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Abstract. Traditional definitions of the security of encryption schemes
assume that the messages encrypted are chosen independently of the ran-
domness used by the encryption scheme. Recent works, implicitly by My-
ers and Shelat (FOCS’09) and Bellare et al (AsiaCrypt’09), and explic-
itly by Hemmenway and Ostrovsky (ECCC’10), consider randomness-
dependent message (RDM) security of encryption schemes, where the
message to be encrypted may be selected as a function—referred to as
the RDM function—of the randomness used to encrypt this particular
message, or other messages, but in a circular way. We carry out a system-
atic study of this notion. Our main results demonstrate the following:
– Full RDM security—where the RDM function may be an arbitrary

polynomial-size circuit—is not possible.
– Any secure encryption scheme can be slightly modified, by just per-

forming some pre-processing to the randomness, to satisfy bounded-
RDM security, where the RDM function is restricted to be a circuit
of a priori bounded polynomial size. The scheme, however, requires
the randomness r needed to encrypt a message m to be slightly
longer than the length of m (i.e., |r| > |m|+ω(log k), where k is the
security parameter).

– We present a black-box provability barrier to compilations of arbi-
trary public-key encryption into RDM-secure ones using just pre-
processing of the randomness, whenever |m| > |r|+ω(log k). On the
other hand, under the DDH assumption, we demonstrate the exis-
tence of bounded-RDM secure schemes that can encrypt arbitrarily
“long” messages using “short” randomness.

We finally note that the existence of public-key encryption schemes im-
ply the existence of a fully RDM-secure encryption scheme in an “ultra-
weak” Random-Oracle Model—where the security reduction need not
“program” the oracle, or see the queries made by the adversary to the
oracle; combined with our impossibility result, this yields the first exam-
ple of a cryptographic task that has a secure implementation in such a
weak Random-Oracle Model, but does not have a secure implementation
without random oracles.
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1 Introduction

Traditional definitions of secure encryption, including semantic (or CPA) secu-
rity and CCA security, address the problem of how to securely communicate
a message in the presence of a polynomially-bounded adversary that observes
encrypted messages. In the standard approach, it is assumed that the message,
the keys, and the randomness used to encrypt the message, are all chosen inde-
pendently.

More recently, new definitions have emerged that relax some of these inde-
pendence assumptions. Most notably, a line of work initiated independently by
Camenisch and Lysyanskaya [21] and by Black, Rogaway, and Shrimpton [14] ad-
dresses the problem of “key-dependent” messages (KDM): namely, they consider
the security of a public-key encryption scheme in a setting where the message
to be encrypted may (adversarially) depend on the secret-key. A variant of this
notion instead considers “circular” security: here, the adversary may observe a

“cycle” of q messages −→m encrypted using different keys (
−→
pk,
−→
sk), but where mi

may depend on the depends on the secret-key sk(i+1 mod q). One motivation
for studying key-dependence arises in the context of hard-drive encryption: you
want to encrypt your hard-drive, on which your secret-key is also found. Circular
security arises naturally in a situation when two parties want to share their se-
cret keys with each other (but not with the rest of the world): a natural solution
to the problem would be for player 1 to send an encrypted version of his secret
key using player 2’s public key, and vice versa. For this protocol to be secure,
circular security is needed. More recently, circular security has found important
applications in the context of fully-homomorphic encryptions (indeed, to date,
all known FHE schemes rely on the assumption that some underlying encryption
scheme is circularly secure).

We here focus on an alternative relaxation of the classic independence as-
sumptions, first implicitly considered by Myers and Shelat [36] and Bellare et al
[10], and explicitly by Hemmenway and Ostrovsky [31]: We study of the security
of encryption schemes in a scenario where the message to be encrypted may
be selected as a function—referred to as the RDM function—of the randomness
used to encrypt this particular message, or other messages, but in a circular way.
More precisely, in analogy with KDM security and circular security, we consider
two notions of randomness dependent message security.

– Randomness-dependent message (RDM) security : roughly speaking, a public-
key encryption scheme is said to be RDM-secure if indistinguishability of
ciphertexts holds even if the encrypted messages are chosen as a function of
the randomness used to encrypt this particular message.

– Circular randomness-dependent (circular-RDM) security : roughly speaking,
a public-key encryption scheme is said to be circular RDM-secure if indistin-
guishability of ciphertexts holds even if the encrypted messages are chosen
as a function of the randomness used to encrypt other messages, but in a
circular way. More precisely, we consider a scenario where q messages −→m are
encrypted using randomness −→r , where m1 is chosen as a function of rq and



each other message mi is chosen as a function of ri−1 and the “previous”
ciphertext ci−1 = Encpk(mi−1, ri−1).

Why care about Randomness-Dependent Message Security We consider two rea-
sons to study RDM security:

1. involuntary RDM attacks: Implementations of secure protocols are prone to
programming mistakes; attacks exploiting such programming mistakes (e.g.,
buffer overflow attacks) have been demonstrated on secure protocols. At-
tacks of this type may allow an attacker to see encryptions of randomness
dependent messages, even if the original protocol chooses messages indepen-
dently of the randomness used to encrypt it. RDM security would block such
“involuntary” RDM attacks.

To prevent against these we need to be able to handle sufficiently general
classes of RDM functions that may be produced by the attackers.

2. voluntary RDM attacks As shown in the beautiful work by Myers and She-
lat [36], the possibility of encrypting the randomness used in other encryp-
tions, in a circular way, leads to new powerful techniques in the design of
encryption schemes. This techniques was further refined in a recent work
by Hohenberger, Lewko and Waters [33]. Another application is found in
the work of Hemmenway and Ostrovsky [31], that explicitly considers a no-
tion of circular randomness dependent “one-wayness” and show its useful-
ness for constructing injective trapdoor functions. In this context, the pro-
tocol designer is “voluntarily” creating a (circular-)RDM attack. The above-
mentioned works either implicitly (as in [36] and [33]), or explicitly (as in
[31]) consider and design encryption schemes that are circular-RDM secure
for the specific randomness-dependent messages selected by their protocols.
Although for this particular application it suffices to consider specific RDM
functions, having general-purpose RDM-secure encryption schemes simplifies
the design and the security analysis of protocols.

Another motivation stems from non-black-box simulation techniques pio-
neered in the work by Barak [5]; in a variant of Barak’s simulation technique
due to [41], the simulator commits to its own code (that, in particular, con-
tains the randomness used for the commitment, and thus circularity arises).
In this particular application, the circularity could be broken, but having
general techniques for dealing with RDM security may simplify future ap-
plications.

Before explaining our result, let us also point out that RDM secure encryption
is very related to hedged encryption schemes introduced by Bellare et al [10]—
encryption schemes that remain secure as long as the joint message-randomness
distribution comes from a high-entropy source, that is independent of the public-
key of the encryption scheme (which in turn are very related to deterministic
encryption [8, 11, 15]; see [10] for more details). Hedged encryption schemes are
RDM-secure if restricting the attacker to using RDM functions that do not



depend on the public-key.1 Our focus here is on notions of RDM security where
the RDM function may depend also on the public-key.

1.1 Our results

Full RDM security Our first result shows that if the RDM function may be an
arbitrary polynomial-size circuit (chosen by the adversary), then RDM security,
as defined by Hemmenway and Ostrovsky [31], is impossible to achieve.

Theorem 1 (Informal Statement). There does not exist an encryption scheme
that is (fully) RDM-secure.

We next show that if there exists some polynomial q such that an encryption
scheme is q-circular RDM secure, then the encryption scheme is also RDM secure;
thus q-circular RDM security is impossible for all polynomials q.

Theorem 2 (Informal Statement). There does not exist an encryption scheme
that is (fully) q-circular RDM-secure for any polynomial q.

Bounded RDM security Since “unbounded” RDM security is impossible, we
consider RDM security with respect to restricted classes of RDM functions.

Our first positive result demonstrates that if the RDM function is restricted
to be a circuit of a priori polynomially bounded size, then any secure encryption
scheme can be modified to satisfy both RDM and circular-RDM security.

Theorem 3 (Informal Statement). Assume the existence of a secure public
key encryption scheme. Then, for every polynomial s, there exists an encryption
scheme Π that is RDM secure when restricting the RDM function to be computed
by a circuit of size at most s(k) where k is the security parameter. Additionally
Π is q-circular RDM secure for every polynomial q under the same restrictions
on the RDM function.

Theorem 3 is proven by modifying any secure encryption scheme to first “hash”
the randomness using a t-wise independent hash-function. The same transfor-
mation was previously used by Hemmenway and Ostrovsky [31] to transform
“lossy encryption schemes” [42], that can encrypt messages longer than the ran-
domness, into schemes that satisfy a notion of circular-RDM “one-wayness”2

(as opposed to semantic security) with respect to a particular circular-RDM
function (the identity function).

1 However, it is not clear in general whether hedged encryption schemes are circular
RDM secure, even if we restrict to RDM functions that do not depend on the public-
key.

2 The notion of q-circular RDM one-wayness of Hemmenway and Ostro-
vsky requires that no polynomial-time attacker can recover r1, r2, . . . rq given
Encpk(rq; r1),Encpk(r1; r2), . . . ,Encpk(rq−1; rq) except with negligible probability,
over the choice of pk and uniform r1, . . . rq.



In order to encrypt a message m, our encryption scheme requires using
|m| + ω(log k) bits; that is, the randomness used to encrypt a message needs
to be sufficiently longer than the message being encrypted (as such, the encryp-
tion scheme of Theorem 3 does not handle “the identity function” as an RDM
function.) Our next positive result strictly strengthens the conclusion of Theorem
3 (but under a stronger assumption) and the results of [31]: the existence of lossy
trapdoor functions [43] implies the existence of both bounded RDM-secure and
bounded circular-RDM secure encryption schemes that can encrypt also “long”
messages using “short” randomness—the ratio between the message-length and
the randomness length is proportional to the lossiness of the trapdoor function.
Our construction mirrors a construction of hedged encryption of Bellare et al
[10]; roughly, the encryption is done by first “hashing” the message-randomness
pair and then applying a lossy trapdoor function to the hashed value. The key
difference is that we replace the use of univeral hashing (in the construction of
[10]) with t-wise independent hashing.3

Theorem 4 (Informal Statement). Assume the existence of “sufficiently”
lossy trapdoor functions (the existence of which are implied e.g., by the DDH
assumption). Then, for every polynomials s, l, there exists a l(k)-bit encryption
scheme Π using only k-bits of randomness that is RDM secure (and q-circular
RDM secure for every polynomial q), when restricting the RDM function to be
computed by a circuit of size at most s(k) where k is the security parameter.

To prove the above two theorems we develop several new information-theoretic
tools regarding t-wise independent hash functions, that may be of independent
interests. For instance, with very high probability, a t-wise independent hash
functions is a “good” randomness extractor for any min-entropy source with
with computationally-bounded leakage (mirroring a lemma of Trevisan-Vadhan
[44]). We also present “crooked” versions of such deterministic extraction lemmas
(mirroring the “crooked left-over-hash lemma of [25]).

An interesting question is whether any encryption schemes can be modified
by simply performing some pre-processing to the randomness (as in Theorem 3)
to become bounded RDM secure, but still handle long messages using short ran-
domness. At first sight, it may seem like we could use a pseudorandom generator
to “stretch” a small seed into the required long random string for the construc-
tion in Theorem 3. We have no attack against this construction. However, we
show that security reductions that only use the attacker and the RDM function
as a black-box—following [28], we refer to such reductions as strongly black-
box—cannot be used to demonstrate RDM security of encryption schemes with
perfect correctness and efficiently recognizable public-keys that can encrypt long
messages using short randomness, based on a falsifiable intractability assump-
tion [37]; for instance, this means that the El-Gamal crypto system cannot be

3 The construction of [10] actually requires universal hash permutations. As far as
we know, constructions of t-wise independent permutations are not known, which
requires us to further modify the scheme to guarantee correctness.



modified (by performing pre-processing to the randomness) to become bounded
RDM secure for long messages.

Theorem 5 (Informal statement). Assume the existence of one-way func-
tions secure against subexponential-sized circuits. For every polynomials m and
r such that m(k) ≥ r(k) + ω(log k), there exists a polynomial s such that for
every m(·)-bit encryption scheme Π with perfect correctness and efficiently rec-
ognizable public-keys that uses r(·) bits of randomness to encrypt a message,
s-bounded security of Π cannot be based on any falsifiable assumption using a
strongly black-box reduction, unless the assumption is false.

Let us point out that the reason Theorem 5 does not contradict Theorem 4 is
that in the construction used to prove Theorem 4, valid (“injective”) public-keys
are indistinguisbale from invalid (“lossy”) public-keys, and thus the schemes does
not have efficiently recognizable public-keys.

RDM security beyond encryption We note that the notion of RDM security
applies not only to encryption but makes sense also in the context of more
general cryptographic protocols. For instance, the notion of RDM security di-
rectly extends to commitments—just as in the case of encryption, we here let
the RDM function select the messages to be committed to as a function of
the committer’s randomness. We remark that Theorem 1 readily extends also
to rule out (even computationally binding and computationally-hiding) RDM-
secure commitments. Additionally, Theorem 3 extends to show that any com-
mitment scheme in the CRS model can be turned into a bounded RDM secure
commitment scheme in the CRS model. However, Theorem 5 does not extend
to the setting to commitments—using a collision-resistant hash function, any
RDM secure commitment for short messages can be turned into a RDM-secure
commitment for long messages. The above results for commitment schemes can
be found in the full version of this work.

We leave an exploration of RDM security for other tasks (e.g., zero-knowledge
and witness indistinguishability—where the RDM function may select the state-
ment and witness to the proved as a function of the prover’s randomness, or
secure computation—where the RDM function may select a player’s input as a
function of his randomness) for future work.

On the Soundness of the Random-Oracle Methodology Starting with the work
of Canetti, Goldreich and Halevi [22, 23], there are several “uninstantiability re-
sults” for the random oracle model [7], showing schemes that are secure in the
random oracle model, but where every instantiation of random oracle with a
concrete (efficient) function leads to an insecure protocol (see e.g., [5, 27, 34]).
Another vein of work shows tasks (as opposed to schemes) that can be securely
implemented in the random oracle model, but for which there are no secure im-
plementations in the standard model (see e.g., [39, 40, 9]). As far as we know, all
these separations for tasks, however, make a relatively strong use of the random
oracle model; [39, 9] rely on the security reduction “programming the random



oracle”, and [40] relies on the security reduction “seeing all the queries to the ran-
dom oracle”. Thus, it is conceivable that a weaker usage of random oracles may
circumvent these uninstantiability results. For instance, Unruh [45] introduced a
weaker random oracle model where the adversary may get an (inefficient) non-
uniform advice about the random oracle, and suggested that proofs of security
in this weaker random oracle model may still be “sound”. We here address this
question using RDM-secure encryption as a task.

We show that in the random-oracle model the existence of public-key en-
cryption schemes imply the existence of “fully” RDM secure encryption schemes
(i.e., without restricting the RDM function); our scheme is essentially identical
to the hedged encryption scheme of [10] (but the analysis is quite different given
the different security goals).4 Our use of the random oracle model is extremely
weak: we do not need to “program it”, or “see queries to it”, and security holds
even the attacker may get any inefficient non-uniform advice about it (as in
the model of [45]). (The only property we need of the random oracle is that it
acts as a klog k-wise indepedent hash function.) We refer to such a model as the
“ultra-weak” Random Oracle Model.

Theorem 6 (Informal Statement). Assume the existence of a secure public
key encryption scheme. Then, there exists a encryption scheme Π that is “fully”
RDM secure in the “ultra-weak” Random Oracle Model.

Theorem 6, combined with our impossibility result (Theorem 1), thus yields
an example of an arguably natural task (i.e., RDM-secure encryption) that can
be securely implemented in the ultra-weak random-oracle model, but not in the
standard model. Let us point out that a cruicial aspect of the security proof
of our RO-based scheme is that the RDM function is not allowed to query the
random oracle; in case we allow it to query the random oracle, our impossibility
result still holds.

1.2 Related Work

As mentioned in the introduction, (circular) RDM security was first implicitly
considered by Myers and Shelat [36] and explicitly by Hemmenway and Ostro-
vsky [31]. [36] [33] demonstrate semantic security of encryption schemes of a
specific type of circular RDM attack, but do not formally introduce a notion of
RDM security. Hemmenway and Ostrovsky [31] provide the first formal definition
of RDM-secure encryption schemes, but only investigate, and provide construc-
tions of, schemes satisfying the weaker notion of “circular-RDM one-wayness”.
As far as we know, we are the first to explicitely study the feasibility of satisfying
(circular-)RDM semantic security (as opposed to one-wayness). As mentioned
above, Bellare et al [10] study hedged encryption schemes that are closely related
to RDM-secure encryption schemes; such encryption schemes are RDM secure
if restricting the attacker to using RDM functions that do not depend on the

4 Hedged encryption exists also in the plain model so we cannot hope to get a sepa-
ration by directly appealing to the results of [10].



public-key. Nevertheless, as mentioned, the constructions of both Bellare et al
and Hemmenway and Ostrovsky are very useful to us.

As mentioned in the introduction, the related notion of key-dependent mes-
sage (KDM) security was first introduced by Black, Rogaway, and Shrimpton
in 2002 [14], who demonstrated the possibility of achieving their definition in
the random-oracle model. The related notion of circular security (in which there
exists a cycle of ciphertexts where each message depends on the previous secret
key) was independently and concurrently introduced by Camenisch and Lysyan-
skaya [21], who also showed constructions in the random-oracle model. Follow-up
work considered message-dependent PRFs [30] and symmetric encryption [32, 4]
in the standard model. In [29] barriers to constructing KDM secure schemes for
general classes of key-dependencies. In 2008, Boneh, Halevi, Hamburg, and Os-
trovsky presented the first KDM-secure public-key encryption scheme [16]; their
construction was based on the DDH assumption. Subsequent work developed
schemes that were KDM secure and CCA2 secure [20], KDM secure and resilient
to leakage on the secret key [6], circular secure under alternative assumptions
[17], and circular secure against larger classes of functions [18]. Recent work has
also shown that there exist schemes that are secure under standard definitions
but which are not 2-circular secure [1, 24].

A separate, but related line of related work focuses on leakage-resilient en-
cryption (see e.g., [35, 26, 2, 3, 38, 19]). In a sense, RDM security can be viewed
as a CPA security game where the attacker gets to see some leakage on the
encryptor’s randomness before selecting the messages; indeed, in our positive
results, this view will be instrumental.

Overview of the paper Some preliminaries are found in Section 2. We provide
formal definitions of RDM and circular RDM security in Section 3. Our impos-
sibility results regarding RDM and circular RDM security are found in Section
4. Finally, in Section 5 we present our positive results. The black-box unprov-
ability results are postponed to the full version. All full proofs are found in the
full version.

2 Preliminaries

For a distribution S, s ← S means that s is chosen according to distribution
S. For a set S, s ← S means that s is chosen uniformly from the set S. Un
denotes the uniform distribution over n-bit strings. For a probabilistic algorithm
A, A(x; r) denotes the output of A running on input x with randomness r;
A(x) denotes the output of A on input x with uniformly chosen randomness.
All logarithms are base 2 unless otherwise specified. We say that a function
ε : N→ [0, 1] is negligible if for every constant c ∈ N, ε(n) < k−c for sufficiently
large k.

The statistical difference between two probability distributions X,Y is de-
fined by ∆(X,Y ) = (1/2) ·

∑
x |Pr[x← X]−Pr[x← Y ]|. X and Y are ε-close if

∆(X,Y ) ≤ ε. The statistical difference between two ensembles {Xk}k and {Yk}k



is a function δ defined by δ(k) = ∆(Xk, Yk). Two probability ensembles are said
to be statistically close if their statistical difference is negligible. We also say Xk

and Yk are statistically close if ∆(Xk, Yk) ≤ ε(k) for some negligible function
ε. Two ensembles {Xk}, {Yk} are computationally indistinguishable if for every
PPT distinguisher D, there exists a negligible function µ such that for every
k ∈ N,

|Pr[D(1k, Xk) = 1]− Pr[D(1k, Yk) = 1]| ≤ µ(k).

The min-entropy of a random variable X, denoted H∞(X) is defined by
H∞(X) = − log(maxx Pr[x ← X]). A random variable X is a k-source if
H∞(X) ≥ k.

A family of hash functions H = {h : S1 → S2} is t-wise independent if the
following two conditions hold:

1. ∀x ∈ S1, the random variable h(x) is uniformly distributed over S2, where
h← H.

2. ∀x1 6= · · · 6= xt ∈ S1, the random variables h(x1), . . . , h(xt) are independent,
where h← H.

A function Ext{0, 1}n × {0, 1}d → {0, 1}m is a strong (k, ε)-extractor if for
every k-source X over {0, 1}n, (Ud,Ext(X,Ud)) is ε-close to (Ud, Um).

Definition 1 (Public-Key Encryption). An l-bit public-key encryption scheme
consists of a triple Π = (Gen,Enc,Dec) of PPT algorithms where (i) Gen takes
a security parameter 1k as input and generates a pair of public and secret key
(pk, sk) ← Gen(1k), (ii) Enc takes a public key pk and a message m in a mes-
sage space {0, 1}l(k) as input and generates a ciphertext c ← Encpk(m), (iii)
Dec is a deterministic algorithm that takes a secret key sk and a ciphertext c as
input and outputs m′ = Decsk(c), and (iv) there exists a negligible function µ
such that for every k ∈ N, for random (pk, sk)← Gen(1k),

Pr
[
∃m ∈ {0, 1}l(k)s.t.Decsk(Encpk(m)) 6= m

]
≤ µ(k),

where the probability is taken over the randomness of Gen and the randomness
of the encryption. We say that Π has perfect correctness if the above condition
holds for µ(k) = 0.

Definition 2 (CPA and CCA Security). An l-bit public-key encryption scheme
Π = (Gen,Enc,Dec) is CPA-secure if for every probabilistic polynomial time
adversary A = (A1, A2), the ensembles {INDΠ

0 (A, k)}k and {INDΠ
1 (A, k)}k are

computationally indistinguishable, where

INDΠ
b (A, k) := (pk, sk)← Gen(1k)

(m0,m1, state)← A1(1k, pk)
c← Encpk(mb)
o← A2(c, state)
Output o



We say Π is CCA-secure if the above holds when A2 has access to a decryp-
tion oracle but is not allowed to query the decryption oracle with the challenge
ciphertext c.

Remark 1. In the above definition and for essentially all the results in this paper,
we consider a uniform polynomial-time attacker A. In case security holds against
also non-uniform polynomial-time attackers, we refer to the scheme as being non-
uniformly CPA/CCA secure. As is often the case, all our constructions in uniform
setting directly extend also to the case of non-uniform security (if assuming that
the underlying schemes are non-uniformly secure).

Note that the above definition assumes that messages encrypted are chosen
independently of the randomness used by the encryption algorithm.

3 Definition of RDM Security

In this section, we formally define two notions of randomness-dependent message
security for encryption schemes.

Our first definition is essentially equivalent to the definition of RDM security
due to Hemmenway and Ostrovsky [31]. In this definition, messages are adver-
sarially chosen functions (after seeing the public key) of the randomness used
for encryption: we say the encryption scheme is secure if the adversary cannot
distinguish between encryptions of different functions of the randomness.

Definition 3. [RDM-Security] An l-bit public-key encryption scheme Π = (Gen,
Enc,Dec) is randomness-dependent message secure (RDM-secure) if for every
PPT adversary A = (A1, A2), the ensembles {RDMΠ

0 (A, k)}k∈N and {RDMΠ
1 (A, k)}k∈N

are computationally indistinguishable where

RDMΠ
b (A, k) := (pk, sk)← Gen(1k)

(f0, f1, state)← A1(1k, pk)
r ← UR
c← Encpk(fb(r); r)
o← A2(c, state)
Output o

and R is the encryption randomness length of Π. The RDM functions fb are
represented as circuits from {0, 1}|r| to {0, 1}l(k) We say Π is RDM-CCA-secure
if the above holds when A2 has access to a decryption oracle but is not allowed
to query the decryption oracle with the challenge ciphertext c.

We remark that by a standard hybrid argument, we can assume without loss
of generality that the adversary A1 always choose f1 to be a constant function
f1 = 0. As mentioned, Definition 3 is essentially identical to the notion of RDM
security defined by Hemmenway and Ostrovsky [31]: the definition of [31] is a
multi-message version of Definition 3 where the attacker gets to see a sequence
of encrypted messages (that may depend in a correlated way on the randomness



used to encrypt them), and thus the definition of [31] implies Definition 3. (Look-
ing forward, since we are proving an impossibility result regarding Definition 3,
considering a weaker definition makes our results stronger.)

Consider a sequence of encryptions where messages are functions of the pre-
vious (but most recent) encryption randomness and ciphertext. Security in this
setting is guaranteed by CPA security, since encryption randomness is still in-
dependent of the messages. However if this dependency is circular, it is unclear
whether or not we have security. We now formally introduce this notion of cir-
cular randomness dependent message security.

Definition 4 (q-circular RDM Security). Let q : N→ N be efficiently com-
putable. An l-bit public-key encryption scheme Π = (Gen,Enc,Dec) is q-circular
RDM secure if for every PPT adversary A = (A1, A2), the following two ensem-
bles {CIRΠ

0 (A, k)}k∈N and {CIRΠ
1 (A, k)}k∈N are computationally indistinguish-

able, where

CIRΠ
b (A, k) := (pk, sk)← Gen(1k)

(f1
0 , f

2
0 , . . . , f

q(k)
0 , f1

1 , f
2
1 , . . . , f

q(k)
1 , state)← A1(1k, pk)

r1, r2, . . . , rq(k) ← U
q(k)
R

c1 ← Encpk(f1
b (rq); r1)

for i = 2, . . . , q
ci ← Encpk(f ib(r

i−1, ci−1); ri)
o← A2(c̄, state)
Output o

and R is the encryption randomness length of Π. The RDM functions f ib are rep-
resented as circuits as defined in Definition 3. c̄ denotes the vector (c1, c2, . . . cn).
Furthermore, Π is circular RDM secure if Π is kc-circular RDM secure for ev-
ery constant c. q-circular-CCA and circular-CCA RDM security are defined in
analogous way.

Remark 2. Note that by a hybrid argument, we can assume without loss of
generality that A always choose f i1 = 0 for every i ∈ [q]. We will use this
observation later in the proof of Theorem 11.

We also define relaxations of RDM security and circular RDM security where
we restrict the RDM function to be computable by circuits of a priori bounded
size.

Definition 5. Let s : N → N be efficiently computable. An l-bit public key
encryption scheme Π is s-bounded RDM secure (resp., s-bounded (q-)circular
RDM secure) if Π is RDM secure (resp., (q-)circular RDM secure) under the
additional restriction that in the corresponding security game, the adversary A1

can only output RDM functions computable by circuits of size bounded by s(k).
CCA security is defined analogously.



4 Impossibility Results

In this section we prove that both RDM-security and q-circular security are im-
possible to achieve. Throughout this section, we focus on bit-encryption schemes;
this only makes our results stronger. We first establish the impossibility result
on the RDM-secure encryption schemes; our techniques (of using pairwise inde-
pendent hashfunctions to signal a message) are similar to those used by Bellare
and Keelveedhi [12] in a different context.

Theorem 7. For every 1-bit encryption scheme Π = (Gen,Enc,Dec), Π is not
RDM-secure.

Proof. Let Π = (Gen,Enc,Dec) be a 1-bit encryption scheme. We construct a
PPT adversary A = (A1, A2) that breaks the RDM security of Π. The idea is
to use fb to signal the bit b in the RDMΠ

b experiment by pairwise independent
hash functions.

Fix a security parameter k ∈ N. Let C denotes the ciphertext space of Π
for the corresponding security parameter k, and let H = {h : C → {0, 1}} be a
pairwise independent hash function family that hashes ciphertexts to a bit. Our
adversary A uses h ← H to construct functions fb,h for b ∈ {0, 1} that signals
the bit b as follows.

– A1(1k, pk): A1 samples h ← H and outputs (f0,h, f1,h, h), where for b ∈
{0, 1}, fb,h on input r, outputs a messagem ∈ {0, 1} such that h(Encpk(m, r)) =
b if such an m exists; otherwise fb,h outputs m = 0.

– A2(c, h): A2 simply outputs one bit h(c).

To show that A breaks the RDM security of Π, it suffices to show the follow-
ing claim, which clearly implies RDMΠ

0 (A, k) and RDMΠ
1 (A, k) are distinguish-

able.

Claim. Pr[RDMΠ
b (A, k) = b] ≥ 3/4− negl(k) for b ∈ {0, 1}.

Proof. Note that the output of RDMΠ
b (A, k) is simply h(Encpk(fb(r), r)) where

(pk, sk)← Gen(1k), r ← U|r|, and h← H. The correctness of Π implies that,

Pr
pk,r

[Encpk(0, r) 6= Encpk(1, r)] ≥ 1− negl(k). (1)

When this is the case, by the pairwise independence,

Pr
h

[∃ m s.t. h(Encpk(m, r)) = b] = 3/4.

It follows by an union bound that

Pr[RDMΠ
b (A, k) = b]

≥ Pr
pk,r,h

[(Encpk(0, r) 6= Encpk(1, r)) ∧ (∃ m s.t. h(Encpk(m, r)) = b)]

≥ 3/4− negl(k).

ut



We proceed to establish the impossibility result on the circular RDM-secure
encryption schemes.

Theorem 8. For every 1-bit encryption scheme Π = (Gen,Enc,Dec), Π is not
q-circular RDM-secure for every efficiently computable and polynomially bounded
q.

We prove Theorem 8 by showing that in fact, circular RDM security implies
RDM security. Theorem 8 follows by combining Theorem 7 and 9.

Theorem 9. Let Π = (Gen,Enc,Dec) be a 1-bit encryption scheme, and q :
N → N be efficiently computable and polynomially bounded. If Π is q-circular
RDM-secure, then Π is RDM-secure.

Proof. (Sketch) The formal proof can be found in the full version; we here just
provide a proof sketch. Let us first sketch the proof for the special case that Π
has perfect correctness and that q = 2, to illustrate the idea behind the proof.
Suppose there exists a PPT adversary A that breaks the RDM security of Π,
we want to construct a PPT adversary B that breaks the 2-circular security of
Π.

The idea is to let B simulate the attack of A in the circular RDM secu-
rity game using the second message (in general, using the last message). More
precisely, recall that in the RDM security game RDMΠ

b , A generates RDM func-
tions f0 and f1, and receives c = Encpk(fb(r); r). To simulate the attack of A
in CIRπ

b , B generates f1
0 , f

2
0 , f

1
1 , f

2
1 in a way so that B will receive c̄ = (c1, c2)

with c2 = Encpk(fb(r
2); r2). Then B can output whatever A2 outputs on input

c2, and break the circular RDM security with the same advantage as A.
Now, the key observation is that the RDM function f2

b (r1, c1) can in fact de-
crypt c1 to get the message f1

b (r2) by checking whether c1 equals to Encpk(0, r1)
or Encpk(1, r1) (the perfect correctness implies Encpk(0, r1) 6= Encpk(1, r1) and
the decryption will be always correct). Thus,B can let f1

b = fb and let f2
b (r1, c1) =

f1
b (r2), and by doing soB will receive c2 = Encpk(f2

b (r1, c1), r2) = Encpk(fb(r
2), r2),

as desired. This completes the proof of the special case.
We can readily extend the proof to the general q-circular RDM security, by

letting B set f1
b = fb and f i+1

b (ri, ci) = f ib(r
i−1, ci−1) for i = 1, . . . , q−1. On the

other hand, imperfect correctness only causes negligible probability of decryption
errors, and thus only reduces the advantage of B by a negligible amount. ut

5 Positive Results

5.1 Bounded RDM Security

In the previous sections we have seen that RDM security and circular RDM
security are impossible to achieve. In this section we see how we can achieve the
weaker notions of bounded RDM security and bounded circular RDM security.
In fact we achieve a stronger notion of RDM security which implies both of the
above.



This strong RDM security is in fact security in the presence of randomness
leakage (such that the leakage function size is a priori bounded by a polynomial)
which is available to the adversary when it chooses the messages to encrypt.

Definition 6. For every s, p : N → N an l-bit public-key encryption scheme
Π = (Gen,Enc,Dec) is s-bounded p-strong RDM secure (BSRDM-secure) if for
every PPT adversary A = (A1, A2), the ensembles {BSRDMΠ

0 (A, k)}k∈N and
{BSRDMΠ

1 (A, k)}k∈N are computationally indistinguishable where

BSRDMΠ
b (A, k) := (pk, sk)← Gen(1k)

r ← UR
(f, state1)← A1(1k, pk)
(m0,m1, state2)← A2(f(r), state1)
c← Encpk(mb; r)
o← A3(c, state2)
Output o,

R is the encryption randomness length of Π and f : {0, 1}|r| → {0, 1}p(k) is
a function computed by a circuit of size at most s(k). CCA security is defined
analogously.

We show that any secure encryption scheme can be compiled to a bounded
strong RDM-secure encryption scheme (with “long” encryption randomness).

Theorem 10. Assume the existence of a CPA (resp., CCA) secure public key
encryption scheme. Then, there exists a l-bit s-bounded p-strong RDM-secure
(resp., RDM-CCA-secure) encryption scheme for every polynomial l, s and p.

We start by providing a construction that converts any secure encryption
scheme to bounded strong RDM secure encryption scheme. The main idea is that
though leakage degrades the randomness, the randomness is long enough to have
enough residual min-entropy so that the random bits necessary for encryption
can be extracted from it. The problem with this is that the extractor seed will
have to be part of the public key, and the adversary can choose a leakage function
after seeing the public key. Hence the leakage could be such that the seed always
fails to extract randomness from the source. This is where we exploit the fact
that the set of possible leakage functions is bounded: using a union bound, we
show that if the randomness used by the encryption scheme is long enough, then
with overwhelming probability a random seed can extract randomness from the
source resulting from any leakage function. The following lemma captures the
above idea.

Lemma 1. [Deterministic Extraction From Bounded Leakage Sources] Let F =

{f : {0, 1}n → {0, 1}`} be a class of (leakage) functions. Let H = {h : {0, 1}n →
{0, 1}m} be a t-wise independent hash function family. If{

t ≥ 2(m+ `+ log |F|+ log(1/δ) + 3),

m ≤ n− `− 3 log(1/ε)− log t− 5,



then with probability at least (1− δ) over h← H, it holds that for every f ∈ F ,

∆((f(Un), h(Un)), (f(Un), Um)) ≤ ε.

The proof of the lemma can be found in the full version, and relies on the
ideas similar to those used by [44] to demonstrate deterministic extraction from
sources computable by bounded size circuits. We now see how we can get a
bounded-SRDM-secure encryption scheme from any secure encryption scheme.

The following transformation is essentially identical to the one used in [31]
but using different parameters and using a different analysis.5

Definition 7. For every polynomial s and p and encryption scheme Π = (Gen,Enc,Dec),
define a new encryption scheme Π ′ = (Gen′,Enc′,Dec′) as follows:

– Gen′(1k) : (pk, sk) ← Gen(1k), hk ← Hk where Hk = {hk : {0, 1}R′(k) →
{0, 1}R(k)} is a t(k)-wise independent family of hash functions where R(.) is
the length of the randomness of Enc, R′(.) is the length of the randomness
of Enc′,

t(k) ≥ 2(R(k) + k + s(k) + p(k) + 3)

and

R′(k) = p(k) +R(k) + 3k + log t(k) + 5

Output ((pk, hk), sk).

– Enc′(pk,hk)(m) : r ← UR′(k); output Encpk(m;hk(r)).

– Dec′sk(c) : output Decsk(c).

In the full version we show, by appealing to Lemma 1 that the above con-
struction transforms a CPA (resp., CCA) secure scheme to a bounded strong
RDM (resp., CCA-RDM) secure scheme (thus implying Theorem 10).

Lemma 2. Let s, p be polynomials. Let Π be a CPA (resp., CCA) secure public
key encryption scheme, and Π ′ be the transformed encryption scheme obtained
from Definition 7. Then, Π ′ is s-bounded p-strong RDM (resp., CCA-RDM)
secure.

It is clear that bounded strong RDM security implies RDM security. Addi-
tionally, in the full version we demonstrate that bounded strong RDM security
implies also bounded circular RDM security.

Theorem 11. For all l-bit public key encryption schemes Π = (Gen,Enc,Dec),
if Π is s-bounded l-strong RDM secure (resp., CCA-RDM secure) then Π is s-
bounded circular RDM secure (resp., CCA-RDM secure).

5 As mentioned in Section 1.2, the results of [31] require the underlying encryption
schemes to satisfy additional properties (e.g., “lossiness”) and the results established
about the resulting encryption scheme are very different.



Full RDM Security in the Random Oracle Model In the full version of this
paper, we demonstrate that the above scheme actually yeilds a fully (as opposed
to bounded) RDM secure encryption scheme in the random oracle model [7], if
replacing the t-wise independent hashfunction with a random oracle. Our use of
the random oracle model is extremely weak: we do not need to “program it”, or
“see queries to it”. Additionally, security holds even if the attacker may get any
inefficient non-uniform advice about the random oracle (as in the model of [45]).
The only property we need of the random oracle is that it acts as a klog k-wise
indepedent hash function (to be able to apply Lemma 1).

This result, combined with Theorem 7, show the existence of a task—RDM
secure encryption—that can be achieved in such an “ultra-weak” random oracle
model (assuming the existence of CPA secure encryption schemes), but cannot
be achieved in the plain model. As far as we know, this is the first separation
between tasks achievable in such a weak random oracle model, and the plain
model.

5.2 Bounded RDM Security with Short Randomness

The above construction yields strong bounded RDM-secure encryption schemes
where the length of the randomness is longer than the length of the message.
We now provide a construction of a bounded RDM-secure and bounded circular
RDM-secure encryption scheme that can encrypt arbitrarily long messages using
“short” randomness. This construction, however, relies on stronger cryptographic
assumption—namely, we require the existence of “lossy” trapdoor functions.

Definition 8 ([43]). A tuple (GenLossy,GenInj, F, invert)) is an (n, u)-lossy
trapdoor function if the following holds:

– (Injection mode) For every k ∈ N, Pr[(pk, sk) ← GenInj(1k) : x ← Un(k) :
invertsk(Fpk(x)) = x] = 1

– (Lossy mode) For every k ∈ N and pk ← GenLossy(1k), the size of the range
of Fpk(.) (which takes as input strings of length n(k)) is at most 2u(k).

– The following ensembles are computationally indistinguishable

{(pk, sk)← GenInj(1k) : pk}k∈N

{pk ← GenLossy(1k) : pk}k∈N

We turn to providing our construction of a bounded-RDM secure encryption
scheme that can encrypt also “long” messages using “short” randomness—the
ratio between the message-length and the randomness length is proportional
to the lossiness of the trapdoor function. Formally, we establish the following
theorem.

Theorem 12. Let l and R be the message length and randomness length param-
eters with R(k) ≥ k. Assuming the existence of (n, u)-lossy trapdoor functions
with n ≥ 3(l + R) and u ≤ R/8, then for every polynomial s, there exist a l-bit
s-bounded circular RDM secure encryption scheme with randomness length R.



In particular, assuming the DDH assumption holds, for every polynomial
l, R, s with R(k) ≥ k, there exist a l-bit s-bounded circular RDM secure encryp-
tion scheme with randomness length R.

We mention that the “in particular” part of the theorem follows by the
DDH-based construction of lossy trapdoor functions in [43]. Our construction is
closely related to the “pad-then-deterministic” construction of hedged encryp-
tion schemes of Bellare et al [10], where the encryption is done by first applying a
invertible universal hash permutation h to the message-randomness pair (m||r)
and then applying a lossy trapdoor function Fpk to the hashed value. Recall
that hedged encryption scheme already satisfy a notion of RDM security when
restricting to RDM functions that do not depend on the public-key. To deal
with RDM functions that depend on the public key, our key modification to
their scheme is to replace the use of univeral hashing with t-wise independent
hashing. However, since constructions of t-wise independent permutations are
not known, to deal with arbitrary t-wise independent hash functions, we further
modify the scheme to “pad” the message-randomness pair with a sufficiently
long sequence of 0’s.

Recall that the standard construction of t-wise independent hash functions
is a degree t− 1 univariate polynomial over a prime field, which is invertible by
the Berlekamp algorithm [13].

Definition 9. Let l, R, and s be the message length, randomness length, and
size parameters with R(k) ≥ k. Let (GenLossy,GenInj, F, invert) be an (n, u)-
lossy trapdoor function with public-key length v such that u ≤ R/8 and n =
3(l + R). Let t = 8(s + u + v + R) and Hn = {h : {0, 1}n → {0, 1}n} be
an invertible family of t(·)-wise independent hash functions. Define an l-bit s-
bounded (circular) RDM-secure encryption scheme Π = (Gen,Enc,Dec) with
randomness length R as follows6:

– Gen(1k) : (pk, sk)← GenInj(1k), h← Hn; output ((pk, h), (sk, h)).
– Enc(pk,h)(m) : r ← UR(k); output c = Fpk(h(m||r||02(l+R))).
– Dec(sk,h)(c) : output the first l(k) bits of h−1(invertsk(c)).

While our construction is bounded circular RDM secure, it is instructive to
first focus on the bounded RDM security. Recall the security of the [10] scheme
(which relies on a construction of deterministic encryption from [15]) relies on a
“crooked” version of leftover hash lemma [25], which asserts that when Fpk has
small range size (which is the case in the lossy mode) and the source (m||r) has
sufficient min-entropy and is independent of h, then Fpk(h(m||r)) is statistically
close to the “crooked” distribution Fpk(U|m|+|r|).

In our context, however, the adversary selects a s-bounded RDM function f
after seeing the public key, and thus the source (f(r)||r||02(l+R)) may be cor-
related with the hash function h (and also Fpk). We overcome this issue by

6 In fact, to achieve only bounded RDM security (as opposed to circular RDM secu-
rity), it suffices to, say, satisfy u ≤ R/5 and set t = 4(s+u+ v). We do not optimize
the parameters here.



using t-wise independent hashing and proving a crooked version of the deter-
ministic extraction lemma from computationally bounded source of Trevisan
and Vadhan [44]. The lemma asserts that with overwhelming probability over
h ← H, the encryption Fpk(f(r)||r||02(l+R)) is statistically close to a corre-
sponding crooked distribution Fpk(Un) for every lossy function Fpk and every
s-bounded RDM function f . Therefore, the s-bounded RMD security follows by
switching to the lossy mode and applying the crooked deterministic extraction
lemma. We proceed to state the crooked deterministic extraction lemma and
prove the s-bounded RDM security of our scheme. The proof of Lemma 3 can
be found in the full version and follows similar techniques to those used by [44].

Lemma 3 (Crooked Deterministic Extraction). Let H = {h : {0, 1}n →
{0, 1}n} be a t-wise independent hash function family. Let F = {f : {0, 1}n →
Rf} be a family of functions where each f ∈ F has range Rf of size |Rf | ≤ 2m.
Let C be a family of distributions over {0, 1}n such that every X ∈ C has min-
entropy H∞(X) ≥ k. If{

t ≥ 2(m+ log |F|+ log |C|+ log(1/δ) + 3),

m ≤ k − 2 log(1/ε)− log t− 2,

then with probability at least (1 − δ) over h ← H, it holds that for every f ∈ F
and every X ∈ C,

∆(f(h(X)), f(Un)) ≤ ε.
In the full version we show the following lemma, by appealing to Lemma 3.

Lemma 4. The l-bit encryption scheme Π = (Gen,Enc,Dec) constructed in
Definition 9 is correct and s-bounded RDM secure.

We now turn to prove also circular RDM security of our scheme. To do this,
we require the use of a generalized form of the above crooked deterministic
extraction lemma that also deals with leakage (just as our “plain” deterministic
extraction of leakage-source lemma, lemma 1).

Lemma 5. Let H = {h : {0, 1}n → {0, 1}n} be a t-wise independent hash
function family. Let F = {f : {0, 1}n → Rf} be a family of functions where
each f ∈ F has range Rf of size |Rf | ≤ 2m. Let G = {g : {0, 1}n → {0, 1}n} be
a family of functions. Let C be a family of distributions over {0, 1}n such that
every X ∈ C has min-entropy H∞(X) ≥ k. If{

t ≥ 2(2m+ log |F|+ log |G|+ log |C|+ log(1/δ) + 3),

m ≤ (k − 3 log(1/ε)− log t− 5)/2,

then with probability at least (1− δ) over h← H, it holds that for every f ∈ F ,
g ∈ G, and X ∈ C,

∆((f(g(X)), f(h(X))), (f(g(X)), f(Un))) ≤ ε.

In the full version we show the following lemma, by appealing to Lemma 5.

Lemma 6. The l-bit encryption scheme Π = (Gen,Enc,Dec) constructed in
Definition 9 is s-bounded circular RDM secure.
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3. Joël Alwen, Yevgeniy Dodis, and Daniel Wichs. Leakage-resilient public-key cryptography in
the bounded-retrieval model. In CRYPTO, pages 36–54, 2009.

4. Benny Applebaum, Danny Harnik, and Yuval Ishai. Semantic security under related-key attacks
and applications. In ICS, pages 45–60, 2011.

5. Boaz Barak. How to go beyond the black-box simulation barrier. In FOCS, pages 106–115,
2001.

6. Boaz Barak, Iftach Haitner, Dennis Hofheinz, and Yuval Ishai. Bounded key-dependent message
security. In EUROCRYPT, pages 423–444, 2010.

7. M. Bellare and J. Rompel. Randomness-efficient oblivious sampling. In Proceedings of the 35th
Annual Symposium on Foundations of Computer Science, pages 276–287, 1994.

8. Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. Deterministic and efficiently searchable
encryption. In CRYPTO, pages 535–552, 2007.

9. Mihir Bellare, Alexandra Boldyreva, and Adriana Palacio. An uninstantiable random-oracle-
model scheme for a hybrid-encryption problem. In EUROCRYPT, pages 171–188, 2004.

10. Mihir Bellare, Zvika Brakerski, Moni Naor, Thomas Ristenpart, Gil Segev, Hovav Shacham,
and Scott Yilek. Hedged public-key encryption: How to protect against bad randomness. In
ASIACRYPT, pages 232–249, 2009.

11. Mihir Bellare, Marc Fischlin, Adam O’Neill, and Thomas Ristenpart. Deterministic encryption:
Definitional equivalences and constructions without random oracles. In CRYPTO, pages 360–
378, 2008.

12. Mihir Bellare and Sriram Keelveedhi. Authenticated and misuse-resistant encryption of key-
dependent data. In CRYPTO, pages 610–629, 2011.

13. Elwyn R. Berlekamp. Factoring polynomials over finite fields. Bell System Technical Journal,
46:1853–1859, 1967.

14. John Black, Phillip Rogaway, and Thomas Shrimpton. Encryption-scheme security in the pres-
ence of key-dependent messages. In Revised Papers from the 9th Annual International Work-
shop on Selected Areas in Cryptography, SAC ’02, pages 62–75, 2003.

15. Alexandra Boldyreva, Serge Fehr, and Adam O’Neill. On notions of security for deterministic
encryption, and efficient constructions without random oracles. In CRYPTO, pages 335–359,
2008.

16. Dan Boneh, Shai Halevi, Mike Hamburg, and Rafail Ostrovsky. Circular-secure encryption from
decision diffie-hellman. In Proceedings of the 28th Annual conference on Cryptology: Advances
in Cryptology, CRYPTO 2008, pages 108–125, 2008.

17. Zvika Brakerski and Shafi Goldwasser. Circular and leakage resilient public-key encryption
under subgroup indistinguishability. In Proceedings of the 30th annual conference on Advances
in cryptology, CRYPTO’10, pages 1–20, 2010.

18. Zvika Brakerski, Shafi Goldwasser, and Yael Tauman Kalai. Black-box circular-secure encryp-
tion beyond affine functions. In Proceedings of the 8th conference on Theory of cryptography,
TCC’11, pages 201–218, 2011.

19. Zvika Brakerski, Yael Tauman Kalai, Jonathan Katz, and Vinod Vaikuntanathan. Overcoming
the hole in the bucket: Public-key cryptography resilient to continual memory leakage. In
Proceedings of the 2010 IEEE 51st Annual Symposium on Foundations of Computer Science,
FOCS ’10, pages 501–510, 2010.

20. Jan Camenisch, Nishanth Chandran, and Victor Shoup. A public key encryption scheme secure
against key dependent chosen plaintext and adaptive chosen ciphertext attacks. In Proceedings
of the 28th Annual International Conference on Advances in Cryptology: the Theory and
Applications of Cryptographic Techniques, EUROCRYPT ’09, pages 351–368, 2009.



21. Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable anonymous
credentials with optional anonymity revocation. In Proceedings of the International Confer-
ence on the Theory and Application of Cryptographic Techniques: Advances in Cryptology,
EUROCRYPT ’01, pages 93–118, 2001.

22. Ran Canetti, Oded Goldreich, and Shai Halevi. On the random-oracle methodology as applied
to length-restricted signature schemes. In TCC, pages 40–57, 2004.

23. Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited. J.
ACM, 51(4):557–594, 2004.

24. David Cash, Matthew Green, and Susan Hohenberger. New definitions and separations for
circular security. In Public Key Cryptography, pages 540–557, 2012.

25. Yevgeniy Dodis and Adam Smith. Correcting errors without leaking partial information. In
STOC, pages 654–663, 2005.

26. Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptography. In Proceedings of
the 2008 49th Annual IEEE Symposium on Foundations of Computer Science, pages 293–302,
2008.

27. Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the fiat-shamir paradigm. In
FOCS, pages 102–113, 2003.

28. Iftach Haitner and Thomas Holenstein. On the (im)possibility of key dependent encryption. In
Proceedings of the 6th Theory of Cryptography Conference on Theory of Cryptography, TCC
’09, pages 202–219, Berlin, Heidelberg, 2009. Springer-Verlag.

29. Iftach Haitner and Thomas Holenstein. On the (im)possibility of key dependent encryption. In
Proceedings of the 6th Theory of Cryptography Conference on Theory of Cryptography, TCC
’09, pages 202–219, 2009.

30. Shai Halevi and Hugo Krawczyk. Security under key-dependent inputs. In Proceedings of the
14th ACM conference on Computer and communications security, CCS ’07, pages 466–475,
2007.

31. Brett Hemenway and Rafail Ostrovsky. Building injective trapdoor functions from oblivious
transfer. Electronic Colloquium on Computational Complexity (ECCC), 17, 2010.

32. Dennis Hofheinz and Dominique Unruh. Towards key-dependent message security in the stan-
dard model. In Proceedings of the theory and applications of cryptographic techniques 27th
annual international conference on Advances in cryptology, EUROCRYPT’08, pages 108–126,
2008.

33. Susan Hohenberger, Allison B. Lewko, and Brent Waters. Detecting dangerous queries: A new
approach for chosen ciphertext security. In EUROCRYPT, pages 663–681, 2012.

34. Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, impossibility
results on reductions, and applications to the random oracle methodology. In TCC, pages
21–39, 2004.

35. Silvio Micali and Leonid Reyzin. Physically observable cryptography (extended abstract). In
TCC, pages 278–296, 2004.

36. Steven Myers and Abhi Shelat. Bit encryption is complete. In FOCS, pages 607–616, 2009.
37. Moni Naor. On cryptographic assumptions and challenges. In CRYPTO, pages 96–109, 2003.
38. Moni Naor and Gil Segev. Public-key cryptosystems resilient to key leakage. In CRYPTO,

pages 18–35, 2009.
39. Jesper Buus Nielsen. Separating random oracle proofs from complexity theoretic proofs: The

non-committing encryption case. In CRYPTO, pages 111–126, 2002.
40. Rafael Pass. On deniability in the common reference string and random oracle model. In

CRYPTO, pages 316–337, 2003.
41. Rafael Pass, Alon Rosen, and Wei lung Dustin Tseng. Public-coin parallel zero-knowledge for

np, 2011.
42. Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and com-

posable oblivious transfer. In CRYPTO, pages 554–571, 2008.
43. Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. SIAM J.

Comput., 40(6):1803–1844, 2011.
44. L. Trevisan and S. Vadhan. Extracting randomness from samplable distributions. In Proceedings

of the 41st Annual Symposium on Foundations of Computer Science, pages 32–42, 2000.
45. Dominique Unruh. Random oracles and auxiliary input. In CRYPTO, pages 205–223, 2007.


