∈N+ . For each security paramter
ρ we define the oracle Oρ and the set Fρ independently of the oracles and
function sets chosen for other security parameters. It will always hold that
Fρ ⊂ {0, 1}n → {0, 1}n, and so the constructed F is contained in FOWF.

A Cookbook for Black-Box Separations and a Recipe for UOWHFs 17

Therefore, from now on we omit the security parameter in our nota-
tion, but formally all our parameters depend on the security parameter
ρ. In particular, g(?) is the construction that the uniform construction
algorithm G outputs for security parameter ρ = n = n′ with a function
fρ : {0, 1}ρ → {0, 1}ρ.

Analogously to [9], for every security parameter we break either
the one-wayness property of the constructed function, or its pseudo-
injectivity. For the oracle circuit g(?) : {0, 1}m → {0, 1}m, we check
whether when g is evaluated with a random permutation f

r← Pn and
a random input v

r← {0, 1}m, the output gf (v) is significantly correlated
with any subset of the set of oracle answers returned by f on the calls
made to it during the evaluation of gf (v) (recall that these are denoted by
Yg(f, v)). To this end, we bring the procedure STA (for safe to answer),
which returns true if and only if there is no such correlation:

Procedure STA(w,Q) (on w ∈ {0, 1}m and Q ⊂ {0, 1}n of size r)
.

for all B ⊆ Q do

. if Pr
f ′

r←Pn,v′
r←{0,1}m

[
g(f
′)(v′) = w

∣∣∣B ⊆ Yg(f ′, v′)] ≥ 2−m+ n
30

. return false

return true

We set p(g), the probability that for a random permutation f and a
random input v, the output gf (v) is correlated with some subset of the
answers Yg(f, v). Define

p(g)
def
= Pr

f
r←Pn,v

r←{0,1}m

[
STA(g(f)(v), Yg(f, v))

]
. (1)

We stress that both the output of STA (for any value y and a set Q), and
the value p(g) do not depend on any specific permutation, but rather on
a combinatorial property of the construction as a whole, which averages
over all permutations.

As explained, we set the oracle O and the set F based on the value

p(g). In case that p(g) > 1
2 we set the oracle O def

= BreakOWg
def
=

{BreakOWg,f}f∈{0,1}n→{0,1}n , where we use the oracle BreakOWg from
[9], which is described next. In [9] it is implicitly proved that there exists

a set F ⊂ Pn of size |F| > |Pn|
5 , such that BreakOWg,f (OWF, 14)-breaks

gf for all f ∈ F , and that BreakOWg is 2
n
5 -stable for F , in which case

condition (2) in Theorem 1 is satisfied.

18 Kfir Barhum and Thomas Holenstein

Algorithm BreakOWg,f (w) (on input w ∈ {0, 1}m)
.

for all v ∈ {0, 1}m do
. if g(f)(v) = w then
. if STA(w, Yg(f, v)) then
. return v
return ⊥

In the case p(g) ≤ 1
2 we show that when f is chosen uniformly at

random from a set of regular degenerate functions, it is often the case
that the construction g(f) is not injective, and therefore there exists an
oracle which breaks the pseudo-injectivity of g(f). The challenge is to
find a breaker oracle that is t-stable. The next lemmas establish that the
oracle BreakPI satisfies the required conditions in this case.

Formally, for a construction circuit g we define the oracle BreakPIg =
{BreakPIg,f}f∈{0,1}n→{0,1}n that for a function f is given by:

Algorithm BreakPIg,f (v) (on input v ∈ {0, 1}m)
.

for all v′ ∈ {0, 1}m do
. if g(f)(v) = g(f)(v′) and v′ 6= v then
. if Yg(f, v) = Yg(f, v

′) then
. return v′

return ⊥
Now, we fix i

def
= n

200·r = 10·log(s). We show that for a 1
6 -fraction of the

functions f in Rn,i it holds that BreakPIg,f breaks the pseudo-injectivity
of g(f).

Lemma 5. Let g : {0, 1}m → {0, 1}m be an r-query oracle construction
with p(g) ≤ 1

2 . Then for a 1
6 -fraction of the functions in Rn, n

200·r
it holds

that

Pr
v

r←{0,1}m

[
BreakPIg,f (v) outputs v′ s.t. v 6= v′ ∧ g(f)(v) = g(f)(v′)

]
≥ 1

24
.

(2)

The proof of the Lemma appears in [3]. We conclude from Lemma 5 that
if p(g) ≤ 1

2 , there exists a partition P of {0, 1}n to sets of size 2n−i and an
image-set I of size 2i, such that (2) holds for at least a 1

6 -fraction of the
functions f ∈ Rn,i(P, I). Set F ⊂ Rn,i(P, I) to be the set of all functions
for which (2) holds. It follows that |F| ≥ 1

6 · 2
i, as |Rn,i(P, I)| = |Pi|.

A Cookbook for Black-Box Separations and a Recipe for UOWHFs 19

We next show that for the class of functions Rn,i(P, I) the oracle can
be implemented such that it is stable.

Lemma 6. Let i ∈ N+ and I ⊂ {0, 1}n of size 2i and P a partition of
{0, 1}n to sets of size 2n−i. Then there exists an implementation of the
oracle BreakPIg that is n-stable for Rn,i(P, I).

The proof of the Lemma appears in [3]. It is left to check (the simple
calculation is omitted) that 2s · di(s, n) < |F|.

We have shown that the conditions of Theorem 1 hold, and therefore
we conclude that there is no s-weak fixed-parameter fully black-box con-
struction of OWF∧PI from OWF. The theorem is proved. ut

4.3 Deriving the Lower Bound

We are now ready to derive our lower bound for constructions of a uni-
versal one-way hash function from a one-way function:

Corollary 2. Let s′ be a security function such that s(n)
def
= s′(n)·log2(n)

is a super-polynomial security function for which s(n) < 2
n
10 holds.

Then there is no s-weak fixed-parameter fully black-box construction of
UOWHF from OWF, where the construction makes at most r′(n) =

n
2000·log(s(n))·log2(n) calls to a one-way function f = {fn : {0, 1}n →
{0, 1}n}n∈N+.

Proof. We apply Corollary 1 with Theorem 2. ut

Corollary 3. There is no fixed-parameter fully black-box construction of
UOWHF from OWF, where the construction makes at most r = r(n) calls

to a OWF f = {fn : {0, 1}n → {0, 1}n}n∈N+, where r ∈ o
(

n
log3(n)

)
.

Proof. Let r ∈ o
(

n
log3(n)

)
. Then there exists a super-constant function

α = α(n), such that the function r′(n) given by r′(n)
def
= r(n) ·α(n) is still

in o
(

n
log3(n)

)
. The bound follows immediately from Corollary 2 applied

with s(n)
def
= 2α(n)·log(n). ut

Acknowledgments. We thank the anonymous reviewers for their help-
ful comments.

20 Kfir Barhum and Thomas Holenstein

References

1. Scott Ames, Rosario Gennaro, and Muthuramakrishnan Venkitasubramaniam.
The generalized randomized iterate and its application to new efficient construc-
tions of uowhfs from regular owfs. In ASIACRYPT, LNCS 7658, pp. 154–171.
Springer, 2012.

2. Boaz Barak. How to go beyond the black-box simulation barrier. In FOCS, pp.
106–115. IEEE Computer Society, 2001.

3. Kfir Barhum and Thomas Holenstein. A Cookbook for Black-Box Separations and
a Recipe for UOWHFs. Full version available as ECCC report TR12-173.

4. Kfir Barhum and Ueli Maurer. UOWHFs from OWFs: Trading regularity for
efficiency. In LATINCRYPT 2012, LNCS 7533, pp. 234–253. Springer, 2012.

5. Rosario Gennaro, Yael Gertner, Jonathan Katz, and Luca Trevisan. Bounds on the
efficiency of generic cryptographic constructions. SIAM J. Comput., 35(1):217–246,
2005.

6. Iftach Haitner, Jonathan J. Hoch, Omer Reingold, and Gil Segev. Finding col-
lisions in interactive protocols - a tight lower bound on the round complexity of
statistically-hiding commitments. In FOCS, pp. 669–679. IEEE Computer Society,
2007.

7. Iftach Haitner and Thomas Holenstein. On the (im)possibility of key dependent
encryption. In TCC, LNCS 5444, pp. 202–219. Springer, 2009.

8. Iftach Haitner, Thomas Holenstein, Omer Reingold, Salil P. Vadhan, and Hoeteck
Wee. Universal one-way hash functions via inaccessible entropy. In EUROCRYPT,
LNCS 6110, pp. 616–637. Springer, 2010.

9. Thomas Holenstein and Makrand Sinha. Constructing a pseudorandom generator
requires an almost linear number of calls. CoRR, abs/1205.4576. 2012.

10. Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of
one-way permutations. In STOC, pp. 44–61. ACM, 1989.

11. Jeong Han Kim, Daniel R. Simon, and Prasad Tetali. Limits on the efficiency of
one-way permutation-based hash functions. In FOCS, pp. 535–542. IEEE Com-
puter Society, 1999.

12. Moni Naor and Moti Yung. Universal one-way hash functions and their crypto-
graphic applications. In STOC, pp. 33–43. ACM, 1989.

13. Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Notions of reducibility be-
tween cryptographic primitives. In TCC, LNCS 2951, pp. 1–20. Springer, 2004.

14. John Rompel. One-way functions are necessary and sufficient for secure signatures.
In STOC, pp. 387–394. ACM, 1990.

15. Alon Rosen and Gil Segev. Chosen-ciphertext security via correlated products.
SIAM J. Comput., 39(7):3058–3088, 2010.

16. Victor Shoup. A composition theorem for universal one-way hash functions. In
EUROCRYPT, LNCS 1807, pp. 445–452. Springer, 2000.

17. Daniel R. Simon. Finding collisions on a one-way street: Can secure hash functions
be based on general assumptions? In EUROCRYPT, LNCS 1403, pp. 334–345.
Springer, 1998.

18. Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended
abstract). In FOCS, pp. 80–91. IEEE Computer Society, 1982.

